1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open CErrors open Util open Names open Constrexpr open Constrexpr_ops open Notation_term open Notation_ops open Ppextend open Extend open Libobject open Constrintern open Vernacexpr open Libnames open Tok open Notation open Nameops (**********************************************************************) (* Tokens *) let cache_token (_,s) = CLexer.add_keyword s let inToken : string -> obj = declare_object {(default_object "TOKEN") with open_function = (fun i o -> if Int.equal i 1 then cache_token o); cache_function = cache_token; subst_function = Libobject.ident_subst_function; classify_function = (fun o -> Substitute o)} let add_token_obj s = Lib.add_anonymous_leaf (inToken s) (**********************************************************************) (* Printing grammar entries *) let entry_buf = Buffer.create 64 type any_entry = AnyEntry : 'a Pcoq.Gram.entry -> any_entry let grammars : any_entry list String.Map.t ref = ref String.Map.empty let register_grammar name grams = grammars := String.Map.add name grams !grammars let pr_entry e = let () = Buffer.clear entry_buf in let ft = Format.formatter_of_buffer entry_buf in let () = Pcoq.Gram.entry_print ft e in str (Buffer.contents entry_buf) let pr_registered_grammar name = let gram = try Some (String.Map.find name !grammars) with Not_found -> None in match gram with | None -> user_err Pp.(str "Unknown or unprintable grammar entry.") | Some entries -> let pr_one (AnyEntry e) = str "Entry " ++ str (Pcoq.Gram.Entry.name e) ++ str " is" ++ fnl () ++ pr_entry e in prlist pr_one entries let pr_grammar = function | "constr" | "operconstr" | "binder_constr" -> str "Entry constr is" ++ fnl () ++ pr_entry Pcoq.Constr.constr ++ str "and lconstr is" ++ fnl () ++ pr_entry Pcoq.Constr.lconstr ++ str "where binder_constr is" ++ fnl () ++ pr_entry Pcoq.Constr.binder_constr ++ str "and operconstr is" ++ fnl () ++ pr_entry Pcoq.Constr.operconstr | "pattern" -> pr_entry Pcoq.Constr.pattern | "vernac" -> str "Entry vernac is" ++ fnl () ++ pr_entry Pcoq.Vernac_.vernac ++ str "Entry command is" ++ fnl () ++ pr_entry Pcoq.Vernac_.command ++ str "Entry syntax is" ++ fnl () ++ pr_entry Pcoq.Vernac_.syntax ++ str "Entry gallina is" ++ fnl () ++ pr_entry Pcoq.Vernac_.gallina ++ str "Entry gallina_ext is" ++ fnl () ++ pr_entry Pcoq.Vernac_.gallina_ext | name -> pr_registered_grammar name (**********************************************************************) (* Parse a format (every terminal starting with a letter or a single quote (except a single quote alone) must be quoted) *) let parse_format ((loc, str) : lstring) = let len = String.length str in (* TODO: update the line of the location when the string contains newlines *) let make_loc i j = Option.map (Loc.shift_loc (i+1) (j-len)) loc in let push_token loc a = function | (i,cur)::l -> (i,(loc,a)::cur)::l | [] -> assert false in let push_white i n l = if Int.equal n 0 then l else push_token (make_loc i (i+n)) (UnpTerminal (String.make n ' ')) l in let close_box start stop b = function | (_,a)::(_::_ as l) -> push_token (make_loc start stop) (UnpBox (b,a)) l | [a] -> user_err ?loc:(make_loc start stop) Pp.(str "Non terminated box in format.") | [] -> assert false in let close_quotation start i = if i < len && str.[i] == '\'' then if (Int.equal (i+1) len || str.[i+1] == ' ') then i+1 else user_err ?loc:(make_loc (i+1) (i+1)) Pp.(str "Space expected after quoted expression.") else user_err ?loc:(make_loc start (i-1)) Pp.(str "Beginning of quoted expression expected to be ended by a quote.") in let rec spaces n i = if i < len && str.[i] == ' ' then spaces (n+1) (i+1) else n in let rec nonspaces quoted n i = if i < len && str.[i] != ' ' then if str.[i] == '\'' && quoted && (i+1 >= len || str.[i+1] == ' ') then if Int.equal n 0 then user_err ?loc:(make_loc (i-1) i) Pp.(str "Empty quoted token.") else n else nonspaces quoted (n+1) (i+1) else if quoted then user_err ?loc:(make_loc i i) Pp.(str "Spaces are not allowed in (quoted) symbols.") else n in let rec parse_non_format i = let n = nonspaces false 0 i in push_token (make_loc i (i+n-1)) (UnpTerminal (String.sub str i n)) (parse_token 1 (i+n)) and parse_quoted n i = if i < len then match str.[i] with (* Parse " // " *) | '/' when i+1 < len && str.[i+1] == '/' -> (* We discard the useless n spaces... *) push_token (make_loc (i-n) (i+1)) (UnpCut PpFnl) (parse_token 1 (close_quotation i (i+2))) (* Parse " .. / .. " *) | '/' when i+1 < len -> let p = spaces 0 (i+1) in push_token (make_loc (i-n) (i+p)) (UnpCut (PpBrk (n,p))) (parse_token 1 (close_quotation i (i+p+1))) | c -> (* The spaces are real spaces *) push_white i n (match c with | '[' -> if i+1 < len then match str.[i+1] with (* Parse " [h .. ", *) | 'h' when i+1 <= len && str.[i+2] == 'v' -> (parse_box i (fun n -> PpHVB n) (i+3)) (* Parse " [v .. ", *) | 'v' -> parse_box i (fun n -> PpVB n) (i+2) (* Parse " [ .. ", *) | ' ' | '\'' -> parse_box i (fun n -> PpHOVB n) (i+1) | _ -> user_err ?loc:(make_loc i i) Pp.(str "\"v\", \"hv\", \" \" expected after \"[\" in format.") else user_err ?loc:(make_loc i i) Pp.(str "\"v\", \"hv\" or \" \" expected after \"[\" in format.") (* Parse "]" *) | ']' -> ((i,[]) :: parse_token 1 (close_quotation i (i+1))) (* Parse a non formatting token *) | c -> let n = nonspaces true 0 i in push_token (make_loc i (i+n-1)) (UnpTerminal (String.sub str (i-1) (n+2))) (parse_token 1 (close_quotation i (i+n)))) else if Int.equal n 0 then [] else user_err ?loc:(make_loc (len-n) len) Pp.(str "Ending spaces non part of a format annotation.") and parse_box start box i = let n = spaces 0 i in close_box start (i+n-1) (box n) (parse_token 1 (close_quotation i (i+n))) and parse_token k i = let n = spaces 0 i in let i = i+n in if i < len then match str.[i] with (* Parse a ' *) | '\'' when i+1 >= len || str.[i+1] == ' ' -> push_white (i-n) (n-k) (push_token (make_loc i (i+1)) (UnpTerminal "'") (parse_token 1 (i+1))) (* Parse the beginning of a quoted expression *) | '\'' -> parse_quoted (n-k) (i+1) (* Otherwise *) | _ -> push_white (i-n) (n-k) (parse_non_format i) else push_white (i-n) n [(len,[])] in if not (String.is_empty str) then match parse_token 0 0 with | [_,l] -> l | (i,_)::_ -> user_err ?loc:(make_loc i i) Pp.