1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Util open Term open EConstr open Names open Pattern open Globnames (* Discrimination nets with bounded depth. See the module dn.ml for further explanations. Eduardo (5/8/97). *) let dnet_depth = ref 8 type term_label = | GRLabel of global_reference | ProdLabel | LambdaLabel | SortLabel let compare_term_label t1 t2 = match t1, t2 with | GRLabel gr1, GRLabel gr2 -> RefOrdered.compare gr1 gr2 | _ -> Pervasives.compare t1 t2 (** OK *) type 'res lookup_res = 'res Dn.lookup_res = Label of 'res | Nothing | Everything let decomp_pat = let rec decrec acc = function | PApp (f,args) -> decrec (Array.to_list args @ acc) f | PProj (p, c) -> (PRef (ConstRef (Projection.constant p)), c :: acc) | c -> (c,acc) in decrec [] let decomp sigma t = let rec decrec acc c = match EConstr.kind sigma c with | App (f,l) -> decrec (Array.fold_right (fun a l -> a::l) l acc) f | Proj (p, c) -> (mkConst (Projection.constant p), c :: acc) | Cast (c1,_,_) -> decrec acc c1 | _ -> (c,acc) in decrec [] t let constr_val_discr sigma t = let c, l = decomp sigma t in match EConstr.kind sigma c with | Ind (ind_sp,u) -> Label(GRLabel (IndRef ind_sp),l) | Construct (cstr_sp,u) -> Label(GRLabel (ConstructRef cstr_sp),l) | Var id -> Label(GRLabel (VarRef id),l) | Const _ -> Everything | _ -> Nothing let constr_pat_discr t = if not (Patternops.occur_meta_pattern t) then None else match decomp_pat t with | PRef ((IndRef _) as ref), args | PRef ((ConstructRef _ ) as ref), args -> Some (GRLabel ref,args) | PRef ((VarRef v) as ref), args -> Some(GRLabel ref,args) | _ -> None let constr_val_discr_st sigma (idpred,cpred) t = let c, l = decomp sigma t in match EConstr.kind sigma c with | Const (c,u) -> if Cpred.mem c cpred then Everything else Label(GRLabel (ConstRef c),l) | Ind (ind_sp,u) -> Label(GRLabel (IndRef ind_sp),l) | Construct (cstr_sp,u) -> Label(GRLabel (ConstructRef cstr_sp),l) | Var id when not (Id.Pred.mem id idpred) -> Label(GRLabel (VarRef id),l) | Prod (n, d, c) -> Label(ProdLabel, [d; c]) | Lambda (n, d, c) -> if List.is_empty l then Label(LambdaLabel, [d; c] @ l) else Everything | Sort _ -> Label(SortLabel, []) | Evar _ -> Everything | _ -> Nothing let constr_pat_discr_st (idpred,cpred) t = match decomp_pat t with | PRef ((IndRef _) as ref), args | PRef ((ConstructRef _ ) as ref), args -> Some (GRLabel ref,args) | PRef ((VarRef v) as ref), args when not (Id.Pred.mem v idpred) -> Some(GRLabel ref,args) | PVar v, args when not (Id.Pred.mem v idpred) -> Some(GRLabel (VarRef v),args) | PRef ((ConstRef c) as ref), args when not (Cpred.mem c cpred) -> Some (GRLabel ref, args) | PProd (_, d, c), [] -> Some (ProdLabel, [d ; c]) | PLambda (_, d, c), [] -> Some (LambdaLabel, [d ; c]) | PSort s, [] -> Some (SortLabel, []) | _ -> None let bounded_constr_pat_discr_st st (t,depth) = if Int.equal depth 0 then None else match constr_pat_discr_st st t with | None -> None | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l) let bounded_constr_val_discr_st sigma st (t,depth) = if Int.equal depth 0 then Nothing else match constr_val_discr_st sigma st t with | Label (c,l) -> Label(c,List.map (fun c -> (c,depth-1)) l) | Nothing -> Nothing | Everything -> Everything let bounded_constr_pat_discr (t,depth) = if Int.equal depth 0 then None else match constr_pat_discr t with | None -> None | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l) let bounded_constr_val_discr sigma (t,depth) = if Int.equal depth 0 then Nothing else match constr_val_discr sigma t with | Label (c,l) -> Label(c,List.map (fun c -> (c,depth-1)) l) | Nothing -> Nothing | Everything -> Everything module Make = functor (Z : Map.OrderedType) -> struct module Y = struct type t = term_label let compare = compare_term_label end module Dn = Dn.Make(Y)(Z) type t = Dn.t let empty = Dn.empty let add = function | None -> (fun dn (c,v) -> Dn.add dn bounded_constr_pat_discr ((c,!dnet_depth),v)) | Some st -> (fun dn (c,v) -> Dn.add dn (bounded_constr_pat_discr_st st) ((c,!dnet_depth),v)) let rmv = function | None -> (fun dn (c,v) -> Dn.rmv dn bounded_constr_pat_discr ((c,!dnet_depth),v)) | Some st -> (fun dn (c,v) -> Dn.rmv dn (bounded_constr_pat_discr_st st) ((c,!dnet_depth),v)) let lookup sigma = function | None -> (fun dn t -> Dn.lookup dn (bounded_constr_val_discr sigma) (t,!dnet_depth)) | Some st -> (fun dn t -> Dn.lookup dn (bounded_constr_val_discr_st sigma st) (t,!dnet_depth)) let app f dn = Dn.app f dn end