1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) module CVars = Vars open Pp open CErrors open Util open Term open Environ open EConstr open Vars open Reductionops open Inductive open Inductiveops open Typeops open Arguments_renaming open Pretype_errors open Context.Rel.Declaration let push_rec_types pfix env = let (i, c, t) = pfix in let inj c = EConstr.Unsafe.to_constr c in push_rec_types (i, Array.map inj c, Array.map inj t) env let meta_type evd mv = let ty = try Evd.meta_ftype evd mv with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in let ty = Evd.map_fl EConstr.of_constr ty in meta_instance evd ty let inductive_type_knowing_parameters env sigma (ind,u) jl = let u = Unsafe.to_instance u in let mspec = lookup_mind_specif env ind in let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr sigma j.uj_type)) jl in EConstr.of_constr (Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp) let e_type_judgment env evdref j = match EConstr.kind !evdref (whd_all env !evdref j.uj_type) with | Sort s -> {utj_val = j.uj_val; utj_type = ESorts.kind !evdref s } | Evar ev -> let (evd,s) = Evardefine.define_evar_as_sort env !evdref ev in evdref := evd; { utj_val = j.uj_val; utj_type = s } | _ -> error_not_a_type env !evdref j let e_assumption_of_judgment env evdref j = try (e_type_judgment env evdref j).utj_val with Type_errors.TypeError _ | PretypeError _ -> error_assumption env !evdref j let e_judge_of_apply env evdref funj argjv = let rec apply_rec n typ = function | [] -> { uj_val = mkApp (j_val funj, Array.map j_val argjv); uj_type = typ } | hj::restjl -> match EConstr.kind !evdref (whd_all env !evdref typ) with | Prod (_,c1,c2) -> if Evarconv.e_cumul env evdref hj.uj_type c1 then apply_rec (n+1) (subst1 hj.uj_val c2) restjl else error_cant_apply_bad_type env !evdref (n, c1, hj.uj_type) funj argjv | Evar ev -> let (evd',t) = Evardefine.define_evar_as_product !evdref ev in evdref := evd'; let (_,_,c2) = destProd evd' t in apply_rec (n+1) (subst1 hj.uj_val c2) restjl | _ -> error_cant_apply_not_functional env !evdref funj argjv in apply_rec 1 funj.uj_type (Array.to_list argjv) let e_check_branch_types env evdref (ind,u) cj (lfj,explft) = if not (Int.equal (Array.length lfj) (Array.length explft)) then error_number_branches env !evdref cj (Array.length explft); for i = 0 to Array.length explft - 1 do if not (Evarconv.e_cumul env evdref lfj.(i).uj_type explft.(i)) then error_ill_formed_branch env !evdref cj.uj_val ((ind,i+1),u) lfj.(i).uj_type explft.(i) done let max_sort l = if Sorts.List.mem InType l then InType else if Sorts.List.mem InSet l then InSet else InProp let e_is_correct_arity env evdref c pj ind specif params = let arsign = make_arity_signature env !evdref true (make_ind_family (ind,params)) in let allowed_sorts = elim_sorts specif in let error () = Pretype_errors.error_elim_arity env !evdref ind allowed_sorts c pj None in let rec srec env pt ar = let pt' = whd_all env !evdref pt in match EConstr.kind !evdref pt', ar with | Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' -> if not (Evarconv.e_cumul env evdref a1 a1') then error (); srec (push_rel (LocalAssum (na1,a1)) env) t ar' | Sort s, [] -> let s = ESorts.kind !evdref s in if not (Sorts.List.mem (Sorts.family s) allowed_sorts) then error () | Evar (ev,_), [] -> let evd, s = Evd.fresh_sort_in_family env !evdref (max_sort allowed_sorts) in evdref := Evd.define ev (Constr.mkSort s) evd | _, (LocalDef _ as d)::ar' -> srec (push_rel d env) (lift 1 pt') ar' | _ -> error () in srec env pj.uj_type (List.rev arsign) let lambda_applist_assum sigma n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Not enough arguments.") else match EConstr.kind sigma t, l with | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _ -> anomaly (Pp.str "Not enough lambda/let's.") in app n [] c l let e_type_case_branches env evdref (ind,largs) pj c = let specif = lookup_mind_specif env (fst ind) in let nparams = inductive_params specif in let (params,realargs) = List.chop nparams largs in let p = pj.uj_val in let params = List.map EConstr.Unsafe.to_constr params in let () = e_is_correct_arity env evdref c pj ind specif params in let lc = build_branches_type ind specif params (EConstr.to_constr !evdref p) in let lc = Array.map EConstr.of_constr lc in