1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i*)
open Util
open Names
open Libnames
open Globnames
open Table
open Miniml
(*i*)

(*s Exceptions. *)

exception Found
exception Impossible

(*S Names operations. *)

let anonymous_name = Id.of_string "x"
let dummy_name = Id.of_string "_"

let anonymous = Id anonymous_name

let id_of_name = function
  | Name.Anonymous -> anonymous_name
  | Name.Name id when Id.equal id dummy_name -> anonymous_name
  | Name.Name id -> id

let id_of_mlid = function
  | Dummy -> dummy_name
  | Id id -> id
  | Tmp id -> id

let tmp_id = function
  | Id id -> Tmp id
  | a -> a

let is_tmp = function Tmp _ -> true | _ -> false

(*S Operations upon ML types (with meta). *)

let meta_count = ref 0

let reset_meta_count () = meta_count := 0

let new_meta _ =
  incr meta_count;
  Tmeta {id = !meta_count; contents = None}

let rec eq_ml_type t1 t2 = match t1, t2 with
| Tarr (tl1, tr1), Tarr (tl2, tr2) ->
  eq_ml_type tl1 tl2 && eq_ml_type tr1 tr2
| Tglob (gr1, t1), Tglob (gr2, t2) ->
  eq_gr gr1 gr2 && List.equal eq_ml_type t1 t2
| Tvar i1, Tvar i2 -> Int.equal i1 i2
| Tvar' i1, Tvar' i2 -> Int.equal i1 i2
| Tmeta m1, Tmeta m2 -> eq_ml_meta m1 m2
| Tdummy k1, Tdummy k2 -> k1 == k2
| Tunknown, Tunknown -> true
| Taxiom, Taxiom -> true
| _ -> false

and eq_ml_meta m1 m2 =
 Int.equal m1.id m2.id && Option.equal eq_ml_type m1.contents m2.contents

(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)

let type_subst_list l t =
  let rec subst t = match t with
    | Tvar j -> List.nth l (j-1)
    | Tmeta {contents=None} -> t
    | Tmeta {contents=Some u} -> subst u
    | Tarr (a,b) -> Tarr (subst a, subst b)
    | Tglob (r, l) -> Tglob (r, List.map subst l)
    | a -> a
  in subst t

(* Simultaneous substitution of [[|Tvar 1; ... ; Tvar n|]] by [v] in a ML type. *)

let type_subst_vect v t =
  let rec subst t = match t with
    | Tvar j -> v.(j-1)
    | Tmeta {contents=None} -> t
    | Tmeta {contents=Some u} -> subst u
    | Tarr (a,b) -> Tarr (subst a, subst b)
    | Tglob (r, l) -> Tglob (r, List.map subst l)
    | a -> a
  in subst t

(*s From a type schema to a type. All [Tvar] become fresh [Tmeta]. *)

let instantiation (nb,t) = type_subst_vect (Array.init nb new_meta) t

(*s Occur-check of a free meta in a type *)

let rec type_occurs alpha t =
  match t with
  | Tmeta {id=beta; contents=None} -> Int.equal alpha beta
  | Tmeta {contents=Some u} -> type_occurs alpha u
  | Tarr (t1, t2) -> type_occurs alpha t1 || type_occurs alpha t2
  | Tglob (r,l) -> List.exists (type_occurs alpha) l
  | _ -> false

(*s Most General Unificator *)

let rec mgu = function
  | Tmeta m, Tmeta m' when Int.equal m.id m'.id -> ()
  | Tmeta m, t | t, Tmeta m ->
    (match m.contents with
      | Some u -> mgu (u, t)
      | None when type_occurs m.id t -> raise Impossible
      | None -> m.contents <- Some t)
  | Tarr(a, b), Tarr(a', b') ->
      mgu (a, a'); mgu (b, b')
  | Tglob (r,l), Tglob (r',l') when Globnames.eq_gr r r' ->
       List.iter mgu (List.combine l l')
  | Tdummy _, Tdummy _ -> ()
  | Tvar i, Tvar j when Int.equal i j -> ()
  | Tvar' i, Tvar' j when  Int.equal i j -> ()
  | Tunknown, Tunknown -> ()
  | Taxiom, Taxiom -> ()
  | _ -> raise Impossible

let skip_typing () = lang () == Scheme || is_extrcompute ()

let needs_magic p =
  if skip_typing () then false
  else try mgu p; false with Impossible -> true

let put_magic_if b a = if b then MLmagic a else a

let put_magic p a = if needs_magic p then MLmagic a else a

let generalizable a =
  lang () != Ocaml ||
    match a with
      | MLapp _ -> false
      | _ -> true (* TODO, this is just an approximation for the moment *)

(*S ML type env. *)

module Mlenv = struct

  let meta_cmp m m' = compare m.id m'.id
  module Metaset = Set.Make(struct type t = ml_meta let compare = meta_cmp end)

  (* Main MLenv type. [env] is the real environment, whereas [free]
     (tries to) record the free meta variables occurring in [env]. *)

  type t = { env : ml_schema list; mutable free : Metaset.t}

  (* Empty environment. *)

  let empty = { env = []; free = Metaset.empty }

  (* [get] returns a instantiated copy of the n-th most recently added
     type in the environment. *)

  let get mle n =
    assert (List.length mle.env >= n);
    instantiation (List.nth mle.env (n-1))

  (* [find_free] finds the free meta in a type. *)

  let rec find_free set = function
    | Tmeta m when Option.is_empty m.contents -> Metaset.add m set
    | Tmeta {contents = Some t} -> find_free set t
    | Tarr (a,b) -> find_free (find_free set a) b
    | Tglob (_,l) -> List.fold_left find_free set l
    | _ -> set

  (* The [free] set of an environment can be outdate after
     some unifications. [clean_free] takes care of that. *)

  let clean_free mle =
    let rem = ref Metaset.empty
    and add = ref Metaset.empty in
    let clean m = match m.contents with
      | None -> ()
      | Some u -> rem := Metaset.add m !rem; add := find_free !add u
    in
    Metaset.iter clean mle.free;
    mle.free <- Metaset.union (Metaset.diff mle.free !rem) !add

  (* From a type to a type schema. If a [Tmeta] is still uninstantiated
     and does appears in the [mle], then it becomes a [Tvar]. *)

  let generalization mle t =
    let c = ref 0 in
    let map = ref (Int.Map.empty : int Int.Map.t) in
    let add_new i = incr c; map := Int.Map.add i !c !map; !c in
    let rec meta2var t = match t with
      | Tmeta {contents=Some u} -> meta2var u
      | Tmeta ({id=i} as m) ->
          (try Tvar (Int.Map.find i !map)
           with Not_found ->
             if Metaset.mem m mle.free then t
             else Tvar (add_new i))
      | Tarr (t1,t2) -> Tarr (meta2var t1, meta2var t2)
      | Tglob (r,l) -> Tglob (r, List.map meta2var l)
      | t -> t
    in !c, meta2var t

  (* Adding a type in an environment, after generalizing. *)

  let push_gen mle t =
    clean_free mle;
    { env = generalization mle t :: mle.env; free = mle.free }

  (* Adding a type with no [Tvar], hence no generalization needed. *)

  let push_type {env=e;free=f} t =
    { env = (0,t) :: e; free = find_free f t}

  (* Adding a type with no [Tvar] nor [Tmeta]. *)

  let push_std_type {env=e;free=f} t =
    { env = (0,t) :: e; free = f}

end

(*S Operations upon ML types (without meta). *)

