1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Names open Cic open Term open Reduction open Type_errors open Inductive open Environ let inductive_of_constructor = fst let conv_leq_vecti env v1 v2 = Array.fold_left2_i (fun i _ t1 t2 -> (try conv_leq env t1 t2 with NotConvertible -> raise (NotConvertibleVect i)); ()) () v1 v2 let check_constraints cst env = if Environ.check_constraints cst env then () else error_unsatisfied_constraints env cst (* This should be a type (a priori without intension to be an assumption) *) let type_judgment env (c,ty as j) = match whd_all env ty with | Sort s -> (c,s) | _ -> error_not_type env j (* This should be a type intended to be assumed. The error message is *) (* not as useful as for [type_judgment]. *) let assumption_of_judgment env j = try fst(type_judgment env j) with TypeError _ -> error_assumption env j (************************************************) (* Incremental typing rules: builds a typing judgement given the *) (* judgements for the subterms. *) (*s Type of sorts *) (* Prop and Set *) let judge_of_prop = Sort (Type Univ.type1_univ) (* Type of Type(i). *) let judge_of_type u = Sort (Type (Univ.super u)) (*s Type of a de Bruijn index. *) let judge_of_relative env n = try let LocalAssum (_,typ) | LocalDef (_,_,typ) = lookup_rel n env in lift n typ with Not_found -> error_unbound_rel env n (* Type of constants *) let judge_of_constant env (kn,u as cst) = let _cb = try lookup_constant kn env with Not_found -> failwith ("Cannot find constant: "^Constant.to_string kn) in let ty, cu = constant_type env cst in let () = check_constraints cu env in ty (* Type of an application. *) let judge_of_apply env (f,funj) argjv = let rec apply_rec n typ = function | [] -> typ | (h,hj)::restjl -> (match whd_all env typ with | Prod (_,c1,c2) -> (try conv_leq env hj c1 with NotConvertible -> error_cant_apply_bad_type env (n,c1, hj) (f,funj) argjv); apply_rec (n+1) (subst1 h c2) restjl | _ -> error_cant_apply_not_functional env (f,funj) argjv) in apply_rec 1 funj (Array.to_list argjv) (* Type of product *) let sort_of_product env domsort rangsort = match (domsort, rangsort) with (* Product rule (s,Prop,Prop) *) | (_, Prop Null) -> rangsort (* Product rule (Prop/Set,Set,Set) *) | (Prop _, Prop Pos) -> rangsort (* Product rule (Type,Set,?) *) | (Type u1, Prop Pos) -> if engagement env = ImpredicativeSet then (* Rule is (Type,Set,Set) in the Set-impredicative calculus *) rangsort else (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *) Type (Univ.sup u1 Univ.type0_univ) (* Product rule (Prop,Type_i,Type_i) *) | (Prop Pos, Type u2) -> Type (Univ.sup Univ.type0_univ u2) (* Product rule (Prop,Type_i,Type_i) *) | (Prop Null, Type _) -> rangsort (* Product rule (Type_i,Type_i,Type_i) *) | (Type u1, Type u2) -> Type (Univ.sup u1 u2) (* Type of a type cast *) (* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule env |- c:typ1 env |- typ2:s env |- typ1 <= typ2 --------------------------------------------------------------------- env |- c:typ2 *) let judge_of_cast env (c,cj) k tj = let conversion = match k with | VMcast | NATIVEcast -> vm_conv CUMUL | DEFAULTcast -> conv_leq in try conversion env cj tj with NotConvertible -> error_actual_type env (c,cj) tj (* Inductive types. *) (* The type is parametric over the uniform parameters whose conclusion is in Type; to enforce the internal constraints between the parameters and the instances of Type occurring in the type of the constructors, we use the level variables _statically_ assigned to the conclusions of the parameters as mediators: e.g. if a parameter has conclusion Type(alpha), static constraints of the form alpha<=v exist between alpha and the Type's occurring in the constructor types; when the parameters is finally instantiated by a term of conclusion Type(u), then the constraints u<=alpha is computed in the App case of execute; from this constraints, the expected dynamic constraints of the form u<=v are enforced *) let judge_of_inductive_knowing_parameters env (ind,u) (paramstyp:constr array) = let specif = try lookup_mind_specif env ind with Not_found -> failwith ("Cannot find inductive: "^MutInd.to_string (fst ind)) in type_of_inductive_knowing_parameters env (specif,u) paramstyp let judge_of_inductive env ind = judge_of_inductive_knowing_parameters env ind [||] (* Constructors. *) let judge_of_constructor env (c,u) = let ind = inductive_of_constructor c in let specif = try lookup_mind_specif env ind with Not_found -> failwith ("Cannot find inductive: "^MutInd.to_string (fst ind)) in type_of_constructor (c,u) specif (* Case. *) let check_branch_types env (c,cj) (lfj,explft) = try conv_leq_vecti env lfj explft with NotConvertibleVect i -> error_ill_formed_branch env c i lfj.(i) explft.