1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* ** Utility functions ** *) (* *) (* - Modules CoqToCaml, CamlToCoq *) (* - Modules Cmp, Tag, TagSet *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2008 *) (* *) (************************************************************************) let debug = false let rec pp_list f o l = match l with | [] -> () | e::l -> f o e ; output_string o ";" ; pp_list f o l let finally f rst = try let res = f () in rst () ; res with reraise -> (try rst () with any -> raise reraise ); raise reraise let map_option f x = match x with | None -> None | Some v -> Some (f v) let from_option = function | None -> failwith "from_option" | Some v -> v let rec try_any l x = match l with | [] -> None | (f,s)::l -> match f x with | None -> try_any l x | x -> x let iteri f l = let rec xiter i l = match l with | [] -> () | e::l -> f i e ; xiter (i+1) l in xiter 0 l let all_sym_pairs f l = let pair_with acc e l = List.fold_left (fun acc x -> (f e x) ::acc) acc l in let rec xpairs acc l = match l with | [] -> acc | e::l -> xpairs (pair_with acc e l) l in xpairs [] l let all_pairs f l = let pair_with acc e l = List.fold_left (fun acc x -> (f e x) ::acc) acc l in let rec xpairs acc l = match l with | [] -> acc | e::lx -> xpairs (pair_with acc e l) lx in xpairs [] l let rec map3 f l1 l2 l3 = match l1 , l2 ,l3 with | [] , [] , [] -> [] | e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3) | _ -> invalid_arg "map3" let rec is_sublist f l1 l2 = match l1 ,l2 with | [] ,_ -> true | e::l1', [] -> false | e::l1' , e'::l2' -> if f e e' then is_sublist f l1' l2' else is_sublist f l1 l2' let list_try_find f = let rec try_find_f = function | [] -> failwith "try_find" | h::t -> try f h with Failure _ -> try_find_f t in try_find_f let list_fold_right_elements f l = let rec aux = function | [] -> invalid_arg "list_fold_right_elements" | [x] -> x | x::l -> f x (aux l) in aux l let interval n m = let rec interval_n (l,m) = if n > m then l else interval_n (m::l,pred m) in interval_n ([],m) let extract pred l = List.fold_left (fun (fd,sys) e -> match fd with | None -> begin match pred e with | None -> fd, e::sys | Some v -> Some(v,e) , sys end | _ -> (fd, e::sys) ) (None,[]) l open Num open Big_int let ppcm x y = let g = gcd_big_int x y in let x' = div_big_int x g in let y' = div_big_int y g in mult_big_int g (mult_big_int x' y') let denominator = function | Int _ | Big_int _ -> unit_big_int | Ratio r -> Ratio.denominator_ratio r let numerator = function | Ratio r -> Ratio.numerator_ratio r | Int i -> Big_int.big_int_of_int i | Big_int i -> i let rec ppcm_list c l = match l with | [] -> c | e::l -> ppcm_list (ppcm c (denominator e)) l let rec rec_gcd_list c l = match l with | [] -> c | e::l -> rec_gcd_list (gcd_big_int c (numerator e)) l let gcd_list l = let res = rec_gcd_list zero_big_int l in if Int.equal (compare_big_int res zero_big_int) 0 then unit_big_int else res let rats_to_ints l = let c = ppcm_list unit_big_int l in List.map (fun x -> (div_big_int (mult_big_int (numerator x) c) (denominator x))) l (* Nasty reordering of lists - useful to trim certificate down *) let mapi f l = let rec xmapi i l = match l with | [] -> [] | e::l -> (f e i)::(xmapi (i+1) l) in xmapi 0 l let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l) (* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *) let assoc_pos j l = (mapi (fun e i -> e,i+j) l, j + (List.length l)) let assoc_pos_assoc l = let rec xpos i l = match l with | [] -> [] | (x,l) ::rst -> let (l',j) = assoc_pos i l in (x,l')::(xpos j rst) in xpos 0 l let filter_pos f l = (* Could sort ... take care of duplicates... *) let rec xfilter l = match l with | [] -> [] | (x,e)::l -> if List.exists (fun ee -> List.mem ee f) (List.map snd e) then (x,e)::(xfilter l) else xfilter l in xfilter l let select_pos lpos l = let rec xselect i lpos l = match lpos with | [] -> [] | j::rpos -> match l with | [] -> failwith "select_pos" | e::l -> if Int.equal i j then e:: (xselect (i+1) rpos l) else xselect (i+1) lpos l in xselect 0 lpos l (** * MODULE: Coq to Caml data-structure mappings *) module CoqToCaml = struct open Micromega let rec nat = function | O -> 0 | S n -> (nat n) + 1 let rec positive p = match p with | XH -> 1 | XI p -> 1+ 2*(positive p) | XO p -> 2*(positive p) let n nt = match nt with | N0 -> 0 | Npos p -> positive p let rec index i = (* Swap left-right ? *) match i with | XH -> 1 | XI i -> 1+(2*(index i)) | XO i -> 2*(index i) let z x = match x with | Z0 -> 0 | Zpos p -> (positive p) | Zneg p -> - (positive p) open Big_int let rec positive_big_int p = match p with | XH -> unit_big_int | XI p -> add_int_big_int 1 (mult_int_big_int 2 (positive_big_int p)) | XO p -> (mult_int_big_int 2 (positive_big_int p)) let z_big_int x = match x with | Z0 -> zero_big_int | Zpos p -> (positive_big_int p) | Zneg p -> minus_big_int (positive_big_int p) let num x = Num.Big_int (z_big_int x) let q_to_num {qnum = x ; qden = y} = Big_int (z_big_int x) // (Big_int (z_big_int (Zpos y))) end (** * MODULE: Caml to Coq data-structure mappings *) module CamlToCoq = struct open Micromega let rec nat = function | 0 -> O | n -> S (nat (n-1)) let rec positive n = if Int.equal n 1 then XH else if Int.equal (n land 1) 1 then XI (positive (n lsr 1)) else XO (positive (n lsr 1)) let n nt = if nt < 0 then assert false else if Int.equal nt 0 then N0 else Npos (positive nt) let rec index n = if Int.equal n 1 then XH else if Int.equal (n land 1) 1 then XI (index (n lsr 1)) else XO (index (n lsr 1)) let z x = match compare x 0 with | 0 -> Z0 | 1 -> Zpos (positive x) | _ -> (* this should be -1 *) Zneg (positive (-x)) open Big_int let positive_big_int n = let two = big_int_of_int 2 in let rec _pos n = if eq_big_int n unit_big_int then XH else let (q,m) = quomod_big_int n two in if eq_big_int unit_big_int m then XI (_pos q) else XO (_pos q) in _pos n let bigint x = match sign_big_int x with | 0 -> Z0 | 1 -> Zpos (positive_big_int x) | _ -> Zneg (positive_big_int (minus_big_int x)) let q n = {Micromega.qnum = bigint (numerator n) ; Micromega.qden = positive_big_int (denominator n)} end (** * MODULE: Comparisons on lists: by evaluating the elements in a single list, * between two lists given an ordering, and using a hash computation *) module Cmp = struct let rec compare_lexical l = match l with | [] -> 0 (* Equal *) | f::l -> let cmp = f () in if Int.equal cmp 0 then compare_lexical l else cmp let rec compare_list cmp l1 l2 = match l1 , l2 with | [] , [] -> 0 | [] , _ -> -1 | _ , [] -> 1 | e1::l1 , e2::l2 -> let c = cmp e1 e2 in if Int.equal c 0 then compare_list cmp l1 l2 else c (** * hash_list takes a hash function and a list, and computes an integer which * is the hash value of the list. *) let hash_list hash l = let rec _hash_list l h = match l with | [] -> h lxor (Hashtbl.hash []) | e::l -> _hash_list l ((hash e) lxor h) in _hash_list l 0 end (** * MODULE: Labels for atoms in propositional formulas. * Tags are used to identify unused atoms in CNFs, and propagate them back to * the original formula. The translation back to Coq then ignores these * superfluous items, which speeds the translation up a bit. *) module type Tag = sig type t val from : int -> t val next : t -> t val pp : out_channel -> t -> unit val compare : t -> t -> int end module Tag : Tag = struct type t = int let from i = i let next i = i + 1 let pp o i = output_string o (string_of_int i) let compare : int -> int -> int = Int.compare end (** * MODULE: Ordered sets of tags. *) module TagSet = Set.Make(Tag) (** As for Unix.close_process, our Unix.waipid will ignore all EINTR *) let rec waitpid_non_intr pid = try snd (Unix.waitpid [] pid) with Unix.Unix_error (Unix.EINTR, _, _) -> waitpid_non_intr pid (** * Forking routine, plumbing the appropriate pipes where needed. *) let command exe_path args vl = (* creating pipes for stdin, stdout, stderr *) let (stdin_read,stdin_write) = Unix.pipe () and (stdout_read,stdout_write) = Unix.pipe () and (stderr_read,stderr_write) = Unix.pipe () in (* Create the process *) let pid = Unix.create_process exe_path args stdin_read stdout_write stderr_write in (* Write the data on the stdin of the created process *) let outch = Unix.out_channel_of_descr stdin_write in output_value outch vl ; flush outch ; (* Wait for its completion *) let status = waitpid_non_intr pid in finally (* Recover the result *) (fun () -> match status with | Unix.WEXITED 0 -> let inch = Unix.in_channel_of_descr stdout_read in begin try Marshal.from_channel inch with any -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string any)) end | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i) | Unix.WSIGNALED i -> failwith (Printf.sprintf "command \"%s\" killed %i" exe_path i) | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i)) (* Cleanup *) (fun () -> List.iter (fun x -> try Unix.close x with any -> ()) [stdin_read; stdin_write; stdout_read; stdout_write; stderr_read; stderr_write]) (* Local Variables: *) (* coding: utf-8 *) (* End: *)