let n = (snd specif).Declarations.mind_nrealdecls in let ty = whd_betaiota !evdref (lambda_applist_assum !evdref (n+1) p (realargs@[c])) in (lc, ty) let e_judge_of_case env evdref ci pj cj lfj = let ((ind, u), spec) = try find_mrectype env !evdref cj.uj_type with Not_found -> error_case_not_inductive env !evdref cj in let indspec = ((ind, EInstance.kind !evdref u), spec) in let _ = check_case_info env (fst indspec) ci in let (bty,rslty) = e_type_case_branches env evdref indspec pj cj.uj_val in e_check_branch_types env evdref (fst indspec) cj (lfj,bty); { uj_val = mkCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj); uj_type = rslty } let check_type_fixpoint ?loc env evdref lna lar vdefj = let lt = Array.length vdefj in if Int.equal (Array.length lar) lt then for i = 0 to lt-1 do if not (Evarconv.e_cumul env evdref (vdefj.(i)).uj_type (lift lt lar.(i))) then error_ill_typed_rec_body ?loc env !evdref i lna vdefj lar done (* FIXME: might depend on the level of actual parameters!*) let check_allowed_sort env sigma ind c p = let pj = Retyping.get_judgment_of env sigma p in let ksort = Sorts.family (ESorts.kind sigma (sort_of_arity env sigma pj.uj_type)) in let specif = Global.lookup_inductive (fst ind) in let sorts = elim_sorts specif in if not (List.exists ((==) ksort) sorts) then let s = inductive_sort_family (snd specif) in error_elim_arity env sigma ind sorts c pj (Some(ksort,s,Type_errors.error_elim_explain ksort s)) let e_judge_of_cast env evdref cj k tj = let expected_type = tj.utj_val in if not (Evarconv.e_cumul env evdref cj.uj_type expected_type) then error_actual_type_core env !evdref cj expected_type; { uj_val = mkCast (cj.uj_val, k, expected_type); uj_type = expected_type } let enrich_env env evdref = let penv = Environ.pre_env env in let penv' = Pre_env.({ penv with env_stratification = { penv.env_stratification with env_universes = Evd.universes !evdref } }) in Environ.env_of_pre_env penv' let check_fix env sigma pfix = let inj c = EConstr.to_constr sigma c in let (idx, (ids, cs, ts)) = pfix in check_fix env (idx, (ids, Array.map inj cs, Array.map inj ts)) let check_cofix env sigma pcofix = let inj c = EConstr.to_constr sigma c in let (idx, (ids, cs, ts)) = pcofix in check_cofix env (idx, (ids, Array.map inj cs, Array.map inj ts)) (* The typing machine with universes and existential variables. *) let judge_of_prop = { uj_val = EConstr.mkProp; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_set = { uj_val = EConstr.mkSet; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_prop_contents = function | Null -> judge_of_prop | Pos -> judge_of_set let judge_of_type u = let uu = Univ.Universe.super u in { uj_val = EConstr.mkType u; uj_type = EConstr.mkType uu } let judge_of_relative env v = Termops.on_judgment EConstr.of_constr (judge_of_relative env v) let judge_of_variable env id = Termops.on_judgment EConstr.of_constr (judge_of_variable env id) let judge_of_projection env sigma p cj = let pb = lookup_projection p env in let (ind,u), args = try find_mrectype env sigma cj.uj_type with Not_found -> error_case_not_inductive env sigma cj in let u = EInstance.kind sigma u in let ty = EConstr.of_constr (CVars.subst_instance_constr u pb.Declarations.proj_type) in let ty = substl (cj.uj_val :: List.rev args) ty in {uj_val = EConstr.mkProj (p,cj.uj_val); uj_type = ty} let judge_of_abstraction env name var j = { uj_val = mkLambda (name, var.utj_val, j.uj_val); uj_type = mkProd (name, var.utj_val, j.uj_type) } let judge_of_product env name t1 t2 = let s = sort_of_product env t1.utj_type t2.utj_type in { uj_val = mkProd (name, t1.utj_val, t2.utj_val); uj_type = mkSort s } let judge_of_letin env name defj typj j = { uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ; uj_type = subst1 defj.uj_val j.uj_type } (* cstr must be in n.f. w.r.t. evars and execute returns a judgement where both the term and type are in n.f. *) let rec execute env evdref cstr = let cstr = whd_evar !evdref cstr in match EConstr.kind !evdref cstr with | Meta n -> { uj_val = cstr; uj_type = meta_type !evdref n } | Evar ev -> let ty = EConstr.existential_type !evdref ev in let jty = execute env evdref ty in let jty = e_assumption_of_judgment env evdref jty in { uj_val = cstr; uj_type = jty } | Rel n -> judge_of_relative env n | Var id -> judge_of_variable env id | Const (c, u) -> let u = EInstance.kind !evdref u in make_judge cstr (EConstr.of_constr (rename_type_of_constant env (c, u))) | Ind (ind, u) -> let u = EInstance.kind !evdref u in make_judge cstr (EConstr.of_constr (rename_type_of_inductive env (ind, u))) | Construct (cstruct, u) -> let u = EInstance.kind !evdref u in make_judge cstr (EConstr.of_constr (rename_type_of_constructor env (cstruct, u))) | Case (ci,p,c,lf) -> let cj = execute env evdref c in let pj = execute env evdref p in let lfj = execute_array env evdref lf in e_judge_of_case env evdref ci pj cj lfj | Fix ((vn,i as vni),recdef) -> let (_,tys,_ as recdef') = execute_recdef env evdref recdef in let fix = (vni,recdef') in check_fix env !evdref fix; make_judge (mkFix fix) tys.(i) | CoFix (i,recdef) -> let (_,tys,_ as recdef') = execute_recdef env evdref recdef in let cofix = (i,recdef') in check_cofix env !evdref cofix; make_judge (mkCoFix cofix) tys.(i) | Sort s -> begin match ESorts.kind !evdref s with | Prop c -> judge_of_prop_contents c | Type u -> judge_of_type u end | Proj (p, c) -> let cj = execute env evdref c in judge_of_projection env !evdref p cj | App (f,args) -> let jl = execute_array env evdref args in let j = match EConstr.kind !evdref f with | Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env -> make_judge f (inductive_type_knowing_parameters env !evdref (ind, u) jl) | _ -> (* No template polymorphism *) execute env evdref f in e_judge_of_apply env evdref j jl | Lambda (name,c1,c2) -> let j = execute env evdref c1 in let var = e_type_judgment env evdref j in let env1 = push_rel (LocalAssum (name, var.utj_val)) env in let j' = execute env1 evdref c2 in judge_of_abstraction env1 name var j' | Prod (name,c1,c2) -> let j = execute env evdref c1 in let varj = e_type_judgment env evdref j in let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in let j' = execute env1 evdref c2 in let varj' = e_type_judgment env1 evdref j' in judge_of_product env name varj varj' | LetIn (name,c1,c2,c3) -> let j1 = execute env evdref c1 in let j2 = execute env evdref c2 in let j2 = e_type_judgment env evdref j2 in let _ = e_judge_of_cast env evdref j1 DEFAULTcast j2 in let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in let j3 = execute env1 evdref c3 in judge_of_letin env name j1 j2 j3 | Cast (c,k,t) -> let cj = execute env evdref c in let tj = execute env evdref t in let tj = e_type_judgment env evdref tj in e_judge_of_cast env evdref cj k tj and execute_recdef env evdref (names,lar,vdef) = let larj = execute_array env evdref lar in let lara = Array.map (e_assumption_of_judgment env evdref) larj in let env1 = push_rec_types (names,lara,vdef) env in let vdefj = execute_array env1 evdref vdef in let vdefv = Array.map j_val vdefj in let _ = check_type_fixpoint env1 evdref names lara vdefj in (names,lara,vdefv) and execute_array env evdref = Array.map (execute env evdref) let e_check env evdref c t = let env = enrich_env env evdref in let j = execute env evdref c in if not (Evarconv.e_cumul env evdref j.uj_type t) then error_actual_type_core env !evdref j t (* Type of a constr *) let unsafe_type_of env evd c = let evdref = ref evd in let env = enrich_env env evdref in let j = execute env evdref c in j.uj_type (* Sort of a type *) let e_sort_of env evdref c = let env = enrich_env env evdref in let j = execute env evdref c in let a = e_type_judgment env evdref j in a.utj_type (* Try to solve the existential variables by typing *) let type_of ?(refresh=false) env evd c = let evdref = ref evd in let env = enrich_env env evdref in let j = execute env evdref c in (* side-effect on evdref *) if refresh then Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type else !evdref, j.uj_type let e_type_of ?(refresh=false) env evdref c = let env = enrich_env env evdref in let j = execute env evdref c in (* side-effect on evdref *) if refresh then let evd, c = Evarsolve.refresh_universes ~onlyalg:true (Some false) env !evdref j.uj_type in let () = evdref := evd in c else j.uj_type let e_solve_evars env evdref c = let env = enrich_env env evdref in let c = (execute env evdref c).uj_val in (* side-effect on evdref *) nf_evar !evdref c let _ = Evarconv.set_solve_evars (fun env evdref c -> e_solve_evars env evdref c)