1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Util open Names open Esubst open Constr open Declarations open Pre_env open Nativevalues open Nativeinstr module RelDecl = Context.Rel.Declaration exception NotClosed type evars = { evars_val : existential -> constr option; evars_typ : existential -> types; evars_metas : metavariable -> types } (*s Constructors *) let mkLapp f args = if Array.is_empty args then f else match f with | Lapp(f', args') -> Lapp (f', Array.append args' args) | _ -> Lapp(f, args) let mkLlam ids body = if Array.is_empty ids then body else match body with | Llam(ids', body) -> Llam(Array.append ids ids', body) | _ -> Llam(ids, body) let decompose_Llam lam = match lam with | Llam(ids,body) -> ids, body | _ -> [||], lam let rec decompose_Llam_Llet lam = match lam with | Llam(ids,body) -> let vars, body = decompose_Llam_Llet body in Array.fold_right (fun x l -> (x, None) :: l) ids vars, body | Llet(id,def,body) -> let vars, body = decompose_Llam_Llet body in (id,Some def) :: vars, body | _ -> [], lam let decompose_Llam_Llet lam = let vars, body = decompose_Llam_Llet lam in Array.of_list vars, body (*s Operators on substitution *) let subst_id = subs_id 0 let lift = subs_lift let liftn = subs_liftn let cons v subst = subs_cons([|v|], subst) let shift subst = subs_shft (1, subst) (* Linked code location utilities *) let get_mind_prefix env mind = let _,name = lookup_mind_key mind env in match !name with | NotLinked -> "" | Linked s -> s | LinkedInteractive s -> s let get_const_prefix env c = let _,(nameref,_) = lookup_constant_key c env in match !nameref with | NotLinked -> "" | Linked s -> s | LinkedInteractive s -> s (* A generic map function *) let map_lam_with_binders g f n lam = match lam with | Lrel _ | Lvar _ | Lconst _ | Lproj _ | Luint _ | Lval _ | Lsort _ | Lind _ | Lconstruct _ | Llazy | Lforce | Lmeta _ | Levar _ -> lam | Lprod(dom,codom) -> let dom' = f n dom in let codom' = f n codom in if dom == dom' && codom == codom' then lam else Lprod(dom',codom') | Llam(ids,body) -> let body' = f (g (Array.length ids) n) body in if body == body' then lam else mkLlam ids body' | Llet(id,def,body) -> let def' = f n def in let body' = f (g 1 n) body in if body == body' && def == def' then lam else Llet(id,def',body') | Lapp(fct,args) -> let fct' = f n fct in let args' = Array.smartmap (f n) args in if fct == fct' && args == args' then lam else mkLapp fct' args' | Lprim(prefix,kn,op,args) -> let args' = Array.smartmap (f n) args in if args == args' then lam else Lprim(prefix,kn,op,args') | Lcase(annot,t,a,br) -> let t' = f n t in let a' = f n a in let on_b b = let (cn,ids,body) = b in let body' = if Array.is_empty ids then f n body else f (g (Array.length ids) n) body in if body == body' then b else (cn,ids,body') in let br' = Array.smartmap on_b br in if t == t' && a == a' && br == br' then lam else Lcase(annot,t',a',br') | Lif(t,bt,bf) -> let t' = f n t in let bt' = f n bt in let bf' = f n bf in if t == t' && bt == bt' && bf == bf' then lam else Lif(t',bt',bf') | Lfix(init,(ids,ltypes,lbodies)) -> let ltypes' = Array.smartmap (f n) ltypes in let lbodies' = Array.smartmap (f (g (Array.length ids) n)) lbodies in if ltypes == ltypes' && lbodies == lbodies' then lam else Lfix(init,(ids,ltypes',lbodies')) | Lcofix(init,(ids,ltypes,lbodies)) -> let ltypes' = Array.smartmap (f n) ltypes in let lbodies' = Array.smartmap (f (g (Array.length ids) n)) lbodies in if ltypes == ltypes' && lbodies == lbodies' then lam else Lcofix(init,(ids,ltypes',lbodies')) | Lmakeblock(prefix,cn,tag,args) -> let args' = Array.smartmap (f n) args in if args == args' then lam else Lmakeblock(prefix,cn,tag,args') (*s Lift and substitution *) let rec lam_exlift el lam = match lam with | Lrel(id,i) -> let i' = reloc_rel i el in if i == i' then lam else Lrel(id,i') | _ -> map_lam_with_binders el_liftn lam_exlift el lam let lam_lift k lam = if Int.equal k 0 then lam else lam_exlift (el_shft k el_id) lam let lam_subst_rel lam id n subst = match expand_rel n subst with | Inl(k,v) -> lam_lift k v | Inr(n',_) -> if n == n' then lam else Lrel(id, n') let rec lam_exsubst subst lam = match lam with | Lrel(id,i) -> lam_subst_rel lam id i subst | _ -> map_lam_with_binders liftn lam_exsubst subst lam let lam_subst_args subst args = if is_subs_id subst then args else Array.smartmap (lam_exsubst subst) args (** Simplification of lambda expression *) (* [simplify subst lam] simplify the expression [lam_subst subst lam] *) (* that is : *) (* - Reduce [let] is the definition can be substituted i.e: *) (* - a variable (rel or identifier) *) (* - a constant *) (* - a structured constant *) (* - a function *) (* - Transform beta redex into [let] expression *) (* - Move arguments under [let] *) (* Invariant : Terms in [subst] are already simplified and can be *) (* substituted *) let can_subst lam = match lam with | Lrel _ | Lvar _ | Lconst _ | Lproj _ | Lval _ | Lsort _ | Lind _ | Llam _ | Lconstruct _ | Lmeta _ | Levar _ -> true | _ -> false let can_merge_if bt bf = match bt, bf with | Llam(idst,_), Llam(idsf,_) -> true | _ -> false let merge_if t bt bf = let (idst,bodyt) = decompose_Llam bt in let (idsf,bodyf) = decompose_Llam bf in let nt = Array.length idst in let nf = Array.length idsf in let common,idst,idsf = if Int.equal nt nf then idst, [||], [||] else if nt < nf then idst,[||], Array.sub idsf nt (nf - nt) else idsf, Array.sub idst nf (nt - nf), [||] in Llam(common, Lif(lam_lift (Array.length common) t, mkLlam idst bodyt, mkLlam idsf bodyf)) let rec simplify subst lam = match lam with | Lrel(id,i) -> lam_subst_rel lam id i subst | Llet(id,def,body) -> let def' = simplify subst def in if can_subst def' then simplify (cons def' subst) body else let body' = simplify (lift subst) body in if def == def' && body == body' then lam else Llet(id,def',body') | Lapp(f,args) -> begin match simplify_app subst f subst args with | Lapp(f',args') when f == f' && args == args' -> lam | lam' -> lam' end | Lif(t,bt,bf) -> let t' = simplify subst t in let bt' = simplify subst bt in let bf' = simplify subst bf in if can_merge_if bt' bf' then merge_if t' bt' bf' else if t == t' && bt == bt' && bf == bf' then lam else Lif(t',bt',bf') | _ -> map_lam_with_binders liftn simplify subst lam and simplify_app substf f substa args = match f with | Lrel(id, i) -> begin match lam_subst_rel f id i substf with | Llam(ids, body) -> reduce_lapp subst_id (Array.to_list ids) body substa (Array.to_list args) | f' -> mkLapp f' (simplify_args substa args) end | Llam(ids, body) -> reduce_lapp substf (Array.to_list ids) body substa (Array.to_list args) | Llet(id, def, body) -> let def' = simplify substf def in if can_subst def' then simplify_app (cons def' substf) body substa args else Llet(id, def', simplify_app (lift substf) body (shift substa) args) | Lapp(f, args') -> let args = Array.append (lam_subst_args substf args') (lam_subst_args substa args) in simplify_app substf f subst_id args (* TODO | Lproj -> simplify if the argument is known or a known global *) | _ -> mkLapp (simplify substf f) (simplify_args substa args) and simplify_args subst args = Array.smartmap (simplify subst) args and reduce_lapp substf lids body substa largs = match lids, largs with | id::lids, a::largs -> let a = simplify substa a in if can_subst a then reduce_lapp (cons a substf) lids body substa largs else let body = reduce_lapp (lift substf) lids body (shift substa) largs in Llet(id, a, body) | [], [] -> simplify substf body | _::_, _ -> Llam(Array.of_list lids, simplify (liftn (List.length lids) substf) body) | [], _::_ -> simplify_app substf body substa (Array.of_list largs) (*s Translation from [constr] to [lambda] *) (* Translation of constructor *) let is_value lc = match lc with | Lval _ -> true | Lmakeblock(_,_,_,args) when Array.is_empty args -> true | _ -> false let get_value lc = match lc with | Lval v -> v | Lmakeblock(_,_,tag,args) when Array.is_empty args -> Nativevalues.mk_int tag | _ -> raise Not_found let make_args start _end = Array.init (start - _end + 1) (fun i -> Lrel (Anonymous, start - i)) (* Translation of constructors *) let makeblock env cn u tag args = if Array.for_all is_value args && Array.length args > 0 then let args = Array.map get_value args in Lval (Nativevalues.mk_block tag args) else let prefix = get_mind_prefix env (fst (fst cn)) in Lmakeblock(prefix, (cn,u), tag, args) (* Translation of constants *) let rec get_alias env (kn, u as p) = let tps = (lookup_constant kn env).const_body_code in match tps with | None -> p | Some tps -> match Cemitcodes.force tps with | Cemitcodes.BCalias kn' -> get_alias env (kn', u) | _ -> p (*i Global environment *) let global_env = ref empty_env let set_global_env env = global_env := env let get_names decl = let decl = Array.of_list decl in Array.map fst decl (* Rel Environment *) module Vect = struct type 'a t = { mutable elems : 'a array; mutable size : int; } let make n a = { elems = Array.make n a; size = 0; } let extend v = if Int.equal v.size (Array.length v.elems) then let new_size = min (2*v.size) Sys.max_array_length in if new_size <= v.size then invalid_arg "Vect.extend"; let new_elems = Array.make new_size v.elems.(0) in Array.blit v.elems 0 new_elems 0 (v.size); v.elems <- new_elems let push v a = extend v; v.elems.(v.size) <- a; v.size <- v.size + 1 let popn v n = v.size <- max 0 (v.size - n) let pop v = popn v 1 let get_last v n = if v.size <= n then invalid_arg "Vect.get:index out of bounds"; v.elems.(v.size - n - 1) end let empty_args = [||] module Renv = struct module ConstrHash = struct type t = constructor let equal = eq_constructor let hash = constructor_hash end module ConstrTable = Hashtbl.Make(ConstrHash) type constructor_info = tag * int * int (* nparam nrealargs *) type t = { name_rel : Name.t Vect.t; construct_tbl : constructor_info ConstrTable.t; } let make () = { name_rel = Vect.make 16 Anonymous; construct_tbl = ConstrTable.create 111 } let push_rel env id = Vect.push env.name_rel id let push_rels env ids = Array.iter (push_rel env) ids let pop env = Vect.pop env.name_rel let popn env n = for _i = 1 to n do pop env done let get env n = Lrel (Vect.get_last env.name_rel (n-1), n) let get_construct_info env c = try ConstrTable.find env.construct_tbl c with Not_found -> let ((mind,j), i) = c in let oib = lookup_mind mind !global_env in let oip = oib.mind_packets.(j) in let tag,arity = oip.mind_reloc_tbl.(i-1) in let nparams = oib.mind_nparams in let r = (tag, nparams, arity) in ConstrTable.add env.construct_tbl c r; r end (* What about pattern matching ?