(*s Does a section path occur in a ML type ? *)

let rec type_mem_kn kn = function
  | Tmeta {contents = Some t} -> type_mem_kn kn t
  | Tglob (r,l) -> occur_kn_in_ref kn r || List.exists (type_mem_kn kn) l
  | Tarr (a,b) -> (type_mem_kn kn a) || (type_mem_kn kn b)
  | _ -> false

(*s Greatest variable occurring in [t]. *)

let type_maxvar t =
  let rec parse n = function
    | Tmeta {contents = Some t} -> parse n t
    | Tvar i -> max i n
    | Tarr (a,b) -> parse (parse n a) b
    | Tglob (_,l) -> List.fold_left parse n l
    | _ -> n
  in parse 0 t

(*s From [a -> b -> c] to [[a;b],c]. *)

let rec type_decomp = function
  | Tmeta {contents = Some t} -> type_decomp t
  | Tarr (a,b) -> let l,h = type_decomp b in a::l, h
  | a -> [],a

(*s The converse: From [[a;b],c] to [a -> b -> c]. *)

let rec type_recomp (l,t) = match l with
  | [] -> t
  | a::l -> Tarr (a, type_recomp (l,t))

(*s Translating [Tvar] to [Tvar'] to avoid clash. *)

let rec var2var' = function
  | Tmeta {contents = Some t} -> var2var' t
  | Tvar i -> Tvar' i
  | Tarr (a,b) -> Tarr (var2var' a, var2var' b)
  | Tglob (r,l) -> Tglob (r, List.map var2var' l)
  | a -> a

type abbrev_map = global_reference -> ml_type option

(*s Delta-reduction of type constants everywhere in a ML type [t].
   [env] is a function of type [ml_type_env]. *)

let type_expand env t =
  let rec expand = function
    | Tmeta {contents = Some t} -> expand t
    | Tglob (r,l) ->
        (match env r with
           | Some mlt -> expand (type_subst_list l mlt)
           | None -> Tglob (r, List.map expand l))
    | Tarr (a,b) -> Tarr (expand a, expand b)
    | a -> a
  in if Table.type_expand () then expand t else t

let type_simpl = type_expand (fun _ -> None)

(*s Generating a signature from a ML type. *)

let type_to_sign env t = match type_expand env t with
  | Tdummy d when not (conservative_types ()) -> Kill d
  | _ -> Keep

let type_to_signature env t =
  let rec f = function
    | Tmeta {contents = Some t} -> f t
    | Tarr (Tdummy d, b) when not (conservative_types ())  -> Kill d :: f b
    | Tarr (_, b) -> Keep :: f b
    | _ -> []
  in f (type_expand env t)

let isKill = function Kill _ -> true | _ -> false

let isTdummy = function Tdummy _ -> true | _ -> false

let isMLdummy = function MLdummy _ -> true | _ -> false

let sign_of_id = function
  | Dummy -> Kill Kprop
  | _ -> Keep

(* Classification of signatures *)

type sign_kind =
  | EmptySig
  | NonLogicalSig (* at least a [Keep] *)
  | SafeLogicalSig (* only [Kill Ktype] *)
  | UnsafeLogicalSig (* No [Keep], not all [Kill Ktype] *)

let rec sign_kind = function
  | [] -> EmptySig
  | Keep :: _ -> NonLogicalSig
  | Kill k :: s ->
     match k, sign_kind s with
     | _, NonLogicalSig -> NonLogicalSig
     | Ktype, (SafeLogicalSig | EmptySig) -> SafeLogicalSig
     | _, _ -> UnsafeLogicalSig

(* Removing the final [Keep] in a signature *)

let rec sign_no_final_keeps = function
  | [] -> []
  | k :: s ->
     match k, sign_no_final_keeps s with
     | Keep, [] -> []
     | k, l -> k::l

(*s Removing [Tdummy] from the top level of a ML type. *)

let type_expunge_from_sign env s t =
  let rec expunge s t = match s, t with
    | [], _ -> t
    | Keep :: s, Tarr(a,b) -> Tarr (a, expunge s b)
    | Kill _ :: s, Tarr(a,b) -> expunge s b
    | _, Tmeta {contents = Some t} -> expunge s t
    | _, Tglob (r,l) ->
       (match env r with
        | Some mlt -> expunge s (type_subst_list l mlt)
        | None -> assert false)
    | _ -> assert false
  in
  let t = expunge (sign_no_final_keeps s) t in
  if lang () != Haskell && sign_kind s == UnsafeLogicalSig then
    Tarr (Tdummy Kprop, t)
  else t

let type_expunge env t =
  type_expunge_from_sign env (type_to_signature env t) t

(*S Generic functions over ML ast terms. *)

let mlapp f a = if List.is_empty a then f else MLapp (f,a)

(** Equality *)

let eq_ml_ident i1 i2 = match i1, i2 with
| Dummy, Dummy -> true
| Id id1, Id id2 -> Id.equal id1 id2
| Tmp id1, Tmp id2 -> Id.equal id1 id2
| _ -> false

let rec eq_ml_ast t1 t2 = match t1, t2 with
| MLrel i1, MLrel i2 ->
  Int.equal i1 i2
| MLapp (f1, t1), MLapp (f2, t2) ->
  eq_ml_ast f1 f2 && List.equal eq_ml_ast t1 t2
| MLlam (na1, t1), MLlam (na2, t2) ->
  eq_ml_ident na1 na2 && eq_ml_ast t1 t2
| MLletin (na1, c1, t1), MLletin (na2, c2, t2) ->
  eq_ml_ident na1 na2 && eq_ml_ast c1 c2 && eq_ml_ast t1 t2
| MLglob gr1, MLglob gr2 -> eq_gr gr1 gr2
| MLcons (t1, gr1, c1), MLcons (t2, gr2, c2) ->
  eq_ml_type t1 t2 && eq_gr gr1 gr2 && List.equal eq_ml_ast c1 c2
| MLtuple t1, MLtuple t2 ->
  List.equal eq_ml_ast t1 t2
| MLcase (t1, c1, p1), MLcase (t2, c2, p2) ->
  eq_ml_type t1 t2 && eq_ml_ast c1 c2 && Array.equal eq_ml_branch p1 p2
| MLfix (i1, id1, t1), MLfix (i2, id2, t2) ->
  Int.equal i1 i2 && Array.equal Id.equal id1 id2 && Array.equal eq_ml_ast t1 t2
| MLexn e1, MLexn e2 -> String.equal e1 e2
| MLdummy k1, MLdummy k2 -> k1 == k2
| MLaxiom, MLaxiom -> true
| MLmagic t1, MLmagic t2 -> eq_ml_ast t1 t2
| _ -> false

and eq_ml_pattern p1 p2 = match p1, p2 with
| Pcons (gr1, p1), Pcons (gr2, p2) ->
  eq_gr gr1 gr2 && List.equal eq_ml_pattern p1 p2
| Ptuple p1, Ptuple p2 ->
  List.equal eq_ml_pattern p1 p2
| Prel i1, Prel i2 ->
  Int.equal i1 i2
| Pwild, Pwild -> true
| Pusual gr1, Pusual gr2 -> eq_gr gr1 gr2
| _ -> false

and eq_ml_branch (id1, p1, t1) (id2, p2, t2) =
  List.equal eq_ml_ident id1 id2 &&
  eq_ml_pattern p1 p2 &&
  eq_ml_ast t1 t2