(str "Box closed without being opened.") | [] -> assert false else [] (***********************) (* Analyzing notations *) type symbol_token = WhiteSpace of int | String of string let split_notation_string str = let push_token beg i l = if Int.equal beg i then l else let s = String.sub str beg (i - beg) in String s :: l in let push_whitespace beg i l = if Int.equal beg i then l else WhiteSpace (i-beg) :: l in let rec loop beg i = if i < String.length str then if str.[i] == ' ' then push_token beg i (loop_on_whitespace (i+1) (i+1)) else loop beg (i+1) else push_token beg i [] and loop_on_whitespace beg i = if i < String.length str then if str.[i] != ' ' then push_whitespace beg i (loop i (i+1)) else loop_on_whitespace beg (i+1) else push_whitespace beg i [] in loop 0 0 (* Interpret notations with a recursive component *) let out_nt = function NonTerminal x -> x | _ -> assert false let msg_expected_form_of_recursive_notation = "In the notation, the special symbol \"..\" must occur in\na configuration of the form \"x symbs .. symbs y\"." let rec find_pattern nt xl = function | Break n as x :: l, Break n' :: l' when Int.equal n n' -> find_pattern nt (x::xl) (l,l') | Terminal s as x :: l, Terminal s' :: l' when String.equal s s' -> find_pattern nt (x::xl) (l,l') | [], NonTerminal x' :: l' -> (out_nt nt,x',List.rev xl),l' | _, Break s :: _ | Break s :: _, _ -> user_err Pp.(str ("A break occurs on one side of \"..\" but not on the other side.")) | _, Terminal s :: _ | Terminal s :: _, _ -> user_err ~hdr:"Metasyntax.find_pattern" (str "The token \"" ++ str s ++ str "\" occurs on one side of \"..\" but not on the other side.") | _, [] -> user_err Pp.(str msg_expected_form_of_recursive_notation) | ((SProdList _ | NonTerminal _) :: _), _ | _, (SProdList _ :: _) -> anomaly (Pp.str "Only Terminal or Break expected on left, non-SProdList on right.") let rec interp_list_parser hd = function | [] -> [], List.rev hd | NonTerminal id :: tl when Id.equal id ldots_var -> if List.is_empty hd then user_err Pp.(str msg_expected_form_of_recursive_notation); let hd = List.rev hd in let ((x,y,sl),tl') = find_pattern (List.hd hd) [] (List.tl hd,tl) in let xyl,tl'' = interp_list_parser [] tl' in (* We remember each pair of variable denoting a recursive part to *) (* remove the second copy of it afterwards *) (x,y)::xyl, SProdList (x,sl) :: tl'' | (Terminal _ | Break _) as s :: tl -> if List.is_empty hd then let yl,tl' = interp_list_parser [] tl in yl, s :: tl' else interp_list_parser (s::hd) tl | NonTerminal _ as x :: tl -> let xyl,tl' = interp_list_parser [x] tl in xyl, List.rev_append hd tl' | SProdList _ :: _ -> anomaly (Pp.str "Unexpected SProdList in interp_list_parser.") (* Find non-terminal tokens of notation *) (* To protect alphabetic tokens and quotes from being seen as variables *) let quote_notation_token x = let n = String.length x in let norm = CLexer.is_ident x in if (n > 0 && norm) || (n > 2 && x.[0] == '\'') then "'"^x^"'" else x let rec raw_analyze_notation_tokens = function | [] -> [] | String ".." :: sl -> NonTerminal ldots_var :: raw_analyze_notation_tokens sl | String "_" :: _ -> user_err Pp.(str "_ must be quoted.") | String x :: sl when CLexer.is_ident x -> NonTerminal (Names.Id.of_string x) :: raw_analyze_notation_tokens sl | String s :: sl -> Terminal (String.drop_simple_quotes s) :: raw_analyze_notation_tokens sl | WhiteSpace n :: sl -> Break n :: raw_analyze_notation_tokens sl let is_numeral symbs = match List.filter (function Break _ -> false | _ -> true) symbs with | ([Terminal "-"; Terminal x] | [Terminal x]) -> (try let _ = Bigint.of_string x in true with Failure _ -> false) | _ -> false let rec get_notation_vars onlyprint = function | [] -> [] | NonTerminal id :: sl -> let vars = get_notation_vars onlyprint sl in if Id.equal id ldots_var then vars else (* don't check for nonlinearity if printing only, see Bug 5526 *) if not onlyprint && Id.List.mem id vars then user_err ~hdr:"Metasyntax.get_notation_vars" (str "Variable " ++ Id.print id ++ str " occurs more than once.") else id::vars | (Terminal _ | Break _) :: sl -> get_notation_vars onlyprint sl | SProdList _ :: _ -> assert false let analyze_notation_tokens ~onlyprint l = let l = raw_analyze_notation_tokens l in let vars = get_notation_vars onlyprint l in let recvars,l = interp_list_parser [] l in recvars, List.subtract Id.equal vars (List.map snd recvars), l let error_not_same_scope x y = user_err ~hdr:"Metasyntax.error_not_name_scope" (str "Variables " ++ Id.print x ++ str " and " ++ Id.print y ++ str " must be in the same scope.") (**********************************************************************) (* Build pretty-printing rules *) let prec_assoc = function | RightA -> (L,E) | LeftA -> (E,L) | NonA -> (L,L) let precedence_of_entry_type from = function | ETConstr (NumLevel n,BorderProd (_,None)) -> n, Prec n | ETConstr (NumLevel n,BorderProd (b,Some a)) -> n, let (lp,rp) = prec_assoc a in if b == Left then lp else rp | ETConstr (NumLevel n,InternalProd) -> n, Prec n | ETConstr (NextLevel,_) -> from, L | _ -> 0, E (* ?? *) (* Some breaking examples *) (* "x = y" : "x /1 = y" (breaks before any symbol) *) (* "x =S y" : "x /1 =S /1 y" (protect from confusion; each side for symmetry)*) (* "+ {" : "+ {" may breaks reversibility without space but oth. not elegant *) (* "x y" : "x spc y" *) (* "{ x } + { y }" : "{ x } / + { y }" *) (* "< x , y > { z , t }" : "< x , / y > / { z , / t }" *) let starts_with_left_bracket s = let l = String.length s in not (Int.equal l 0) && (s.[0] == '{' || s.[0] == '[' || s.[0] == '(') let ends_with_right_bracket s = let l = String.length s in not (Int.equal l 0) && (s.[l-1] == '}' || s.[l-1] == ']' || s.[l-1] == ')') let is_left_bracket s = starts_with_left_bracket s && not (ends_with_right_bracket s) let is_right_bracket s = not (starts_with_left_bracket s) && ends_with_right_bracket s let is_comma s = let l = String.length s in not (Int.equal l 0) && (s.[0] == ',' || s.[0] == ';') let is_operator s = let l = String.length s in not (Int.equal l 0) && (s.[0] == '+' || s.[0] == '*' || s.[0] == '=' || s.[0] == '-' || s.[0] == '/' || s.[0] == '<' || s.[0] == '>' || s.[0] == '@' || s.[0] == '\\' || s.[0] == '&' || s.[0] == '~' || s.