*) let is_lazy prefix t = match kind t with | App (f,args) -> begin match kind f with | Construct (c,_) -> let entry = mkInd (fst c) in (try let _ = Retroknowledge.get_native_before_match_info (!global_env).retroknowledge entry prefix c Llazy; in false with Not_found -> true) | _ -> true end | LetIn _ -> true | _ -> false let evar_value sigma ev = sigma.evars_val ev let evar_type sigma ev = sigma.evars_typ ev let meta_type sigma mv = sigma.evars_metas mv let empty_evars = { evars_val = (fun _ -> None); evars_typ = (fun _ -> assert false); evars_metas = (fun _ -> assert false) } let empty_ids = [||] let rec lambda_of_constr env sigma c = match kind c with | Meta mv -> let ty = meta_type sigma mv in Lmeta (mv, lambda_of_constr env sigma ty) | Evar ev -> (match evar_value sigma ev with | None -> let ty = evar_type sigma ev in Levar(ev, lambda_of_constr env sigma ty) | Some t -> lambda_of_constr env sigma t) | Cast (c, _, _) -> lambda_of_constr env sigma c | Rel i -> Renv.get env i | Var id -> Lvar id | Sort s -> Lsort s | Ind (ind,u as pind) -> let prefix = get_mind_prefix !global_env (fst ind) in Lind (prefix, pind) | Prod(id, dom, codom) -> let ld = lambda_of_constr env sigma dom in Renv.push_rel env id; let lc = lambda_of_constr env sigma codom in Renv.pop env; Lprod(ld, Llam([|id|], lc)) | Lambda _ -> let params, body = Term.decompose_lam c in let ids = get_names (List.rev params) in Renv.push_rels env ids; let lb = lambda_of_constr env sigma body in Renv.popn env (Array.length ids); mkLlam ids lb | LetIn(id, def, _, body) -> let ld = lambda_of_constr env sigma def in Renv.push_rel env id; let lb = lambda_of_constr env sigma body in Renv.pop env; Llet(id, ld, lb) | App(f, args) -> lambda_of_app env sigma f args | Const _ -> lambda_of_app env sigma c empty_args | Construct _ -> lambda_of_app env sigma c empty_args | Proj (p, c) -> let kn = Projection.constant p in mkLapp (Lproj (get_const_prefix !global_env kn, kn)) [|lambda_of_constr env sigma c|] | Case(ci,t,a,branches) -> let (mind,i as ind) = ci.ci_ind in let mib = lookup_mind mind !global_env in let oib = mib.mind_packets.(i) in let tbl = oib.mind_reloc_tbl in (* Building info *) let prefix = get_mind_prefix !global_env mind in let annot_sw = { asw_ind = ind; asw_ci = ci; asw_reloc = tbl; asw_finite = mib.mind_finite <> Decl_kinds.CoFinite; asw_prefix = prefix} in (* translation of the argument *) let la = lambda_of_constr env sigma a in let entry = mkInd ind in let la = try Retroknowledge.get_native_before_match_info (!global_env).retroknowledge entry prefix (ind,1) la with Not_found -> la in (* translation of the type *) let lt = lambda_of_constr env sigma t in (* translation of branches *) let mk_branch i b = let cn = (ind,i+1) in let _, arity = tbl.(i) in let b = lambda_of_constr env sigma b in if Int.equal arity 0 then (cn, empty_ids, b) else match b with | Llam(ids, body) when Int.equal (Array.length ids) arity -> (cn, ids, body) | _ -> let ids = Array.make arity Anonymous in let args = make_args arity 1 in let ll = lam_lift arity b in (cn, ids, mkLapp ll args) in let bs = Array.mapi mk_branch branches in Lcase(annot_sw, lt, la, bs) | Fix(rec_init,(names,type_bodies,rec_bodies)) -> let ltypes = lambda_of_args env sigma 0 type_bodies in Renv.push_rels env names; let lbodies = lambda_of_args env sigma 0 rec_bodies in Renv.popn env (Array.length names); Lfix(rec_init, (names, ltypes, lbodies)) | CoFix(init,(names,type_bodies,rec_bodies)) -> let ltypes = lambda_of_args env sigma 0 type_bodies in Renv.push_rels env names; let lbodies = lambda_of_args env sigma 0 rec_bodies in Renv.popn env (Array.length names); Lcofix(init, (names, ltypes, lbodies)) and lambda_of_app env sigma f args = match kind f with | Const (kn,u as c) -> let kn,u = get_alias !global_env c in let cb = lookup_constant kn !global_env in (try let prefix = get_const_prefix !global_env kn in (* We delay the compilation of arguments to avoid an exponential behavior *) let f = Retroknowledge.get_native_compiling_info (!global_env).retroknowledge (mkConst kn) prefix in let args = lambda_of_args env sigma 0 args in f args with Not_found -> begin match cb.const_body with | Def csubst -> (* TODO optimize if f is