(*s [ast_iter_rel f t] applies [f] on every [MLrel] in t. It takes care
   of the number of bingings crossed before reaching the [MLrel]. *)

let ast_iter_rel f =
  let rec iter n = function
    | MLrel i -> f (i-n)
    | MLlam (_,a) -> iter (n+1) a
    | MLletin (_,a,b) -> iter n a; iter (n+1) b
    | MLcase (_,a,v) ->
        iter n a; Array.iter (fun (l,_,t) -> iter (n + (List.length l)) t) v
    | MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
    | MLapp (a,l) -> iter n a; List.iter (iter n) l
    | MLcons (_,_,l) | MLtuple l ->  List.iter (iter n) l
    | MLmagic a -> iter n a
    | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> ()
  in iter 0

(*s Map over asts. *)

let ast_map_branch f (c,ids,a) = (c,ids,f a)

(* Warning: in [ast_map] we assume that [f] does not change the type
   of [MLcons] and of [MLcase] heads *)

let ast_map f = function
  | MLlam (i,a) -> MLlam (i, f a)
  | MLletin (i,a,b) -> MLletin (i, f a, f b)
  | MLcase (typ,a,v) -> MLcase (typ,f a, Array.map (ast_map_branch f) v)
  | MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
  | MLapp (a,l) -> MLapp (f a, List.map f l)
  | MLcons (typ,c,l) -> MLcons (typ,c, List.map f l)
  | MLtuple l -> MLtuple (List.map f l)
  | MLmagic a -> MLmagic (f a)
  | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom as a -> a

(*s Map over asts, with binding depth as parameter. *)

let ast_map_lift_branch f n (ids,p,a) = (ids,p, f (n+(List.length ids)) a)

(* Same warning as for [ast_map]... *)

let ast_map_lift f n = function
  | MLlam (i,a) -> MLlam (i, f (n+1) a)
  | MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
  | MLcase (typ,a,v) -> MLcase (typ,f n a,Array.map (ast_map_lift_branch f n) v)
  | MLfix (i,ids,v) ->
      let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
  | MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
  | MLcons (typ,c,l) -> MLcons (typ,c, List.map (f n) l)
  | MLtuple l -> MLtuple (List.map (f n) l)
  | MLmagic a -> MLmagic (f n a)
  | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom as a -> a

(*s Iter over asts. *)

let ast_iter_branch f (c,ids,a) = f a

let ast_iter f = function
  | MLlam (i,a) -> f a
  | MLletin (i,a,b) -> f a; f b
  | MLcase (_,a,v) -> f a; Array.iter (ast_iter_branch f) v
  | MLfix (i,ids,v) -> Array.iter f v
  | MLapp (a,l) -> f a; List.iter f l
  | MLcons (_,_,l) | MLtuple l -> List.iter f l
  | MLmagic a -> f a
  | MLrel _ | MLglob _ | MLexn _ | MLdummy _ | MLaxiom  -> ()

(*S Operations concerning De Bruijn indices. *)

(*s [ast_occurs k t] returns [true] if [(Rel k)] occurs in [t]. *)

let ast_occurs k t =
  try
    ast_iter_rel (fun i -> if Int.equal i k then raise Found) t; false
  with Found -> true

(*s [occurs_itvl k k' t] returns [true] if there is a [(Rel i)]
   in [t] with [k<=i<=k'] *)

let ast_occurs_itvl k k' t =
  try
    ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
  with Found -> true

(* Number of occurrences of [Rel 1] in [t], with special treatment of match:
   occurrences in different branches aren't added, but we rather use max. *)

let nb_occur_match =
  let rec nb k = function
    | MLrel i -> if Int.equal i k then 1 else 0
    | MLcase(_,a,v) ->
        (nb k a) +
        Array.fold_left
          (fun r (ids,_,a) -> max r (nb (k+(List.length ids)) a)) 0 v
    | MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
    | MLfix (_,ids,v) -> let k = k+(Array.length ids) in
      Array.fold_left (fun r a -> r+(nb k a)) 0 v
    | MLlam (_,a) -> nb (k+1) a
    | MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
    | MLcons (_,_,l) | MLtuple l -> List.fold_left (fun r a -> r+(nb k a)) 0 l
    | MLmagic a -> nb k a
    | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> 0
  in nb 1

(* Replace unused variables by _ *)

let dump_unused_vars a =
  let rec ren env a = match a with
    | MLrel i ->
       let () = (List.nth env (i-1)) := true in a

    | MLlam (id,b) ->
       let occ_id = ref false in
       let b' = ren (occ_id::env) b in
       if !occ_id then if b' == b then a else MLlam(id,b')
       else MLlam(Dummy,b')

    | MLletin (id,b,c) ->
       let occ_id = ref false in
       let b' = ren env b in
       let c' = ren (occ_id::env) c in
       if !occ_id then
         if b' == b && c' == c then a else MLletin(id,b',c')
       else
         (* 'let' without occurrence: shouldn't happen after simpl *)
         MLletin(Dummy,b',c')

    | MLcase (t,e,br) ->
       let e' = ren env e in
       let br' = Array.smartmap (ren_branch env) br in
       if e' == e && br' == br then a else MLcase (t,e',br')

    | MLfix (i,ids,v) ->
       let env' = List.init (Array.length ids) (fun _ -> ref false) @ env in
       let v' = Array.smartmap (ren env') v in
       if v' == v then a else MLfix (i,ids,v')

    | MLapp (b,l) ->
       let b' = ren env b and l' = List.smartmap (ren env) l in
       if b' == b && l' == l then a else MLapp (b',l')

    | MLcons(t,r,l) ->
       let l' = List.smartmap (ren env) l in
       if l' == l then a else MLcons (t,r,l')

    | MLtuple l ->
       let l' = List.smartmap (ren env) l in
       if l' == l then a else MLtuple l'

    | MLmagic b ->
       let b' = ren env b in
       if b' == b then a else MLmagic b'

    | MLglob _ | MLexn _ | MLdummy _ | MLaxiom -> a

    and ren_branch env ((ids,p,b) as tr) =
      let occs = List.map (fun _ -> ref false) ids in
      let b' = ren (List.rev_append occs env) b in
      let ids' =
        List.map2
          (fun id occ -> if !occ then id else Dummy)
          ids occs
      in
      if b' == b && List.equal eq_ml_ident ids ids' then tr
      else (ids',p,b')
  in
  ren [] a

(*s Lifting on terms.
    [ast_lift k t] lifts the binding depth of [t] across [k] bindings. *)

let ast_lift k t =
  let rec liftrec n = function
    | MLrel i as a -> if i-n < 1 then a else MLrel (i+k)
    | a -> ast_map_lift liftrec n a
  in if Int.equal k 0 then t else liftrec 0 t

let ast_pop t = ast_lift (-1) t

(*s [permut_rels k k' c] translates [Rel 1 ... Rel k] to [Rel (k'+1) ...
  Rel (k'+k)] and [Rel (k+1) ... Rel (k+k')] to [Rel 1 ... Rel k'] *)

let permut_rels k k' =
  let rec permut n = function
    | MLrel i as a ->
        let i' = i-n in
        if i'<1 || i'>k+k' then a
        else if i'<=k then MLrel (i+k')
        else MLrel (i-k)
    | a -> ast_map_lift permut n a
  in permut 0