[0] == '$') let is_non_terminal = function | NonTerminal _ | SProdList _ -> true | _ -> false let is_next_non_terminal = function | [] -> false | pr :: _ -> is_non_terminal pr let is_next_terminal = function Terminal _ :: _ -> true | _ -> false let is_next_break = function Break _ :: _ -> true | _ -> false let add_break n l = (None,UnpCut (PpBrk(n,0))) :: l let add_break_if_none n = function | (((_,UnpCut (PpBrk _)) :: _) | []) as l -> l | l -> (None,UnpCut (PpBrk(n,0))) :: l let check_open_binder isopen sl m = let pr_token = function | Terminal s -> str s | Break n -> str "␣" | _ -> assert false in if isopen && not (List.is_empty sl) then user_err (str "as " ++ Id.print m ++ str " is a non-closed binder, no such \"" ++ prlist_with_sep spc pr_token sl ++ strbrk "\" is allowed to occur.") (* Heuristics for building default printing rules *) let index_id id l = List.index Id.equal id l let make_hunks etyps symbols from = let vars,typs = List.split etyps in let rec make = function | NonTerminal m :: prods -> let i = index_id m vars in let _,prec = precedence_of_entry_type from (List.nth typs (i-1)) in let u = UnpMetaVar (i,prec) in if is_next_non_terminal prods then (None,u) :: add_break_if_none 1 (make prods) else (None,u) :: make_with_space prods | Terminal s :: prods when List.exists is_non_terminal prods -> if (is_comma s || is_operator s) then (* Always a breakable space after comma or separator *) (None,UnpTerminal s) :: add_break_if_none 1 (make prods) else if is_right_bracket s && is_next_terminal prods then (* Always no space after right bracked, but possibly a break *) (None,UnpTerminal s) :: add_break_if_none 0 (make prods) else if is_left_bracket s && is_next_non_terminal prods then (None,UnpTerminal s) :: make prods else if not (is_next_break prods) then (* Add rigid space, no break, unless user asked for something *) (None,UnpTerminal (s^" ")) :: make prods else (* Rely on user spaces *) (None,UnpTerminal s) :: make prods | Terminal s :: prods -> (* Separate but do not cut a trailing sequence of terminal *) (match prods with | Terminal _ :: _ -> (None,UnpTerminal (s^" ")) :: make prods | _ -> (None,UnpTerminal s) :: make prods) | Break n :: prods -> add_break n (make prods) | SProdList (m,sl) :: prods -> let i = index_id m vars in let typ = List.nth typs (i-1) in let _,prec = precedence_of_entry_type from typ in let sl' = (* If no separator: add a break *) if List.is_empty sl then add_break 1 [] (* We add NonTerminal for simulation but remove it afterwards *) else snd (List.sep_last (make (sl@[NonTerminal m]))) in let hunk = match typ with | ETConstr _ -> UnpListMetaVar (i,prec,List.map snd sl') | ETBinder isopen -> check_open_binder isopen sl m; UnpBinderListMetaVar (i,isopen,List.map snd sl') | _ -> assert false in (None,hunk) :: make_with_space prods | [] -> [] and make_with_space prods = match prods with | Terminal s' :: prods'-> if is_operator s' then (* A rigid space before operator and a breakable after *) (None,UnpTerminal (" "^s')) :: add_break_if_none 1 (make prods') else if is_comma s' then (* No space whatsoever before comma *) make prods else if is_right_bracket s' then make prods else (* A breakable space between any other two terminals *) add_break_if_none 1 (make prods) | (NonTerminal _ | SProdList _) :: _ -> (* A breakable space before a non-terminal *) add_break_if_none 1 (make prods) | Break _ :: _ -> (* Rely on user wish *) make prods | [] -> [] in make symbols (* Build default printing rules from explicit format *) let error_format ?loc () = user_err ?loc Pp.(str "The format does not match the notation.") let rec split_format_at_ldots hd = function | (loc,UnpTerminal s) :: fmt when String.equal s (Id.to_string ldots_var) -> loc, List.rev hd, fmt | u :: fmt -> check_no_ldots_in_box u; split_format_at_ldots (u::hd) fmt | [] -> raise Exit and check_no_ldots_in_box = function | (_,UnpBox (_,fmt)) -> (try let loc,_,_ = split_format_at_ldots [] fmt in user_err ?loc Pp.(str ("The special symbol \"..\" must occur at the same formatting depth than the variables of which it is the ellipse.")) with Exit -> ()) | _ -> () let error_not_same ?loc () = user_err ?loc Pp.(str "The format is not the same on the right- and left-hand sides of the special token \"..\".") let skip_var_in_recursive_format = function | (_,UnpTerminal s) :: sl (* skip first var *) when not (List.for_all (fun c -> c = " ") (String.explode s)) -> (* To do, though not so important: check that the names match the names in the notation *) sl | (loc,_) :: _ -> error_not_same ?loc () | [] -> assert false let read_recursive_format sl fmt = let get_head fmt = let sl = skip_var_in_recursive_format fmt in try split_format_at_ldots [] sl with Exit -> error_not_same ?loc:(fst (List.last (if sl = [] then fmt else sl))) () in let rec get_tail = function | (loc,a) :: sepfmt, (_,b) :: fmt when Pervasives.(=) a b -> get_tail (sepfmt, fmt) (* FIXME *) | [], tail -> skip_var_in_recursive_format tail | (loc,_) :: _, ([] | (_,UnpTerminal _) :: _)-> error_not_same ?loc () | _, (loc,_)::_ -> error_not_same ?loc () in let loc, slfmt, fmt = get_head fmt in slfmt, get_tail (slfmt, fmt) let hunks_of_format (from,(vars,typs)) symfmt = let rec aux = function | symbs, (_,(UnpTerminal s' as u)) :: fmt when String.equal s' (String.make (String.length s') ' ') -> let symbs, l = aux (symbs,fmt) in symbs, u :: l | Terminal s :: symbs, (_,UnpTerminal s') :: fmt when String.equal s (String.drop_simple_quotes s') -> let symbs, l = aux (symbs,fmt) in symbs, UnpTerminal s :: l | NonTerminal s :: symbs, (_,UnpTerminal s') :: fmt when Id.equal s (Id.of_string s') -> let i = index_id s vars in let _,prec = precedence_of_entry_type from (List.nth typs (i-1)) in let symbs, l = aux (symbs,fmt) in symbs, UnpMetaVar (i,prec) :: l | symbs, (_,UnpBox (a,b)) :: fmt -> let symbs', b' = aux (symbs,b) in let symbs', l = aux (symbs',fmt) in symbs', UnpBox (a,List.map (fun x -> (None,x)) b') :: l | symbs, (_,(UnpCut _ as u)) :: fmt -> let symbs, l = aux (symbs,fmt) in symbs, u :: l | SProdList (m,sl) :: symbs, fmt -> let i = index_id m vars in let typ = List.nth typs (i-1) in let _,prec = precedence_of_entry_type from typ in let slfmt,fmt = read_recursive_format sl fmt in let sl, slfmt = aux (sl,slfmt) in if not (List.is_empty sl) then error_format ?loc:(fst (List.last fmt)) (); let symbs, l = aux (symbs,fmt) in let hunk = match typ with | ETConstr _ -> UnpListMetaVar (i,prec,slfmt) | ETBinder isopen -> check_open_binder isopen sl m; UnpBinderListMetaVar (i,isopen,slfmt) | _ -> assert false in symbs, hunk :: l | symbs, [] -> symbs, [] | _, fmt -> error_format ?loc:(fst (List.hd fmt)) () in match aux symfmt with | [], l -> l | _ -> error_format () (**********************************************************************) (* Build parsing rules *) let assoc_of_type n (_,typ) = precedence_of_entry_type n typ let is_not_small_constr = function ETConstr _ -> true | ETOther("constr","binder_constr") -> true | _ -> false let rec define_keywords_aux = function | GramConstrNonTerminal(e,Some _) as n1 :: GramConstrTerminal(IDENT k) :: l when is_not_small_constr e -> Flags.if_verbose Feedback.msg_info (str "Identifier '" ++ str k ++ str "' now a keyword"); CLexer.add_keyword k; n1 :: GramConstrTerminal(KEYWORD k) :: define_keywords_aux l | n :: l -> n :: define_keywords_aux l | [] -> [] (* Ensure that IDENT articulation terminal symbols are keywords *) let define_keywords = function | GramConstrTerminal(IDENT k)::l -> Flags.if_verbose Feedback.msg_info (str "Identifier '" ++ str k ++ str "' now a keyword"); CLexer.add_keyword k; GramConstrTerminal(KEYWORD k) :: define_keywords_aux l | l -> define_keywords_aux l let distribute a ll = List.map (fun l -> a @ l) ll (* Expand LIST1(t,sep);sep;t;...;t (with the trailing pattern occurring p times, possibly p=0) into the combination of t;sep;t;...;t;sep;t (p+1 times) t;sep;t;...;t;sep;t;sep;t (p+2 times) ... t;sep;t;...;t;sep;t;...;t;sep;t (p+n times) t;sep;t;...;t;sep;t;...;t;sep;t;LIST1(t,sep) *) let expand_list_rule typ tkl x n p ll = let camlp4_message_name = Some (add_suffix x ("_"^string_of_int n)) in let main = GramConstrNonTerminal (ETConstr typ, camlp4_message_name) in let tks = List.map (fun x -> GramConstrTerminal x) tkl in let rec aux i hds ll = if i < p then aux (i+1) (main :: tks @ hds) ll else if Int.equal i (p+n) then let hds = GramConstrListMark (p+n,true,p) :: hds @ [GramConstrNonTerminal (ETConstrList (typ,tkl), Some x)] in distribute hds ll else distribute (GramConstrListMark (i+1,false,p) :: hds @ [main]) ll @ aux (i+1) (main :: tks @ hds) ll in aux 0 [] ll let is_constr_typ typ x etyps = match List.assoc x etyps with | ETConstr typ' -> typ = typ' | _ -> false let include_possible_similar_trailing_pattern typ etyps sl l = let rec aux n = function | Terminal s :: sl, Terminal s'::l' when s = s' -> aux n (sl,l') | [], NonTerminal x ::l' when is_constr_typ typ x etyps -> try_aux n l' | _ -> raise Exit and try_aux n l = try aux (n+1) (sl,l) with Exit -> n,l in try_aux 0 l let make_production etyps symbols = let rec aux = function | [] -> [[]] | NonTerminal m :: l -> let typ = List.assoc m etyps in distribute [GramConstrNonTerminal (typ, Some m)] (aux l) | Terminal s :: l -> distribute [GramConstrTerminal (CLexer.terminal s)] (aux l) | Break _ :: l -> aux l | SProdList (x,sl) :: l -> let tkl = List.flatten (List.map (function Terminal s -> [CLexer.terminal s] | Break _ -> [] | _ -> anomaly (Pp.str "Found a non terminal token in recursive notation separator.")) sl) in match List.assoc x etyps with | ETConstr typ -> let p,l' = include_possible_similar_trailing_pattern typ etyps sl l in expand_list_rule typ tkl x 1 p (aux l') | ETBinder o -> distribute [GramConstrNonTerminal (ETBinderList (o,tkl), Some x)] (aux l) | _ -> user_err Pp.(str "Components of recursive patterns in notation must be terms or binders.") in let prods = aux symbols in List.map define_keywords prods let rec find_symbols c_current c_next c_last = function | [] -> [] | NonTerminal id :: sl -> let prec = if not (List.is_empty sl) then c_current else c_last in (id, prec) :: (find_symbols c_next c_next c_last sl) | Terminal s :: sl -> find_symbols c_next c_next c_last sl | Break n :: sl -> find_symbols c_current c_next c_last sl | SProdList (x,_) :: sl' -> (x,c_next)::(find_symbols c_next c_next c_last sl') let border = function | (_,ETConstr(_,BorderProd (_,a))) :: _ -> a | _ -> None let recompute_assoc typs = match border typs, border (List.rev typs) with | Some LeftA, Some RightA -> assert false | Some LeftA, _ -> Some LeftA | _, Some RightA -> Some RightA | _ -> None (**************************************************************************) (* Registration of syntax extensions (parsing/printing, no interpretation)*) let pr_arg_level from (lev,typ) = let pplev = match lev with | (n,L) when Int.equal n from -> str "at next level" | (n,E) -> str "at level " ++ int n | (n,L) -> str "at level below " ++ int n | (n,Prec m) when Int.equal m n -> str "at level " ++ int n | (n,_) -> str "Unknown level" in let pptyp = match typ with | NtnInternTypeConstr -> mt () | NtnInternTypeBinder -> str " " ++ surround (str "binder") | NtnInternTypeIdent -> str " " ++ surround (str "ident") in pplev ++ pptyp let pr_level ntn (from,args,typs) = str "at level " ++ int from ++ spc () ++ str "with arguments" ++ spc() ++ prlist_with_sep pr_comma (pr_arg_level from) (List.combine args typs) let error_incompatible_level ntn oldprec prec = user_err (str "Notation " ++ qstring ntn ++ str " is already defined" ++ spc() ++ pr_level ntn oldprec ++ spc() ++ str "while it is now required to be" ++ spc() ++ pr_level ntn prec ++ str ".") let error_parsing_incompatible_level ntn ntn' oldprec prec = user_err (str "Notation " ++ qstring ntn ++ str " relies on a parsing rule for " ++ qstring ntn' ++ spc() ++ str " which is already defined" ++ spc() ++ pr_level ntn oldprec ++ spc() ++ str "while it is now required to be" ++ spc() ++ pr_level ntn prec ++ str ".") type syntax_extension = { synext_level : Notation_term.level; synext_notation : notation; synext_notgram : notation_grammar; synext_unparsing : unparsing list; synext_extra : (string * string) list; synext_compat : Flags.compat_version option; } let is_active_compat = function | None -> true | Some v -> 0 <= Flags.version_compare v !Flags.compat_version type syntax_extension_obj = locality_flag * syntax_extension let check_and_extend_constr_grammar ntn rule = try let ntn_for_grammar = rule.notgram_notation in if String.equal ntn ntn_for_grammar then raise Not_found; let prec = rule.notgram_level in let oldprec = Notation.level_of_notation ntn_for_grammar in if not (Notation.level_eq prec oldprec) then error_parsing_incompatible_level ntn ntn_for_grammar oldprec prec; with Not_found -> Egramcoq.extend_constr_grammar rule let cache_one_syntax_extension se = let ntn = se.synext_notation in let prec = se.synext_level in let onlyprint = se.synext_notgram.notgram_onlyprinting in try let oldprec = Notation.level_of_notation ntn in if not (Notation.level_eq prec oldprec) then error_incompatible_level ntn oldprec prec; with Not_found -> if is_active_compat se.synext_compat then begin (* Reserve the notation level *) Notation.declare_notation_level ntn prec; (* Declare the parsing rule *) if not onlyprint then List.iter (check_and_extend_constr_grammar ntn) se.synext_notgram.notgram_rules; (* Declare the notation