a proj and argument is known *) if cb.const_inline_code then lambda_of_app env sigma (Mod_subst.force_constr csubst) args else let prefix = get_const_prefix !global_env kn in let t = if is_lazy prefix (Mod_subst.force_constr csubst) then mkLapp Lforce [|Lconst (prefix, (kn,u))|] else Lconst (prefix, (kn,u)) in mkLapp t (lambda_of_args env sigma 0 args) | OpaqueDef _ | Undef _ -> let prefix = get_const_prefix !global_env kn in mkLapp (Lconst (prefix, (kn,u))) (lambda_of_args env sigma 0 args) end) | Construct (c,u) -> let tag, nparams, arity = Renv.get_construct_info env c in let expected = nparams + arity in let nargs = Array.length args in let prefix = get_mind_prefix !global_env (fst (fst c)) in if Int.equal nargs expected then try try Retroknowledge.get_native_constant_static_info (!global_env).retroknowledge f args with NotClosed -> assert (Int.equal nparams 0); (* should be fine for int31 *) let args = lambda_of_args env sigma nparams args in Retroknowledge.get_native_constant_dynamic_info (!global_env).retroknowledge f prefix c args with Not_found -> let args = lambda_of_args env sigma nparams args in makeblock !global_env c u tag args else let args = lambda_of_args env sigma 0 args in (try Retroknowledge.get_native_constant_dynamic_info (!global_env).retroknowledge f prefix c args with Not_found -> mkLapp (Lconstruct (prefix, (c,u))) args) | _ -> let f = lambda_of_constr env sigma f in let args = lambda_of_args env sigma 0 args in mkLapp f args and lambda_of_args env sigma start args = let nargs = Array.length args in if start < nargs then Array.init (nargs - start) (fun i -> lambda_of_constr env sigma args.(start + i)) else empty_args let optimize lam = let lam = simplify subst_id lam in (* if Flags.vm_draw_opt () then (msgerrnl (str "Simplify = \n" ++ pp_lam lam);flush_all()); let lam = remove_let subst_id lam in if Flags.vm_draw_opt () then (msgerrnl (str "Remove let = \n" ++ pp_lam lam);flush_all()); *) lam let lambda_of_constr env sigma c = set_global_env env; let env = Renv.make () in let ids = List.rev_map RelDecl.get_name !global_env.env_rel_context in Renv.push_rels env (Array.of_list ids); let lam = lambda_of_constr env sigma c in (* if Flags.vm_draw_opt () then begin (msgerrnl (str "Constr = \n" ++ pr_constr c);flush_all()); (msgerrnl (str "Lambda = \n" ++ pp_lam lam);flush_all()); end; *) optimize lam let mk_lazy c = mkLapp Llazy [|c|] (** Retroknowledge, to be removed once we move to primitive machine integers *) let compile_static_int31 fc args = if not fc then raise Not_found else Luint (UintVal (Uint31.of_int (Array.fold_left (fun temp_i -> fun t -> match kind t with | Construct ((_,d),_) -> 2*temp_i+d-1 | _ -> raise NotClosed) 0 args))) let compile_dynamic_int31 fc prefix c args = if not fc then raise Not_found else Luint (UintDigits (prefix,c,args)) (* We are relying here on the order of digits constructors *) let digits_from_uint digits_ind prefix i = let d0 = Lconstruct (prefix, ((digits_ind, 1), Univ.Instance.empty)) in let d1 = Lconstruct (prefix, ((digits_ind, 2), Univ.Instance.empty)) in let digits = Array.make 31 d0 in for k = 0 to 30 do if Int.equal ((Uint31.to_int i lsr k) land 1) 1 then digits.(30-k) <- d1 done; digits let before_match_int31 digits_ind fc prefix c t = if not fc then raise Not_found else match t with | Luint (UintVal i) -> let digits = digits_from_uint digits_ind prefix i in mkLapp (Lconstruct (prefix,(c, Univ.Instance.empty))) digits | Luint (UintDigits (prefix,c,args)) -> mkLapp (Lconstruct (prefix,(c, Univ.Instance.empty))) args | _ -> Luint (UintDecomp (prefix,c,t)) let compile_prim prim kn fc prefix args = if not fc then raise Not_found else Lprim(prefix, kn, prim, args)