(*s Substitution. [ml_subst e t] substitutes [e] for [Rel 1] in [t].
    Lifting (of one binder) is done at the same time. *)

let ast_subst e =
  let rec subst n = function
    | MLrel i as a ->
        let i' = i-n in
        if Int.equal i' 1 then ast_lift n e
        else if i'<1 then a
        else MLrel (i-1)
    | a -> ast_map_lift subst n a
  in subst 0

(*s Generalized substitution.
   [gen_subst v d t] applies to [t] the substitution coded in the
   [v] array: [(Rel i)] becomes [v.(i-1)]. [d] is the correction applies
   to [Rel] greater than [Array.length v]. *)

let gen_subst v d t =
  let rec subst n = function
    | MLrel i as a ->
        let i'= i-n in
        if i' < 1 then a
        else if i' <= Array.length v then
          match v.(i'-1) with
            | None -> assert false
            | Some u -> ast_lift n u
        else MLrel (i+d)
    | a -> ast_map_lift subst n a
  in subst 0 t

(*S Operations concerning match patterns *)

let is_basic_pattern = function
  | Prel _ | Pwild -> true
  | Pusual _ | Pcons _ | Ptuple _ -> false

let has_deep_pattern br =
  let deep = function
    | Pcons (_,l) | Ptuple l -> not (List.for_all is_basic_pattern l)
    | Pusual _ | Prel _ | Pwild -> false
  in
  Array.exists (function (_,pat,_) -> deep pat) br

let is_regular_match br =
  if Array.is_empty br then false (* empty match becomes MLexn *)
  else
    try
      let get_r (ids,pat,c) =
        match pat with
          | Pusual r -> r
          | Pcons (r,l) ->
            let is_rel i = function Prel j -> Int.equal i j | _ -> false in
            if not (List.for_all_i is_rel 1 (List.rev l))
            then raise Impossible;
            r
          | _ -> raise Impossible
      in
      let ind = match get_r br.(0) with
        | ConstructRef (ind,_) -> ind
        | _ -> raise Impossible
      in
      let is_ref i tr = match get_r tr with
      | ConstructRef (ind', j) -> eq_ind ind ind' && Int.equal j (i + 1)
      | _ -> false
      in
      Array.for_all_i is_ref 0 br
    with Impossible -> false

(*S Operations concerning lambdas. *)

(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
    [[idn;...;id1]] and the term [t]. *)

let collect_lams =
  let rec collect acc = function
    | MLlam(id,t) -> collect (id::acc) t
    | x           -> acc,x
  in collect []

(*s [collect_n_lams] does the same for a precise number of [MLlam]. *)

let collect_n_lams =
  let rec collect acc n t =
    if Int.equal n 0 then acc,t
    else match t with
      | MLlam(id,t) -> collect (id::acc) (n-1) t
      | _ -> assert false
  in collect []

(*s [remove_n_lams] just removes some [MLlam]. *)

let rec remove_n_lams n t =
  if Int.equal n 0 then t
  else match t with
      | MLlam(_,t) -> remove_n_lams (n-1) t
      | _ -> assert false

(*s [nb_lams] gives the number of head [MLlam]. *)

let rec nb_lams = function
  | MLlam(_,t) -> succ (nb_lams t)
  | _ -> 0

(*s [named_lams] does the converse of [collect_lams]. *)

let rec named_lams ids a = match ids with
  | [] -> a
  | id :: ids -> named_lams ids (MLlam (id,a))

(*s The same for a specific identifier (resp. anonymous, dummy) *)

let rec many_lams id a = function
  | 0 -> a
  | n -> many_lams id (MLlam (id,a)) (pred n)

let anonym_tmp_lams a n = many_lams (Tmp anonymous_name) a n
let dummy_lams a n = many_lams Dummy a n

(*s mixed according to a signature. *)

let rec anonym_or_dummy_lams a = function
  | [] -> a
  | Keep :: s -> MLlam(anonymous, anonym_or_dummy_lams a s)
  | Kill _ :: s -> MLlam(Dummy, anonym_or_dummy_lams a s)

(*S Operations concerning eta. *)

(*s The following function creates [MLrel n;...;MLrel 1] *)

let rec eta_args n =
  if Int.equal n 0 then [] else (MLrel n)::(eta_args (pred n))

(*s Same, but filtered by a signature. *)

let rec eta_args_sign n = function
  | [] -> []
  | Keep :: s -> (MLrel n) :: (eta_args_sign (n-1) s)
  | Kill _ :: s -> eta_args_sign (n-1) s

(*s This one tests [MLrel (n+k); ... ;MLrel (1+k)] *)

let rec test_eta_args_lift k n = function
  | [] -> Int.equal n 0
  | MLrel m :: q -> Int.equal (k+n) m && (test_eta_args_lift k (pred n) q)
  | _ -> false

(*s Computes an eta-reduction. *)

let eta_red e =
  let ids,t = collect_lams e in
  let n = List.length ids in
  if Int.equal n 0 then e
  else match t with
    | MLapp (f,a) ->
        let m = List.length a in
        let ids,body,args =
          if Int.equal m n then
            [], f, a
          else if m < n then
            List.skipn m ids, f, a
          else (* m > n *)
            let a1,a2 = List.chop (m-n) a in
            [], MLapp (f,a1), a2
        in
        let p = List.length args in
        if test_eta_args_lift 0 p args && not (ast_occurs_itvl 1 p body)
        then named_lams ids (ast_lift (-p) body)
        else e
    | _ -> e

(* Performs an eta-reduction when the core is atomic,
   or otherwise returns None *)

let atomic_eta_red e =
  let ids,t = collect_lams e in
  let n = List.length ids in
  match t with
  | MLapp (f,a) when test_eta_args_lift 0 n a ->
     (match f with
      | MLrel k when k>n -> Some (MLrel (k-n))
      | MLglob _ | MLexn _ | MLdummy _ -> Some f
      | _ -> None)
  | _ -> None

(*s Computes all head linear beta-reductions possible in [(t a)].
  Non-linear head beta-redex become let-in. *)

let rec linear_beta_red a t = match a,t with
  | [], _ -> t
  | a0::a, MLlam (id,t) ->
      (match nb_occur_match t with
         | 0 -> linear_beta_red a (ast_pop t)
         | 1 -> linear_beta_red a (ast_subst a0 t)
         | _ ->
             let a = List.map (ast_lift 1) a in
             MLletin (id, a0, linear_beta_red a t))
  | _ -> MLapp (t, a)

let rec tmp_head_lams = function
  | MLlam (id, t) -> MLlam (tmp_id id, tmp_head_lams t)
  | e -> e

(*s Applies a substitution [s] of constants by their body, plus
  linear beta reductions at modified positions.
  Moreover, we mark some lambdas as suitable for later linear
  reduction (this helps the inlining of recursors).
*)

let rec ast_glob_subst s t = match t with
  | MLapp ((MLglob ((ConstRef kn) as refe)) as f, a) ->
      let a = List.map (fun e -> tmp_head_lams (ast_glob_subst s e)) a in
      (try linear_beta_red a (Refmap'.find refe s)
       with Not_found -> MLapp (f, a))
  | MLglob ((ConstRef kn) as refe) ->
      (try Refmap'.find refe s with Not_found -> t)
  | _ -> ast_map (ast_glob_subst s) t


(*S Auxiliary functions used in simplification of ML cases. *)

(* Factorisation of some match branches into a common "x -> f x"
   branch may break types sometimes. Example: [type 'x a = A].
   Then [let id = function A -> A] has type ['x a -> 'y a],
   which is incompatible with the type of [let id x = x].
   We now check that the type arguments of the inductive are
   preserved by our transformation.