rule *) Notation.declare_notation_rule ntn ~extra:se.synext_extra (se.synext_unparsing, pi1 prec) se.synext_notgram end let cache_syntax_extension (_, (_, sy)) = cache_one_syntax_extension sy let subst_parsing_rule subst x = x let subst_printing_rule subst x = x let subst_syntax_extension (subst, (local, sy)) = (local, { sy with synext_notgram = { sy.synext_notgram with notgram_rules = List.map (subst_parsing_rule subst) sy.synext_notgram.notgram_rules }; synext_unparsing = subst_printing_rule subst sy.synext_unparsing; }) let classify_syntax_definition (local, _ as o) = if local then Dispose else Substitute o let inSyntaxExtension : syntax_extension_obj -> obj = declare_object {(default_object "SYNTAX-EXTENSION") with open_function = (fun i o -> if Int.equal i 1 then cache_syntax_extension o); cache_function = cache_syntax_extension; subst_function = subst_syntax_extension; classify_function = classify_syntax_definition} (**************************************************************************) (* Precedences *) (* Interpreting user-provided modifiers *) (* XXX: We could move this to the parser itself *) module NotationMods = struct type notation_modifier = { assoc : gram_assoc option; level : int option; etyps : (Id.t * simple_constr_prod_entry_key) list; (* common to syn_data below *) only_parsing : bool; only_printing : bool; compat : Flags.compat_version option; format : string Loc.located option; extra : (string * string) list; } let default = { assoc = None; level = None; etyps = []; only_parsing = false; only_printing = false; compat = None; format = None; extra = []; } end let interp_modifiers modl = let open NotationMods in let rec interp acc = function | [] -> acc | SetEntryType (s,typ) :: l -> let id = Id.of_string s in if Id.List.mem_assoc id acc.etyps then user_err ~hdr:"Metasyntax.interp_modifiers" (str s ++ str " is already assigned to an entry or constr level."); interp { acc with etyps = (id,typ) :: acc.etyps; } l | SetItemLevel ([],n) :: l -> interp acc l | SetItemLevel (s::idl,n) :: l -> let id = Id.of_string s in if Id.List.mem_assoc id acc.etyps then user_err ~hdr:"Metasyntax.interp_modifiers" (str s ++ str " is already assigned to an entry or constr level."); let typ = ETConstr (n,()) in interp { acc with etyps = (id,typ)::acc.etyps; } (SetItemLevel (idl,n)::l) | SetLevel n :: l -> interp { acc with level = Some n; } l | SetAssoc a :: l -> if not (Option.is_empty acc.assoc) then user_err Pp.(str "An associativity is given more than once."); interp { acc with assoc = Some a; } l | SetOnlyParsing :: l -> interp { acc with only_parsing = true; } l | SetOnlyPrinting :: l -> interp { acc with only_printing = true; } l | SetCompatVersion v :: l -> interp { acc with compat = Some v; } l | SetFormat ("text",s) :: l -> if not (Option.is_empty acc.format) then user_err Pp.(str "A format is given more than once."); interp { acc with format = Some s; } l | SetFormat (k,(_,s)) :: l -> interp { acc with extra = (k,s)::acc.extra; } l in interp default modl let check_infix_modifiers modifiers = let t = (interp_modifiers modifiers).NotationMods.etyps in if not (List.is_empty t) then user_err Pp.(str "Explicit entry level or type unexpected in infix notation.") let check_useless_entry_types recvars mainvars etyps = let vars = let (l1,l2) = List.split recvars in l1@l2@mainvars in match List.filter (fun (x,etyp) -> not (List.mem x vars)) etyps with | (x,_)::_ -> user_err ~hdr:"Metasyntax.check_useless_entry_types" (Id.print x ++ str " is unbound in the notation.") | _ -> () let check_binder_type recvars etyps = let l1,l2 = List.split recvars in let l = l1@l2 in List.iter (function | (x,ETBinder b) when not (List.mem x l) -> CErrors.user_err (str (if b then "binder" else "closed binder") ++ strbrk " is only for use in recursive notations for binders.") | _ -> ()) etyps let not_a_syntax_modifier = function | SetOnlyParsing -> true | SetOnlyPrinting -> true | SetCompatVersion _ -> true | _ -> false let no_syntax_modifiers mods = List.for_all not_a_syntax_modifier mods let is_only_parsing mods = let test = function SetOnlyParsing -> true | _ -> false in List.exists test mods let is_only_printing mods = let test = function SetOnlyPrinting -> true | _ -> false in List.exists test mods let get_compat_version mods = let test = function SetCompatVersion v -> Some v | _ -> None in try Some (List.find_map test mods) with Not_found -> None (* Compute precedences from modifiers (or find default ones) *) let set_entry_type etyps (x,typ) = let typ = try match List.assoc x etyps, typ with | ETConstr (n,()), (_,BorderProd (left,_)) -> ETConstr (n,BorderProd (left,None)) | ETConstr (n,()), (_,InternalProd) -> ETConstr (n,InternalProd) | (ETPattern | ETName | ETBigint | ETOther _ | ETReference | ETBinder _ as t), _ -> t | (ETBinderList _ |ETConstrList _), _ -> assert false with Not_found -> ETConstr typ in (x,typ) let join_auxiliary_recursive_types recvars etyps = List.fold_right (fun (x,y) typs -> let xtyp = try Some (List.assoc x etyps) with Not_found -> None in let ytyp = try Some (List.assoc y etyps) with Not_found -> None in match xtyp,ytyp with | None, None -> typs | Some _, None -> typs | None, Some ytyp -> (x,ytyp)::typs | Some xtyp, Some ytyp when Pervasives.(=) xtyp ytyp -> typs (* FIXME *) | Some xtyp, Some ytyp -> user_err (strbrk "In " ++ Id.print x ++ str " .. " ++ Id.print y ++ strbrk ", both ends have incompatible types.")) recvars etyps let internalization_type_of_entry_type = function | ETConstr _ -> NtnInternTypeConstr | ETBigint | ETReference -> NtnInternTypeConstr | ETBinder _ -> NtnInternTypeBinder | ETName -> NtnInternTypeIdent | ETPattern | ETOther _ -> user_err Pp.(str "Not supported.") | ETBinderList _ | ETConstrList _ -> assert false let set_internalization_type typs = List.map (fun (_, e) -> internalization_type_of_entry_type e) typs let make_internalization_vars recvars mainvars typs = let maintyps = List.combine mainvars typs in let extratyps = List.map (fun (x,y) -> (y,List.assoc x maintyps)) recvars in maintyps @ extratyps let make_interpretation_type isrec isonlybinding = function | NtnInternTypeConstr when isrec -> NtnTypeConstrList | NtnInternTypeConstr | NtnInternTypeIdent -> if isonlybinding then NtnTypeOnlyBinder else NtnTypeConstr | NtnInternTypeBinder when isrec -> NtnTypeBinderList | NtnInternTypeBinder -> user_err Pp.