(i) | Invalid_argument _ -> error_number_branches env (c,cj) (Array.length explft) let judge_of_case env ci pj (c,cj) lfj = let indspec = try find_rectype env cj with Not_found -> error_case_not_inductive env (c,cj) in let _ = check_case_info env (fst (fst indspec)) ci in let (bty,rslty) = type_case_branches env indspec pj c in check_branch_types env (c,cj) (lfj,bty); rslty (* Projection. *) let judge_of_projection env p c ct = let pb = lookup_projection p env in let (ind,u), args = try find_rectype env ct with Not_found -> error_case_not_inductive env (c, ct) in assert(MutInd.equal pb.proj_ind (fst ind)); let ty = subst_instance_constr u pb.proj_type in substl (c :: List.rev args) ty (* Fixpoints. *) (* Checks the type of a general (co)fixpoint, i.e. without checking *) (* the specific guard condition. *) let type_fixpoint env lna lar lbody vdefj = let lt = Array.length vdefj in assert (Array.length lar = lt && Array.length lbody = lt); try conv_leq_vecti env vdefj (Array.map (fun ty -> lift lt ty) lar) with NotConvertibleVect i -> let vdefj = Array.map2 (fun b ty -> b,ty) lbody vdefj in error_ill_typed_rec_body env i lna vdefj lar (************************************************************************) (************************************************************************) (* let refresh_arity env ar = *) (* let ctxt, hd = decompose_prod_assum ar in *) (* match hd with *) (* Sort (Type u) when not (is_univ_variable u) -> *) (* let u' = fresh_local_univ() in *) (* let env' = add_constraints (enforce_leq u u' empty_constraint) env in *) (* env', mkArity (ctxt,Type u') *) (* | _ -> env, ar *) (* The typing machine. *) let rec execute env cstr = match cstr with (* Atomic terms *) | Sort (Prop _) -> judge_of_prop | Sort (Type u) -> judge_of_type u | Rel n -> judge_of_relative env n | Var _ -> anomaly (Pp.str "Section variable in Coqchk!") | Const c -> judge_of_constant env c (* Lambda calculus operators *) | App (App (f,args),args') -> execute env (App(f,Array.append args args')) | App (f,args) -> let jl = execute_array env args in let j = match f with | Ind ind -> judge_of_inductive_knowing_parameters env ind jl | _ -> (* No template polymorphism *) execute env f in let jl = Array.map2 (fun c ty -> c,ty) args jl in judge_of_apply env (f,j) jl | Proj (p, c) -> let ct = execute env c in judge_of_projection env p c ct | Lambda (name,c1,c2) -> let _ = execute_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let j' = execute env1 c2 in Prod(name,c1,j') | Prod (name,c1,c2) -> let varj = execute_type env c1 in let env1 = push_rel (LocalAssum (name,c1)) env in let varj' = execute_type env1 c2 in Sort (sort_of_product env varj varj') | LetIn (name,c1,c2,c3) -> let j1 = execute env c1 in (* /!\ c2 can be an inferred type => refresh (but the pushed type is still c2) *) let _ = let env',c2' = (* refresh_arity env *) env, c2 in let _ = execute_type env' c2' in judge_of_cast env' (c1,j1) DEFAULTcast c2' in let env1 = push_rel (LocalDef (name,c1,c2)) env in let j' = execute env1 c3 in subst1 c1 j' | Cast (c,k,t) -> let cj = execute env c in let _ = execute_type env t in judge_of_cast env (c,cj) k t; t (* Inductive types *) | Ind ind -> judge_of_inductive env ind | Construct c -> judge_of_constructor env c | Case (ci,p,c,lf) -> let cj = execute env c in let pj = execute env p in let lfj = execute_array env lf in judge_of_case env ci (p,pj) (c,cj) lfj | Fix ((_,i as vni),recdef) -> let fix_ty = execute_recdef env recdef i in let fix = (vni,recdef) in check_fix env fix; fix_ty | CoFix (i,recdef) -> let fix_ty = execute_recdef env recdef i in let cofix = (i,recdef) in check_cofix env cofix; fix_ty (* Partial proofs: unsupported by the kernel *) | Meta _ -> anomaly (Pp.str "the kernel does not support metavariables.") | Evar _ -> anomaly (Pp.str "the kernel does not support existential variables.") and execute_type env constr = let j = execute env constr in snd (type_judgment env (constr,j)) and execute_recdef env (names,lar,vdef) i = let larj = execute_array env lar in let larj = Array.map2 (fun c ty -> c,ty) lar larj in let lara = Array.map (assumption_of_judgment env) larj in let env1 = push_rec_types (names,lara,vdef) env in let vdefj = execute_array env1 vdef in type_fixpoint env1 names lara vdef vdefj; lara.(i) and execute_array env = Array.map (execute env) (* Derived functions *) let infer env constr = execute env constr let infer_type env constr = execute_type env constr (* Typing of several terms. *) let check_ctxt env rels = fold_rel_context (fun d env -> match d with | LocalAssum (_,ty) -> let _ = infer_type env ty in push_rel d env | LocalDef (_,bd,ty) -> let j1 = infer env bd in let _ = infer env ty in conv_leq env j1 ty; push_rel d env) rels ~init:env (* Polymorphic arities utils *) let check_kind env ar u = match (snd (dest_prod env ar)) with | Sort (Type u') when Univ.Universe.equal u' (Univ.Universe.make u) -> () | _ -> failwith "not the correct sort" let check_polymorphic_arity env params par = let pl = par.template_param_levels in let rec check_p env pl params = match pl, params with Some u::pl, LocalAssum (na,ty)::params -> check_kind env ty u; check_p (push_rel (LocalAssum (na,ty)) env) pl params | None::pl,d::params -> check_p (push_rel d env) pl params | [], _ -> () | _ -> failwith "check_poly: not the right number of params" in check_p env pl (List.rev params)