   TODO: this verification should be done someday modulo
   expansion of type definitions.
*)

(*s [branch_as_function b typ (l,p,c)] tries to see branch [c]
  as a function [f] applied to [MLcons(r,l)]. For that it transforms
  any [MLcons(r,l)] in [MLrel 1] and raises [Impossible]
  if any variable in [l] occurs outside such a [MLcons] *)

let branch_as_fun typ (l,p,c) =
  let nargs = List.length l in
  let cons = match p with
    | Pusual r -> MLcons (typ, r, eta_args nargs)
    | Pcons (r,pl) ->
      let pat2rel = function Prel i -> MLrel i | _ -> raise Impossible in
      MLcons (typ, r, List.map pat2rel pl)
    | _ -> raise Impossible
  in
  let rec genrec n = function
    | MLrel i as c ->
        let i' = i-n in
        if i'<1 then c
        else if i'>nargs then MLrel (i-nargs+1)
        else raise Impossible
    | MLcons _ as cons' when eq_ml_ast cons' (ast_lift n cons) -> MLrel (n+1)
    | a -> ast_map_lift genrec n a
  in genrec 0 c

(*s [branch_as_cst (l,p,c)] tries to see branch [c] as a constant
   independent from the pattern [MLcons(r,l)]. For that is raises [Impossible]
   if any variable in [l] occurs in [c], and otherwise returns [c] lifted to
   appear like a function with one arg (for uniformity with [branch_as_fun]).
   NB: [MLcons(r,l)] might occur nonetheless in [c], but only when [l] is
   empty, i.e. when [r] is a constant constructor
*)

let branch_as_cst (l,_,c) =
  let n = List.length l in
  if ast_occurs_itvl 1 n c then raise Impossible;
  ast_lift (1-n) c

(* A branch [MLcons(r,l)->c] can be seen at the same time as a function
   branch and a constant branch, either because:
   - [MLcons(r,l)] doesn't occur in [c]. For example : "A -> B"
   - this constructor is constant (i.e. [l] is empty). For example "A -> A"
   When searching for the best factorisation below, we'll try both.
*)

(* The following structure allows recording which element occurred
   at what position, and then finally return the most frequent
   element and its positions. *)

let census_add, census_max, census_clean =
  let h = ref [] in
  let clearf () = h := [] in
  let rec add k v = function
  | [] -> raise Not_found
  | (k', s) as p :: l ->
    if eq_ml_ast k k' then (k', Int.Set.add v s) :: l
    else p :: add k v l
  in
  let addf k i =
    try h := add k i !h
    with Not_found -> h := (k, Int.Set.singleton i) :: !h
  in
  let maxf () =
    let len = ref 0 and lst = ref Int.Set.empty and elm = ref MLaxiom in
    List.iter
      (fun (e, s) ->
         let n = Int.Set.cardinal s in
         if n > !len then begin len := n; lst := s; elm := e end)
      !h;
    (!elm,!lst)
  in
  (addf,maxf,clearf)

(* [factor_branches] return the longest possible list of branches
   that have the same factorization, either as a function or as a
   constant.
*)

let is_opt_pat (_,p,_) = match p with
  | Prel _ | Pwild -> true
  | _ -> false

let factor_branches o typ br =
  if Array.exists is_opt_pat br then None (* already optimized *)
  else begin
    census_clean ();
    for i = 0 to Array.length br - 1 do
      if o.opt_case_idr then
        (try census_add (branch_as_fun typ br.(i)) i with Impossible -> ());
      if o.opt_case_cst then
        (try census_add (branch_as_cst br.(i)) i with Impossible -> ());
    done;
    let br_factor, br_set = census_max () in
    census_clean ();
    let n = Int.Set.cardinal br_set in
    if Int.equal n 0 then None
    else if Array.length br >= 2 && n < 2 then None
    else Some (br_factor, br_set)
  end

(*s If all branches are functions, try to permute the case and the functions. *)

let rec merge_ids ids ids' = match ids,ids' with
  | [],l -> l
  | l,[] -> l
  | i::ids, i'::ids' ->
      (if i == Dummy then i' else i) :: (merge_ids ids ids')

let is_exn = function MLexn _ -> true | _ -> false

let permut_case_fun br acc =
  let nb = ref max_int in
  Array.iter (fun (_,_,t) ->
                let ids, c = collect_lams t in
                let n = List.length ids in
                if (n < !nb) && (not (is_exn c)) then nb := n) br;
  if Int.equal !nb  max_int || Int.equal !nb 0 then ([],br)
  else begin
    let br = Array.copy br in
    let ids = ref [] in
    for i = 0 to Array.length br - 1 do
      let (l,p,t) = br.(i) in
      let local_nb = nb_lams t in
      if local_nb < !nb then (* t = MLexn ... *)
        br.(i) <- (l,p,remove_n_lams local_nb t)
      else begin
        let local_ids,t = collect_n_lams !nb t in
        ids := merge_ids !ids local_ids;
        br.(i) <- (l,p,permut_rels !nb (List.length l) t)
      end
    done;
    (!ids,br)
  end

(*S Generalized iota-reduction. *)

(* Definition of a generalized iota-redex: it's a [MLcase(e,br)]
   where the head [e] is a [MLcons] or made of [MLcase]'s with
   [MLcons] as leaf branches.
   A generalized iota-redex is transformed into beta-redexes. *)

(* In [iota_red], we try to simplify a [MLcase(_,MLcons(typ,r,a),br)].
   Argument [i] is the branch we consider, we should lift what
   comes from [br] by [lift] *)

let rec iota_red i lift br ((typ,r,a) as cons) =
  if i >= Array.length br then raise Impossible;
  let (ids,p,c) = br.(i) in
  match p with
    | Pusual r' | Pcons (r',_) when not (Globnames.eq_gr r' r) -> iota_red (i+1) lift br cons
    | Pusual r' ->
      let c = named_lams (List.rev ids) c in
      let c = ast_lift lift c
      in MLapp (c,a)
    | Prel 1 when Int.equal (List.length ids) 1 ->
      let c = MLlam (List.hd ids, c) in
      let c = ast_lift lift c
      in MLapp(c,[MLcons(typ,r,a)])
    | Pwild when List.is_empty ids -> ast_lift lift c
    | _ -> raise Impossible (* TODO: handle some more cases *)

(* [iota_gen] is an extension of [iota_red] where we allow to
   traverse matches in the head of the first match *)

let iota_gen br hd =
  let rec iota k = function
    | MLcons (typ,r,a) -> iota_red 0 k br (typ,r,a)
    | MLcase(typ,e,br') ->
        let new_br =
          Array.map (fun (i,p,c)->(i,p,iota (k+(List.length i)) c)) br'
        in MLcase(typ,e,new_br)
    | _ -> raise Impossible
  in iota 0 hd

let is_atomic = function
  | MLrel _ | MLglob _ | MLexn _ | MLdummy _ -> true
  | _ -> false

let is_imm_apply = function MLapp (MLrel 1, _) -> true | _ -> false

(** Program creates a let-in named "program_branch_NN" for each branch of match.
    Unfolding them leads to more natural code (and more dummy removal) *)

let is_program_branch = function
  | Tmp _ | Dummy -> false
  | Id id ->
    let s = Id.to_string id in
    try Scanf.sscanf s "program_branch_%d%!" (fun _ -> true)
    with Scanf.Scan_failure _ | End_of_file -> false

let expand_linear_let o id e =
   o.opt_lin_let || is_tmp id || is_program_branch id || is_imm_apply e