(str "Type binder is only for use in recursive notations for binders.") let make_interpretation_vars recvars allvars = let eq_subscope (sc1, l1) (sc2, l2) = Option.equal String.equal sc1 sc2 && List.equal String.equal l1 l2 in let check (x, y) = let (_,scope1, _) = Id.Map.find x allvars in let (_,scope2, _) = Id.Map.find y allvars in if not (eq_subscope scope1 scope2) then error_not_same_scope x y in let () = List.iter check recvars in let useless_recvars = List.map snd recvars in let mainvars = Id.Map.filter (fun x _ -> not (Id.List.mem x useless_recvars)) allvars in Id.Map.mapi (fun x (isonlybinding, sc, typ) -> (sc, make_interpretation_type (Id.List.mem_assoc x recvars) isonlybinding typ)) mainvars let check_rule_productivity l = if List.for_all (function NonTerminal _ | Break _ -> true | _ -> false) l then user_err Pp.(str "A notation must include at least one symbol."); if (match l with SProdList _ :: _ -> true | _ -> false) then user_err Pp.(str "A recursive notation must start with at least one symbol.") let warn_notation_bound_to_variable = CWarnings.create ~name:"notation-bound-to-variable" ~category:"parsing" (fun () -> strbrk "This notation will not be used for printing as it is bound to a single variable.") let warn_non_reversible_notation = CWarnings.create ~name:"non-reversible-notation" ~category:"parsing" (fun () -> strbrk "This notation will not be used for printing as it is not reversible.") let is_not_printable onlyparse nonreversible = function | NVar _ -> if not onlyparse then warn_notation_bound_to_variable (); true | _ -> if not onlyparse && nonreversible then (warn_non_reversible_notation (); true) else onlyparse let find_precedence lev etyps symbols onlyprint = let first_symbol = let rec aux = function | Break _ :: t -> aux t | h :: t -> Some h | [] -> None in aux symbols in let last_is_terminal () = let rec aux b = function | Break _ :: t -> aux b t | Terminal _ :: t -> aux true t | _ :: t -> aux false t | [] -> b in aux false symbols in match first_symbol with | None -> [],0 | Some (NonTerminal x) -> (try match List.assoc x etyps with | ETConstr _ -> if onlyprint then if Option.is_empty lev then user_err Pp.(str "Explicit level needed in only-printing mode when the level of the leftmost non-terminal is given.") else [],Option.get lev else user_err Pp.(str "The level of the leftmost non-terminal cannot be changed.") | ETName | ETBigint | ETReference -> begin match lev with | None -> ([Feedback.msg_info ?loc:None ,strbrk "Setting notation at level 0."],0) | Some 0 -> ([],0) | _ -> user_err Pp.(str "A notation starting with an atomic expression must be at level 0.") end | ETPattern | ETBinder _ | ETOther _ -> (* Give a default ? *) if Option.is_empty lev then user_err Pp.(str "Need an explicit level.") else [],Option.get lev | ETConstrList _ | ETBinderList _ -> assert false (* internally used in grammar only *) with Not_found -> if Option.is_empty lev then user_err Pp.(str "A left-recursive notation must have an explicit level.") else [],Option.get lev) | Some (Terminal _) when last_is_terminal () -> if Option.is_empty lev then ([Feedback.msg_info ?loc:None ,strbrk "Setting notation at level 0."], 0) else [],Option.get lev | Some _ -> if Option.is_empty lev then user_err Pp.(str "Cannot determine the level."); [],Option.get lev let check_curly_brackets_notation_exists () = try let _ = Notation.level_of_notation "{ _ }" in () with Not_found -> user_err Pp.(str "Notations involving patterns of the form \"{ _ }\" are treated \n\ specially and require that the notation \"{ _ }\" is already reserved.") (* Remove patterns of the form "{ _ }", unless it is the "{ _ }" notation *) let remove_curly_brackets l = let rec skip_break acc = function | Break _ as br :: l -> skip_break (br::acc) l | l -> List.rev acc, l in let rec aux deb = function | [] -> [] | Terminal "{" as t1 :: l -> let br,next = skip_break [] l in (match next with | NonTerminal _ as x :: l' -> let br',next' = skip_break [] l' in (match next' with | Terminal "}" as t2 :: l'' -> if deb && List.is_empty l'' then [t1;x;t2] else begin check_curly_brackets_notation_exists (); x :: aux false l'' end | l1 -> t1 :: br @ x :: br' @ aux false l1) | l0 -> t1 :: aux false l0) | x :: l -> x :: aux false l in aux true l module SynData = struct type subentry_types = (Id.t * (production_level, production_position) constr_entry_key_gen) list (* XXX: Document *) type syn_data = { (* Notation name and location *) info : notation * notation_location; (* Fields coming from the vernac-level modifiers *) only_parsing : bool; only_printing : bool; compat : Flags.compat_version option; format : string Loc.located option; extra : (string * string) list; (* XXX: Callback to printing, must remove *) msgs : ((Pp.t -> unit) * Pp.t) list; (* Fields for internalization *) recvars : (Id.t * Id.t) list; mainvars : Id.List.elt list; intern_typs : notation_var_internalization_type list; (* Notation data for parsing *) level : level; pa_syntax_data : subentry_types * symbol list; pp_syntax_data : subentry_types * symbol list; not_data : notation * (* notation *) level * (* level, precedence, types *) bool; (* needs_squash *) } end let find_subentry_types n assoc etyps symbols = let innerlevel = NumLevel 200 in let typs = find_symbols (NumLevel n,BorderProd(Left,assoc)) (innerlevel,InternalProd) (NumLevel n,BorderProd(Right,assoc)) symbols in let sy_typs = List.map (set_entry_type etyps) typs in let prec = List.map (assoc_of_type n) sy_typs in sy_typs, prec let compute_syntax_data df modifiers = let open SynData in let open NotationMods in let mods = interp_modifiers modifiers in let onlyprint = mods.only_printing in let onlyparse = mods.only_parsing in if onlyprint && onlyparse then user_err (str "A notation cannot be both 'only printing' and 'only parsing'."); let assoc = Option.append mods.assoc (Some NonA) in let toks = split_notation_string df in let (recvars,mainvars,symbols) = analyze_notation_tokens ~onlyprint toks in let _ = check_useless_entry_types recvars mainvars mods.etyps in let _ = check_binder_type recvars mods.etyps in (* Notations for interp and grammar *) let ntn_for_interp = make_notation_key symbols in let symbols_for_grammar = remove_curly_brackets symbols in let need_squash = not (List.equal Notation.symbol_eq symbols symbols_for_grammar) in let ntn_for_grammar = if need_squash then make_notation_key symbols_for_grammar else ntn_for_interp in if not onlyprint then check_rule_productivity symbols_for_grammar; let msgs,n = find_precedence mods.level mods.etyps symbols onlyprint in (* To globalize... *) let