(*S The main simplification function. *)

(* Some beta-iota reductions + simplifications. *)

let rec unmagic = function MLmagic e -> unmagic e | e -> e
let is_magic = function MLmagic _ -> true | _ -> false
let magic_hd a = match a with
  | MLmagic _ :: _ -> a
  | e :: a -> MLmagic e :: a
  | [] -> assert false

let rec simpl o = function
  | MLapp (f, []) -> simpl o f
  | MLapp (MLapp(f,a),a') -> simpl o (MLapp(f,a@a'))
  | MLapp (f, a) ->
     (* When the head of the application is magic, no need for magic on args *)
     let a = if is_magic f then List.map unmagic a else a in
     simpl_app o (List.map (simpl o) a) (simpl o f)
  | MLcase (typ,e,br) ->
      let br = Array.map (fun (l,p,t) -> (l,p,simpl o t)) br in
      simpl_case o typ br (simpl o e)
  | MLletin(Dummy,_,e) -> simpl o (ast_pop e)
  | MLletin(id,c,e) ->
      let e = simpl o e in
      if
        (is_atomic c) || (is_atomic e) ||
        (let n = nb_occur_match e in
         (Int.equal n 0 || (Int.equal n 1 && expand_linear_let o id e)))
      then
        simpl o (ast_subst c e)
      else
        MLletin(id, simpl o c, e)
  | MLfix(i,ids,c) ->
      let n = Array.length ids in
      if ast_occurs_itvl 1 n c.(i) then
        MLfix (i, ids, Array.map (simpl o) c)
      else simpl o (ast_lift (-n) c.(i)) (* Dummy fixpoint *)
  | MLmagic(MLmagic _ as e) -> simpl o e
  | MLmagic(MLapp (f,l)) -> simpl o (MLapp (MLmagic f, l))
  | MLmagic(MLletin(id,c,e)) -> simpl o (MLletin(id,c,MLmagic e))
  | MLmagic(MLcase(typ,e,br)) ->
     let br' = Array.map (fun (ids,p,c) -> (ids,p,MLmagic c)) br in
     simpl o (MLcase(typ,e,br'))
  | MLmagic(MLdummy _ as e) when lang () == Haskell -> e
  | MLmagic(MLexn _ as e) -> e
  | MLlam _ as e ->
     (match atomic_eta_red e with
      | Some e' -> e'
      | None -> ast_map (simpl o) e)
  | a -> ast_map (simpl o) a

(* invariant : list [a] of arguments is non-empty *)

and simpl_app o a = function
  | MLlam (Dummy,t) ->
      simpl o (MLapp (ast_pop t, List.tl a))
  | MLlam (id,t) -> (* Beta redex *)
      (match nb_occur_match t with
         | 0 -> simpl o (MLapp (ast_pop t, List.tl a))
         | 1 when (is_tmp id || o.opt_lin_beta) ->
             simpl o (MLapp (ast_subst (List.hd a) t, List.tl a))
         | _ ->
             let a' = List.map (ast_lift 1) (List.tl a) in
             simpl o (MLletin (id, List.hd a, MLapp (t, a'))))
  | MLmagic (MLlam (id,t)) ->
      (* When we've at least one argument, we permute the magic
         and the lambda, to simplify things a bit (see #2795).
         Alas, the 1st argument must also be magic then. *)
      simpl_app o (magic_hd a) (MLlam (id,MLmagic t))
  | MLletin (id,e1,e2) when o.opt_let_app ->
      (* Application of a letin: we push arguments inside *)
      MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
  | MLcase (typ,e,br) when o.opt_case_app ->
      (* Application of a case: we push arguments inside *)
      let br' =
        Array.map
          (fun (l,p,t) ->
             let k = List.length l in
             let a' = List.map (ast_lift k) a in
             (l, p, simpl o (MLapp (t,a')))) br
      in simpl o (MLcase (typ,e,br'))
  | (MLdummy _ | MLexn _) as e -> e
        (* We just discard arguments in those cases. *)
  | f -> MLapp (f,a)

(* Invariant : all empty matches should now be [MLexn] *)

and simpl_case o typ br e =
  try
    (* Generalized iota-redex *)
    if not o.opt_case_iot then raise Impossible;
    simpl o (iota_gen br e)
  with Impossible ->
    (* Swap the case and the lam if possible *)
    let ids,br = if o.opt_case_fun then permut_case_fun br [] else [],br in
    let n = List.length ids in
    if not (Int.equal n 0) then
      simpl o (named_lams ids (MLcase (typ, ast_lift n e, br)))
    else
      (* Can we merge several branches as the same constant or function ? *)
      if lang() == Scheme || is_custom_match br
      then MLcase (typ, e, br)
      else match factor_branches o typ br with
        | Some (f,ints) when Int.equal (Int.Set.cardinal ints) (Array.length br) ->
          (* If all branches have been factorized, we remove the match *)
          simpl o (MLletin (Tmp anonymous_name, e, f))
        | Some (f,ints) ->
          let last_br =
            if ast_occurs 1 f then ([Tmp anonymous_name], Prel 1, f)
            else ([], Pwild, ast_pop f)
          in
          let brl = Array.to_list br in
          let brl_opt = List.filteri (fun i _ -> not (Int.Set.mem i ints)) brl in
          let brl_opt = brl_opt @ [last_br] in
          MLcase (typ, e, Array.of_list brl_opt)
        | None -> MLcase (typ, e, br)

(*S Local prop elimination. *)
(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)

(*s In a list, it selects only the elements corresponding to a [Keep]
   in the boolean list [l]. *)

let rec select_via_bl l args = match l,args with
  | [],_ -> args
  | Keep::l,a::args -> a :: (select_via_bl l args)
  | Kill _::l,a::args -> select_via_bl l args
  | _ -> assert false

(*s [kill_some_lams] removes some head lambdas according to the signature [bl].
   This list is build on the identifier list model: outermost lambda
   is on the right.
   [Rels] corresponding to removed lambdas are not supposed to occur
   (except maybe in the case of Kimplicit), and
   the other [Rels] are made correct via a [gen_subst].
   Output is not directly a [ml_ast], compose with [named_lams] if needed. *)

let is_impl_kill = function Kill (Kimplicit _) -> true | _ -> false

let kill_some_lams bl (ids,c) =
  let n = List.length bl in
  let n' = List.fold_left (fun n b -> if b == Keep then (n+1) else n) 0 bl in
  if Int.equal n n' then ids,c
  else if Int.equal n' 0 && not (List.exists is_impl_kill bl)
  then [],ast_lift (-n) c
  else begin
    let v = Array.make n None in
    let rec parse_ids i j = function
      | [] -> ()
      | Keep :: l -> v.(i) <- Some (MLrel j); parse_ids (i+1) (j+1) l
      | Kill (Kimplicit _ as k) :: l ->
         v.(i) <- Some (MLdummy k); parse_ids (i+1) j l
      | Kill _ :: l -> parse_ids (i+1) j l
    in parse_ids 0 1 bl;
    select_via_bl bl ids, gen_subst v (n'-n) c
  end