etyps = join_auxiliary_recursive_types recvars mods.etyps in let sy_typs, prec = find_subentry_types n assoc etyps symbols in let sy_typs_for_grammar, prec_for_grammar = if need_squash then find_subentry_types n assoc etyps symbols_for_grammar else sy_typs, prec in let i_typs = set_internalization_type sy_typs in let pa_sy_data = (sy_typs_for_grammar,symbols_for_grammar) in let pp_sy_data = (sy_typs,symbols) in let sy_fulldata = (ntn_for_grammar,(n,prec_for_grammar,i_typs),need_squash) in let df' = ((Lib.library_dp(),Lib.current_dirpath true),df) in let i_data = ntn_for_interp, df' in (* Return relevant data for interpretation and for parsing/printing *) { info = i_data; only_parsing = mods.only_parsing; only_printing = mods.only_printing; compat = mods.compat; format = mods.format; extra = mods.extra; msgs; recvars; mainvars; intern_typs = i_typs; level = (n,prec,i_typs); pa_syntax_data = pa_sy_data; pp_syntax_data = pp_sy_data; not_data = sy_fulldata; } let compute_pure_syntax_data df mods = let open SynData in let sd = compute_syntax_data df mods in let msgs = if sd.only_parsing then (Feedback.msg_warning ?loc:None, strbrk "The only parsing modifier has no effect in Reserved Notation.")::sd.msgs else sd.msgs in { sd with msgs } (**********************************************************************) (* Registration of notations interpretation *) type notation_obj = { notobj_local : bool; notobj_scope : scope_name option; notobj_interp : interpretation; notobj_onlyparse : bool; notobj_onlyprint : bool; notobj_compat : Flags.compat_version option; notobj_notation : notation * notation_location; } let load_notation _ (_, nobj) = Option.iter Notation.declare_scope nobj.notobj_scope let open_notation i (_, nobj) = let scope = nobj.notobj_scope in let (ntn, df) = nobj.notobj_notation in let pat = nobj.notobj_interp in let onlyprint = nobj.notobj_onlyprint in let fresh = not (Notation.exists_notation_in_scope scope ntn onlyprint pat) in let active = is_active_compat nobj.notobj_compat in if Int.equal i 1 && fresh && active then begin (* Declare the interpretation *) let () = Notation.declare_notation_interpretation ntn scope pat df ~onlyprint in (* Declare the uninterpretation *) if not nobj.notobj_onlyparse then Notation.declare_uninterpretation (NotationRule (scope, ntn)) pat end let cache_notation o = load_notation 1 o; open_notation 1 o let subst_notation (subst, nobj) = { nobj with notobj_interp = subst_interpretation subst nobj.notobj_interp; } let classify_notation nobj = if nobj.notobj_local then Dispose else Substitute nobj let inNotation : notation_obj -> obj = declare_object {(default_object "NOTATION") with open_function = open_notation; cache_function = cache_notation; subst_function = subst_notation; load_function = load_notation; classify_function = classify_notation} (**********************************************************************) let with_lib_stk_protection f x = let fs = Lib.freeze ~marshallable:`No in try let a = f x in Lib.unfreeze fs; a with reraise -> let reraise = CErrors.push reraise in let () = Lib.unfreeze fs in iraise reraise let with_syntax_protection f x = with_lib_stk_protection (Pcoq.with_grammar_rule_protection (with_notation_protection f)) x (**********************************************************************) (* Recovering existing syntax *) exception NoSyntaxRule let recover_notation_syntax ntn = try let prec = Notation.level_of_notation ntn in let pp_rule,_ = Notation.find_notation_printing_rule ntn in let pp_extra_rules = Notation.find_notation_extra_printing_rules ntn in let pa_rule = Notation.find_notation_parsing_rules ntn in { synext_level = prec; synext_notation = ntn; synext_notgram = pa_rule; synext_unparsing = pp_rule; synext_extra = pp_extra_rules; synext_compat = None; } with Not_found -> raise NoSyntaxRule let recover_squash_syntax sy = let sq = recover_notation_syntax "{ _ }" in sy :: sq.synext_notgram.notgram_rules (**********************************************************************) (* Main entry point for building parsing and printing rules *) let make_pa_rule level (typs,symbols) ntn need_squash = let assoc = recompute_assoc typs in let prod = make_production typs symbols in let sy = { notgram_level = level; notgram_assoc = assoc; notgram_notation = ntn; notgram_prods = prod; } in (* By construction, the rule for "{ _ }" is declared, but we need to redeclare it because the file where it is declared needs not be open when the current file opens (especially in presence of -nois) *) if need_squash then recover_squash_syntax sy else [sy] let make_pp_rule level (typs,symbols) fmt = match fmt with | None -> [UnpBox (PpHOVB 0, make_hunks typs symbols level)] | Some fmt -> hunks_of_format (level, List.split typs) (symbols, parse_format fmt) (* let make_syntax_rules i_typs (ntn,prec,need_squash) sy_data fmt extra onlyprint compat = *) let make_syntax_rules (sd : SynData.syn_data) = let open SynData in let ntn_for_grammar, prec_for_grammar, need_squash = sd.not_data in let pa_rule = make_pa_rule prec_for_grammar sd.pa_syntax_data ntn_for_grammar need_squash in let pp_rule = make_pp_rule (pi1 sd.level) sd.pp_syntax_data sd.format in { synext_level = sd.level; synext_notation = fst sd.info; synext_notgram = { notgram_onlyprinting = sd.only_printing; notgram_rules = pa_rule }; synext_unparsing = pp_rule; synext_extra = sd.extra; synext_compat = sd.compat; } (**********************************************************************) (* Main functions about notations *) let to_map l = let fold accu (x, v) = Id.Map.add x v accu in List.fold_left fold Id.Map.empty l let add_notation_in_scope local df env c mods scope = let open SynData in let sd = compute_syntax_data df mods in (* Prepare the interpretation *) (* Prepare the parsing and printing rules *) let sy_rules = make_syntax_rules sd in let i_vars = make_internalization_vars sd.recvars sd.mainvars sd.intern_typs in let nenv = { ninterp_var_type = to_map i_vars; ninterp_rec_vars = to_map sd.recvars; } in let (acvars, ac, reversible) = interp_notation_constr env nenv c in let interp = make_interpretation_vars sd.recvars acvars in let map (x, _) = try Some (x, Id.Map.find x interp) with Not_found -> None in let onlyparse = is_not_printable sd.only_parsing (not reversible) ac in let notation = { notobj_local = local; notobj_scope = scope; notobj_interp = (List.map_filter map i_vars, ac); (** Order is important here! *) notobj_onlyparse = onlyparse; notobj_onlyprint = sd.only_printing; notobj_compat = sd.compat; notobj_notation = sd.info; } in (* Ready to change the global state *) Flags.if_verbose (List.iter (fun (f,x) -> f x)) sd.msgs; Lib.add_anonymous_leaf (inSyntaxExtension (local, sy_rules)); Lib.add_anonymous_leaf (inNotation notation); sd.info let add_notation_interpretation_core local df env ?