(*s [kill_dummy_lams] uses the last function to kill the lambdas corresponding
  to a [dummy_name]. It can raise [Impossible] if there is nothing to do, or
  if there is no lambda left at all. In addition, it now accepts a signature
  that may mention some implicits. *)

let rec merge_implicits ids s = match ids, s with
  | [],_ -> []
  | _,[] -> List.map sign_of_id ids
  | Dummy::ids, _::s -> Kill Kprop :: merge_implicits ids s
  | _::ids, (Kill (Kimplicit _) as k)::s -> k :: merge_implicits ids s
  | _::ids, _::s -> Keep :: merge_implicits ids s

let kill_dummy_lams sign c =
  let ids,c = collect_lams c in
  let bl = merge_implicits ids (List.rev sign) in
  if not (List.memq Keep bl) then raise Impossible;
  let rec fst_kill n = function
    | [] -> raise Impossible
    | Kill _ :: bl -> n
    | Keep :: bl -> fst_kill (n+1) bl
  in
  let skip = max 0 ((fst_kill 0 bl) - 1) in
  let ids_skip, ids = List.chop skip ids in
  let _, bl = List.chop skip bl in
  let c = named_lams ids_skip c in
  let ids',c = kill_some_lams bl (ids,c) in
  (ids,bl), named_lams ids' c

(*s [eta_expansion_sign] takes a function [fun idn ... id1 -> c]
   and a signature [s] and builds a eta-long version. *)

(* For example, if [s = [Keep;Keep;Kill Prop;Keep]] then the output is :
   [fun idn ... id1 x x _ x -> (c' 4 3 __ 1)]  with [c' = lift 4 c] *)

let eta_expansion_sign s (ids,c) =
  let rec abs ids rels i = function
    | [] ->
        let a = List.rev_map (function MLrel x -> MLrel (i-x) | a -> a) rels
        in ids, MLapp (ast_lift (i-1) c, a)
    | Keep :: l -> abs (anonymous :: ids) (MLrel i :: rels) (i+1) l
    | Kill k :: l -> abs (Dummy :: ids) (MLdummy k :: rels) (i+1) l
  in abs ids [] 1 s

(*s If [s = [b1; ... ; bn]] then [case_expunge] decomposes [e]
  in [n] lambdas (with eta-expansion if needed) and removes all dummy lambdas
  corresponding to [Kill _] in [s]. *)

let case_expunge s e =
  let m = List.length s in
  let n = nb_lams e in
  let p = if m <= n then collect_n_lams m e
  else eta_expansion_sign (List.skipn n s) (collect_lams e) in
  kill_some_lams (List.rev s) p

(*s [term_expunge] takes a function [fun idn ... id1 -> c]
  and a signature [s] and remove dummy lams. The difference
  with [case_expunge] is that we here leave one dummy lambda
  if all lambdas are logical dummy and the target language is strict. *)

let term_expunge s (ids,c) =
  if List.is_empty s then c
  else
    let ids,c = kill_some_lams (List.rev s) (ids,c) in
    if List.is_empty ids && lang () != Haskell &&
       sign_kind s == UnsafeLogicalSig
    then MLlam (Dummy, ast_lift 1 c)
    else named_lams ids c

(*s [kill_dummy_args (ids,bl) r t] looks for occurrences of [MLrel r] in [t]
  and purge the args of [MLrel r] corresponding to a [Kill] in [bl].
  It makes eta-expansion if needed. *)

let kill_dummy_args (ids,bl) r t =
  let m = List.length ids in
  let sign = List.rev bl in
  let rec found n = function
    | MLrel r' when Int.equal r' (r + n) -> true
    | MLmagic e -> found n e
    | _ -> false
  in
  let rec killrec n = function
    | MLapp(e, a) when found n e ->
        let k = max 0 (m - (List.length a)) in
        let a = List.map (killrec n) a in
        let a = List.map (ast_lift k) a in
        let a = select_via_bl sign (a @ (eta_args k)) in
        named_lams (List.firstn k ids) (MLapp (ast_lift k e, a))
    | e when found n e ->
        let a = select_via_bl sign (eta_args m) in
        named_lams ids (MLapp (ast_lift m e, a))
    | e -> ast_map_lift killrec n e
  in killrec 0 t

(*s The main function for local [dummy] elimination. *)

let sign_of_args a =
 List.map (function MLdummy k -> Kill k | _ -> Keep) a

let rec kill_dummy = function
  | MLfix(i,fi,c) ->
      (try
         let k,c = kill_dummy_fix i c [] in
         ast_subst (MLfix (i,fi,c)) (kill_dummy_args k 1 (MLrel 1))
       with Impossible -> MLfix (i,fi,Array.map kill_dummy c))
  | MLapp (MLfix (i,fi,c),a) ->
      let a = List.map kill_dummy a in
      (* Heuristics: if some arguments are implicit args, we try to
         eliminate the corresponding arguments of the fixpoint *)
      (try
         let k,c = kill_dummy_fix i c (sign_of_args a) in
         let fake = MLapp (MLrel 1, List.map (ast_lift 1) a) in
         let fake' = kill_dummy_args k 1 fake in
         ast_subst (MLfix (i,fi,c)) fake'
       with Impossible -> MLapp(MLfix(i,fi,Array.map kill_dummy c),a))
  | MLletin(id, MLfix (i,fi,c),e) ->
      (try
         let k,c = kill_dummy_fix i c [] in
         let e = kill_dummy (kill_dummy_args k 1 e) in
         MLletin(id, MLfix(i,fi,c),e)
      with Impossible ->
        MLletin(id, MLfix(i,fi,Array.map kill_dummy c),kill_dummy e))
  | MLletin(id,c,e) ->
      (try
         let k,c = kill_dummy_lams [] (kill_dummy_hd c) in
         let e = kill_dummy (kill_dummy_args k 1 e) in
         let c = kill_dummy c in
         if is_atomic c then ast_subst c e else MLletin (id, c, e)
       with Impossible -> MLletin(id,kill_dummy c,kill_dummy e))
  | a -> ast_map kill_dummy a

(* Similar function, but acting only on head lambdas and let-ins *)

and kill_dummy_hd = function
  | MLlam(id,e) -> MLlam(id, kill_dummy_hd e)
  | MLletin(id,c,e) ->
      (try
         let k,c = kill_dummy_lams [] (kill_dummy_hd c) in
         let e = kill_dummy_hd (kill_dummy_args k 1 e) in
         let c = kill_dummy c in
         if is_atomic c then ast_subst c e else MLletin (id, c, e)
       with Impossible -> MLletin(id,kill_dummy c,kill_dummy_hd e))
  | a -> a

and kill_dummy_fix i c s =
  let n = Array.length c in
  let k,ci = kill_dummy_lams s (kill_dummy_hd c.(i)) in
  let c = Array.copy c in c.(i) <- ci;
  for j = 0 to (n-1) do
    c.(j) <- kill_dummy (kill_dummy_args k (n-i) c.(j))
  done;
  k,c

(*s Putting things together. *)

let normalize a =
  let o = optims () in
  let rec norm a =
    let a' = if o.opt_kill_dum then kill_dummy (simpl o a) else simpl o a in
    if eq_ml_ast a a' then a else norm a'
  in norm a

(*S Special treatment of fixpoint for pretty-printing purpose. *)

let general_optimize_fix f ids n args m c =
  let v = Array.make n 0 in
  for i=0 to (n-1) do v.(i)<-i done;
  let aux i = function
    | MLrel j when v.(j-1)>=0 ->
        if ast_occurs (j+1) c then raise Impossible else v.(j-1)<-(-i-1)
    | _ -> raise Impossible
  in List.iteri aux args;
  let args_f = List.rev_map (fun i -> MLrel (i+m+1)) (Array.to_list v) in
  let new_f = anonym_tmp_lams (MLapp (MLrel (n+m+1),args_f)) m in
  let new_c = named_lams ids (normalize (MLapp ((ast_subst new_f c),args))) in
  MLfix(0,[|f|],[|new_c|])

let optimize_fix a =
  if not (optims()).opt_fix_fun then a
  else
    let ids,a' = collect_lams a in
    let n = List.length ids in
    if Int.equal n 0 then a
    else match a' with
      | MLfix(_,[|f|],[|c|]) ->
          let new_f = MLapp (MLrel (n+1),eta_args n) in
          let new_c = named_lams ids (normalize (ast_subst new_f c))
          in MLfix(0,[|f|],[|new_c|])
      | MLapp(a',args) ->
          let m = List.length args in
          (match a' with
             | MLfix(_,_,_) when
                 (test_eta_args_lift 0 n args) && not (ast_occurs_itvl 1 m a')
                 -> a'
             | MLfix(_,[|f|],[|c|]) ->
                 (try general_optimize_fix f ids n args m c
                  with Impossible -> a)
             | _ -> a)
      | _ -> a

(*S Inlining. *)

(* Utility functions used in the decision of inlining. *)

let ml_size_branch size pv = Array.fold_left (fun a (_,_,t) -> a + size t) 0 pv

let rec ml_size = function
  | MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
  | MLlam(_,t) -> 1 + ml_size t
  | MLcons(_,_,l) | MLtuple l -> ml_size_list l
  | MLcase(_,t,pv) -> 1 + ml_size t + ml_size_branch ml_size pv
  | MLfix(_,_,f) -> ml_size_array f
  | MLletin (_,_,t) -> ml_size t
  | MLmagic t -> ml_size t
  | MLglob _ | MLrel _ | MLexn _ | MLdummy _ | MLaxiom -> 0

and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l

and ml_size_array a = Array.fold_left (fun a t -> a + ml_size t) 0 a

let is_fix = function MLfix _ -> true | _ -> false

(*s Strictness *)

(* A variable is strict if the evaluation of the whole term implies
   the evaluation of this variable. Non-strict variables can be found
   behind Match, for example. Expanding a term [t] is a good idea when
   it begins by at least one non-strict lambda, since the corresponding
   argument to [t] might be unevaluated in the expanded code. *)

exception Toplevel

let lift n l = List.map ((+) n) l

let pop n l = List.map (fun x -> if x<=n then raise Toplevel else x-n) l

(* This function returns a list of de Bruijn indices of non-strict variables,
   or raises [Toplevel] if it has an internal non-strict variable.
   In fact, not all variables are checked for strictness, only the ones which
   de Bruijn index is in the candidates list [cand]. The flag [add] controls
   the behaviour when going through a lambda: should we add the corresponding
   variable to the candidates?  We use this flag to check only the external
   lambdas, those that will correspond to arguments. *)

let rec non_stricts add cand = function
  | MLlam (id,t) ->
      let cand = lift 1 cand in
      let cand = if add then 1::cand else cand in
      pop 1 (non_stricts add cand t)
  | MLrel n ->
      List.filter (fun m -> not (Int.equal m n)) cand
  | MLapp (t,l)->
      let cand = non_stricts false cand t in
      List.fold_left (non_stricts false) cand l
  | MLcons (_,_,l) ->
      List.fold_left (non_stricts false) cand l
  | MLletin (_,t1,t2) ->
      let cand = non_stricts false cand t1 in
      pop 1 (non_stricts add (lift 1 cand) t2)
  | MLfix (_,i,f)->
      let n = Array.length i in
      let cand = lift n cand in
      let cand = Array.fold_left (non_stricts false) cand f in
      pop n cand
  | MLcase (_,t,v) ->
      (* The only interesting case: for a variable to be non-strict, *)
      (* it is sufficient that it appears non-strict in at least one branch, *)
      (* so we make an union (in fact a merge). *)
      let cand = non_stricts false cand t in
      Array.fold_left
        (fun c (i,_,t)->
           let n = List.length i in
           let cand = lift n cand in
           let cand = pop n (non_stricts add cand t) in
           List.merge Int.compare cand c) [] v
        (* [merge] may duplicates some indices, but I don't mind. *)
  | MLmagic t ->
      non_stricts add cand t
  | _ ->
      cand

(* The real test: we are looking for internal non-strict variables, so we start
   with no candidates, and the only positive answer is via the [Toplevel]
   exception. *)

let is_not_strict t =
  try let _ = non_stricts true [] t in false
  with Toplevel -> true

(*s Inlining decision *)

(* [inline_test] answers the following question:
   If we could inline [t] (the user said nothing special),
   should we inline ?

   We expand small terms with at least one non-strict
   variable (i.e. a variable that may not be evaluated).

   Furthermore we don't expand fixpoints.

   Moreover, as mentioned by X. Leroy (bug #2241),
   inlining a constant from inside an opaque module might
   break types. To avoid that, we require below that
   both [r] and its body are globally visible. This isn't
   fully satisfactory, since [r] might not be visible (functor),
   and anyway it might be interesting to inline [r] at least
   inside its own structure. But to be safe, we adopt this
   restriction for the moment.
*)

open Declareops

let inline_test r t =
  if not (auto_inline ()) then false
  else
    let c = match r with ConstRef c -> c | _ -> assert false in
    let has_body =
      try constant_has_body (Global.lookup_constant c)
      with Not_found -> false
    in
    has_body &&
      (let t1 = eta_red t in
       let t2 = snd (collect_lams t1) in
       not (is_fix t2) && ml_size t < 12 && is_not_strict t)

let con_of_string s =
  let d, id = Libnames.split_dirpath (dirpath_of_string s) in
  Constant.make2 (ModPath.MPfile d) (Label.of_id id)

let manual_inline_set =
  List.fold_right (fun x -> Cset_env.add (con_of_string x))
    [ "Coq.Init.Wf.well_founded_induction_type";
      "Coq.Init.Wf.well_founded_induction";
      "Coq.Init.Wf.Acc_iter";
      "Coq.Init.Wf.Fix_F";
      "Coq.Init.Wf.Fix";
      "Coq.Init.Datatypes.andb";
      "Coq.Init.Datatypes.orb";
      "Coq.Init.Logic.eq_rec_r";
      "Coq.Init.Logic.eq_rect_r";
      "Coq.Init.Specif.proj1_sig";
    ]
    Cset_env.empty

let manual_inline = function
  | ConstRef c -> Cset_env.mem c manual_inline_set
  | _ -> false

(* If the user doesn't say he wants to keep [t], we inline in two cases:
   \begin{itemize}
   \item the user explicitly requests it
   \item [expansion_test] answers that the inlining is a good idea, and
   we are free to act (AutoInline is set)
   \end{itemize} *)

let inline r t =
  not (to_keep r) (* The user DOES want to keep it *)
  && not (is_inline_custom r)
  && (to_inline r (* The user DOES want to inline it *)
     || (lang () != Haskell && not (is_projection r) &&
         (is_recursor r || manual_inline r || inline_test r t)))