(impls=empty_internalization_env) c scope onlyparse onlyprint compat = let dfs = split_notation_string df in let (recvars,mainvars,symbs) = analyze_notation_tokens ~onlyprint dfs in (* Recover types of variables and pa/pp rules; redeclare them if needed *) let i_typs, onlyprint = if not (is_numeral symbs) then begin let sy = recover_notation_syntax (make_notation_key symbs) in let () = Lib.add_anonymous_leaf (inSyntaxExtension (local,sy)) in (** If the only printing flag has been explicitly requested, put it back *) let onlyprint = onlyprint || sy.synext_notgram.notgram_onlyprinting in pi3 sy.synext_level, onlyprint end else [], false in (* Declare interpretation *) let path = (Lib.library_dp(), Lib.current_dirpath true) in let df' = (make_notation_key symbs, (path,df)) in let i_vars = make_internalization_vars recvars mainvars i_typs in let nenv = { ninterp_var_type = to_map i_vars; ninterp_rec_vars = to_map recvars; } in let (acvars, ac, reversible) = interp_notation_constr env ~impls nenv c in let interp = make_interpretation_vars recvars acvars in let map (x, _) = try Some (x, Id.Map.find x interp) with Not_found -> None in let onlyparse = is_not_printable onlyparse (not reversible) ac in let notation = { notobj_local = local; notobj_scope = scope; notobj_interp = (List.map_filter map i_vars, ac); (** Order is important here! *) notobj_onlyparse = onlyparse; notobj_onlyprint = onlyprint; notobj_compat = compat; notobj_notation = df'; } in Lib.add_anonymous_leaf (inNotation notation); df' (* Notations without interpretation (Reserved Notation) *) let add_syntax_extension local ((loc,df),mods) = let open SynData in let psd = compute_pure_syntax_data df mods in let sy_rules = make_syntax_rules {psd with compat = None} in Flags.if_verbose (List.iter (fun (f,x) -> f x)) psd.msgs; Lib.add_anonymous_leaf (inSyntaxExtension(local,sy_rules)) (* Notations with only interpretation *) let add_notation_interpretation env ((loc,df),c,sc) = let df' = add_notation_interpretation_core false df env c sc false false None in Dumpglob.dump_notation (loc,df') sc true let set_notation_for_interpretation env impls ((_,df),c,sc) = (try ignore (Flags.silently (fun () -> add_notation_interpretation_core false df env ~impls c sc false false None) ()); with NoSyntaxRule -> user_err Pp.(str "Parsing rule for this notation has to be previously declared.")); Option.iter (fun sc -> Notation.open_close_scope (false,true,sc)) sc (* Main entry point *) let add_notation local env c ((loc,df),modifiers) sc = let df' = if no_syntax_modifiers modifiers then (* No syntax data: try to rely on a previously declared rule *) let onlyparse = is_only_parsing modifiers in let onlyprint = is_only_printing modifiers in let compat = get_compat_version modifiers in try add_notation_interpretation_core local df env c sc onlyparse onlyprint compat with NoSyntaxRule -> (* Try to determine a default syntax rule *) add_notation_in_scope local df env c modifiers sc else (* Declare both syntax and interpretation *) add_notation_in_scope local df env c modifiers sc in Dumpglob.dump_notation (loc,df') sc true let add_notation_extra_printing_rule df k v = let notk = let dfs = split_notation_string df in let _,_, symbs = analyze_notation_tokens ~onlyprint:true dfs in make_notation_key symbs in Notation.add_notation_extra_printing_rule notk k v (* Infix notations *) let inject_var x = CAst.make @@ CRef (Ident (Loc.tag @@ Id.of_string x),None) let add_infix local env ((loc,inf),modifiers) pr sc = check_infix_modifiers modifiers; (* check the precedence *) let metas = [inject_var "x"; inject_var "y"] in let c = mkAppC (pr,metas) in let df = "x "^(quote_notation_token inf)^" y" in add_notation local env c ((loc,df),modifiers) sc (**********************************************************************) (* Delimiters and classes bound to scopes *) type scope_command = | ScopeDelim of string | ScopeClasses of scope_class list | ScopeRemove let load_scope_command _ (_,(scope,dlm)) = Notation.declare_scope scope let open_scope_command i (_,(scope,o)) = if Int.equal i 1 then match o with | ScopeDelim dlm -> Notation.declare_delimiters scope dlm | ScopeClasses cl -> List.iter (Notation.declare_scope_class scope) cl | ScopeRemove -> Notation.remove_delimiters scope let cache_scope_command o = load_scope_command 1 o; open_scope_command 1 o let subst_scope_command (subst,(scope,o as x)) = match o with | ScopeClasses cl -> let cl' = List.map_filter (subst_scope_class subst) cl in let cl' = if List.for_all2eq (==) cl cl' then cl else cl' in scope, ScopeClasses cl' | _ -> x let inScopeCommand : scope_name * scope_command -> obj = declare_object {(default_object "DELIMITERS") with cache_function = cache_scope_command; open_function = open_scope_command; load_function = load_scope_command; subst_function = subst_scope_command; classify_function = (fun obj -> Substitute obj)} let add_delimiters scope key = Lib.add_anonymous_leaf (inScopeCommand(scope,ScopeDelim key)) let remove_delimiters scope = Lib.add_anonymous_leaf (inScopeCommand(scope,ScopeRemove)) let add_class_scope scope cl = Lib.add_anonymous_leaf (inScopeCommand(scope,ScopeClasses cl)) (* Check if abbreviation to a name and avoid early insertion of maximal implicit arguments *) let try_interp_name_alias = function | [], { CAst.v = CRef (ref,_) } -> intern_reference ref | _ -> raise Not_found let add_syntactic_definition env ident (vars,c) local onlyparse = let nonprintable = ref false in let vars,pat = try [], NRef (try_interp_name_alias (vars,c)) with Not_found -> let fold accu id = Id.Map.add id NtnInternTypeConstr accu in let i_vars = List.fold_left fold Id.Map.empty vars in let nenv = { ninterp_var_type = i_vars; ninterp_rec_vars = Id.Map.empty; } in let nvars, pat, reversible = interp_notation_constr env nenv c in let () = nonprintable := not reversible in let map id = let (_,sc,_) = Id.Map.find id nvars in (id, sc) in List.map map vars, pat in let onlyparse = match onlyparse with | None when (is_not_printable false !nonprintable pat) -> Some Flags.Current | p -> p in Syntax_def.declare_syntactic_definition local ident onlyparse (vars,pat)