1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open CErrors open Util open Pp open Names open Libnames open Globnames open Nametab let coq = Libnames.coq_string (* "Coq" *) (************************************************************************) (* Generic functions to find Coq objects *) type message = string let make_dir l = DirPath.make (List.rev_map Id.of_string l) let find_reference locstr dir s = let dp = make_dir dir in let sp = Libnames.make_path dp (Id.of_string s) in try Nametab.global_of_path sp with Not_found -> (* Following bug 5066 we are more permissive with the handling of not found errors here *) user_err ~hdr:locstr Pp.(str "cannot find " ++ Libnames.pr_path sp ++ str "; maybe library " ++ DirPath.print dp ++ str " has to be required first.") let coq_reference locstr dir s = find_reference locstr (coq::dir) s let has_suffix_in_dirs dirs ref = let dir = dirpath (path_of_global ref) in List.exists (fun d -> is_dirpath_prefix_of d dir) dirs let gen_reference_in_modules locstr dirs s = let dirs = List.map make_dir dirs in let qualid = qualid_of_string s in let all = Nametab.locate_all qualid in let all = List.sort_uniquize RefOrdered_env.compare all in let these = List.filter (has_suffix_in_dirs dirs) all in match these with | [x] -> x | [] -> anomaly ~label:locstr (str "cannot find " ++ str s ++ str " in module" ++ str (if List.length dirs > 1 then "s " else " ") ++ prlist_with_sep pr_comma DirPath.print dirs ++ str ".") | l -> anomaly ~label:locstr (str "ambiguous name " ++ str s ++ str " can represent " ++ prlist_with_sep pr_comma (fun x -> Libnames.pr_path (Nametab.path_of_global x)) l ++ str " in module" ++ str (if List.length dirs > 1 then "s " else " ") ++ prlist_with_sep pr_comma DirPath.print dirs ++ str ".") (* For tactics/commands requiring vernacular libraries *) let check_required_library d = let dir = make_dir d in if Library.library_is_loaded dir then () else let in_current_dir = match Lib.current_mp () with | MPfile dp -> DirPath.equal dir dp | _ -> false in if not in_current_dir then (* Loading silently ... let m, prefix = List.sep_last d' in read_library (Loc.ghost,make_qualid (DirPath.make (List.rev prefix)) m) *) (* or failing ...*) user_err ~hdr:"Coqlib.check_required_library" (str "Library " ++ DirPath.print dir ++ str " has to be required first.") (************************************************************************) (* Specific Coq objects *) let init_reference dir s = let d = coq::"Init"::dir in check_required_library d; find_reference "Coqlib" d s let logic_reference dir s = let d = coq::"Logic"::dir in check_required_library d; find_reference "Coqlib" d s let arith_dir = [coq;"Arith"] let arith_modules = [arith_dir] let numbers_dir = [coq;"Numbers"] let parith_dir = [coq;"PArith"] let narith_dir = [coq;"NArith"] let zarith_dir = [coq;"ZArith"] let zarith_base_modules = [numbers_dir;parith_dir;narith_dir;zarith_dir] let init_dir = [coq;"Init"] let init_modules = [ init_dir@["Datatypes"]; init_dir@["Logic"]; init_dir@["Specif"]; init_dir@["Logic_Type"]; init_dir@["Nat"]; init_dir@["Peano"]; init_dir@["Wf"] ] let prelude_module_name = init_dir@["Prelude"] let prelude_module = make_dir prelude_module_name let logic_module_name = init_dir@["Logic"] let logic_module = make_dir logic_module_name let logic_type_module_name = init_dir@["Logic_Type"] let logic_type_module = make_dir logic_type_module_name let datatypes_module_name = init_dir@["Datatypes"] let datatypes_module = make_dir datatypes_module_name let jmeq_module_name = [coq;"Logic";"JMeq"] let jmeq_module = make_dir jmeq_module_name (* TODO: temporary hack. Works only if the module isn't an alias *) let make_ind dir id = Globnames.encode_mind dir (Id.of_string id) let make_con dir id = Globnames.encode_con dir (Id.of_string id) (** Identity *) let id = make_con datatypes_module "idProp" let type_of_id = make_con datatypes_module "IDProp" (** Natural numbers *) let nat_kn = make_ind datatypes_module "nat" let nat_path = Libnames.make_path datatypes_module (Id.of_string "nat") let glob_nat = IndRef (nat_kn,0) let path_of_O = ((nat_kn,0),1) let path_of_S = ((nat_kn,0),2) let glob_O = ConstructRef path_of_O let glob_S = ConstructRef path_of_S (** Booleans *) let bool_kn = make_ind datatypes_module "bool" let glob_bool = IndRef (bool_kn,0) let path_of_true = ((bool_kn,0),1) let path_of_false = ((bool_kn,0),2) let glob_true = ConstructRef path_of_true let glob_false = ConstructRef path_of_false (** Equality *) let eq_kn = make_ind logic_module "eq" let glob_eq = IndRef (eq_kn,0) let identity_kn = make_ind datatypes_module "identity" let glob_identity = IndRef (identity_kn,0) let jmeq_kn = make_ind jmeq_module "JMeq" let glob_jmeq = IndRef (jmeq_kn,0) type coq_sigma_data = { proj1 : global_reference; proj2 : global_reference; elim : global_reference; intro : global_reference; typ : global_reference } type coq_bool_data = { andb : global_reference; andb_prop : global_reference; andb_true_intro : global_reference} let build_bool_type () = { andb = init_reference ["Datatypes"] "andb"; andb_prop = init_reference ["Datatypes"] "andb_prop"; andb_true_intro = init_reference ["Datatypes"] "andb_true_intro" } let build_sigma_set () = anomaly (Pp.str "Use build_sigma_type.") let build_sigma_type () = { proj1 = init_reference ["Specif"] "projT1"; proj2 = init_reference ["Specif"] "projT2"; elim = init_reference ["Specif"] "sigT_rect"; intro = init_reference ["Specif"] "existT"; typ = init_reference ["Specif"] "sigT" } let build_sigma () = { proj1 = init_reference ["Specif"] "proj1_sig"; proj2 = init_reference ["Specif"] "proj2_sig"; elim = init_reference ["Specif"] "sig_rect"; intro = init_reference ["Specif"] "exist"; typ = init_reference ["Specif"] "sig" } let build_prod () = { proj1 = init_reference ["Datatypes"] "fst"; proj2 = init_reference ["Datatypes"] "snd"; elim = init_reference ["Datatypes"] "prod_rec"; intro = init_reference ["Datatypes"] "pair"; typ = init_reference ["Datatypes"] "prod" } (* Equalities *) type coq_eq_data = { eq : global_reference; ind : global_reference; refl : global_reference; sym : global_reference; trans: global_reference; congr: global_reference } (* Data needed for discriminate and injection *) type coq_inversion_data = { inv_eq : global_reference; (* : forall params, t -> Prop *) inv_ind : global_reference; (* : forall params P y, eq params y -> P y *) inv_congr: global_reference (* : forall params B (f:t->B) y, eq params y -> f c=f y *) } let lazy_init_reference dir id = lazy (init_reference dir id) let lazy_logic_reference dir id = lazy (logic_reference dir id) (* Leibniz equality on Type *) let coq_eq_eq = lazy_init_reference ["Logic"] "eq" let coq_eq_refl = lazy_init_reference ["Logic"] "eq_refl" let coq_eq_ind = lazy_init_reference ["Logic"] "eq_ind" let coq_eq_congr = lazy_init_reference ["Logic"] "f_equal" let coq_eq_sym = lazy_init_reference ["Logic"] "eq_sym" let coq_eq_trans = lazy_init_reference ["Logic"] "eq_trans" let coq_f_equal2 = lazy_init_reference ["Logic"] "f_equal2" let coq_eq_congr_canonical = lazy_init_reference ["Logic"] "f_equal_canonical_form" let build_coq_eq_data () = let _ = check_required_library logic_module_name in { eq = Lazy.force coq_eq_eq; ind = Lazy.force coq_eq_ind; refl = Lazy.force coq_eq_refl; sym = Lazy.force coq_eq_sym; trans = Lazy.force coq_eq_trans; congr = Lazy.force coq_eq_congr } let build_coq_eq () = Lazy.force coq_eq_eq let build_coq_eq_refl () = Lazy.force coq_eq_refl let build_coq_eq_sym () = Lazy.force coq_eq_sym let build_coq_f_equal2 () = Lazy.force coq_f_equal2 let build_coq_inversion_eq_data () = let _ = check_required_library logic_module_name in { inv_eq = Lazy.force coq_eq_eq; inv_ind = Lazy.force coq_eq_ind; inv_congr = Lazy.force coq_eq_congr_canonical } (* Heterogenous equality on Type *) let coq_jmeq_eq = lazy_logic_reference ["JMeq"] "JMeq" let coq_jmeq_hom = lazy_logic_reference ["JMeq"] "JMeq_hom" let coq_jmeq_refl = lazy_logic_reference ["JMeq"] "JMeq_refl" let coq_jmeq_ind = lazy_logic_reference ["JMeq"] "JMeq_ind" let coq_jmeq_sym = lazy_logic_reference ["JMeq"] "JMeq_sym" let coq_jmeq_congr = lazy_logic_reference ["JMeq"] "JMeq_congr" let coq_jmeq_trans = lazy_logic_reference ["JMeq"] "JMeq_trans" let coq_jmeq_congr_canonical = lazy_logic_reference ["JMeq"] "JMeq_congr_canonical_form" let build_coq_jmeq_data () = let _ = check_required_library jmeq_module_name in { eq = Lazy.force coq_jmeq_eq; ind = Lazy.force coq_jmeq_ind; refl = Lazy.force coq_jmeq_refl; sym = Lazy.force coq_jmeq_sym; trans = Lazy.force coq_jmeq_trans; congr = Lazy.force coq_jmeq_congr } let build_coq_inversion_jmeq_data () = let _ = check_required_library logic_module_name in { inv_eq = Lazy.force coq_jmeq_hom; inv_ind = Lazy.force coq_jmeq_ind; inv_congr = Lazy.force coq_jmeq_congr_canonical } (* Specif *) let coq_sumbool = lazy_init_reference ["Specif"] "sumbool" let build_coq_sumbool () = Lazy.force coq_sumbool (* Equality on Type as a Type *) let coq_identity_eq = lazy_init_reference ["Datatypes"] "identity" let coq_identity_refl = lazy_init_reference ["Datatypes"] "identity_refl" let coq_identity_ind = lazy_init_reference ["Datatypes"] "identity_ind" let coq_identity_congr = lazy_init_reference ["Logic_Type"] "identity_congr" let coq_identity_sym = lazy_init_reference ["Logic_Type"] "identity_sym" let coq_identity_trans = lazy_init_reference ["Logic_Type"] "identity_trans" let coq_identity_congr_canonical = lazy_init_reference ["Logic_Type"] "identity_congr_canonical_form" let build_coq_identity_data () = let _ = check_required_library datatypes_module_name in { eq = Lazy.force coq_identity_eq; ind = Lazy.force coq_identity_ind; refl = Lazy.force coq_identity_refl; sym = Lazy.force coq_identity_sym; trans = Lazy.force coq_identity_trans; congr = Lazy.force coq_identity_congr } let build_coq_inversion_identity_data () = let _ = check_required_library datatypes_module_name in let _ = check_required_library logic_type_module_name in { inv_eq = Lazy.force coq_identity_eq; inv_ind = Lazy.force coq_identity_ind; inv_congr = Lazy.force coq_identity_congr_canonical } (* Equality to true *) let coq_eq_true_eq = lazy_init_reference ["Datatypes"] "eq_true" let coq_eq_true_ind = lazy_init_reference ["Datatypes"] "eq_true_ind" let coq_eq_true_congr = lazy_init_reference ["Logic"] "eq_true_congr" let build_coq_inversion_eq_true_data () = let _ = check_required_library datatypes_module_name in let _ = check_required_library logic_module_name in { inv_eq = Lazy.force coq_eq_true_eq; inv_ind = Lazy.force coq_eq_true_ind; inv_congr = Lazy.force coq_eq_true_congr } (* The False proposition *) let coq_False = lazy_init_reference ["Logic"] "False" (* The True proposition and its unique proof *) let coq_True = lazy_init_reference ["Logic"] "True" let coq_I = lazy_init_reference ["Logic"] "I" (* Connectives *) let coq_not = lazy_init_reference ["Logic"] "not" let coq_and = lazy_init_reference ["Logic"] "and" let coq_conj = lazy_init_reference ["Logic"] "conj" let coq_or = lazy_init_reference ["Logic"] "or" let coq_ex = lazy_init_reference ["Logic"] "ex" let coq_iff = lazy_init_reference ["Logic"] "iff" let coq_iff_left_proj = lazy_init_reference ["Logic"] "proj1" let coq_iff_right_proj = lazy_init_reference ["Logic"] "proj2" (* Runtime part *) let build_coq_True () = Lazy.force coq_True let build_coq_I () = Lazy.force coq_I let build_coq_False () = Lazy.force coq_False let build_coq_not () = Lazy.force coq_not let build_coq_and () = Lazy.force coq_and let build_coq_conj () = Lazy.force coq_conj let build_coq_or () = Lazy.force coq_or let build_coq_ex () = Lazy.force coq_ex let build_coq_iff () = Lazy.force coq_iff let build_coq_iff_left_proj () = Lazy.force coq_iff_left_proj let build_coq_iff_right_proj () = Lazy.force coq_iff_right_proj (* The following is less readable but does not depend on parsing *) let coq_eq_ref = lazy (init_reference ["Logic"] "eq") let coq_identity_ref = lazy (init_reference ["Datatypes"] "identity") let coq_jmeq_ref = lazy (find_reference "Coqlib" [coq;"Logic";"JMeq"] "JMeq") let coq_eq_true_ref = lazy (find_reference "Coqlib" [coq;"Init";"Datatypes"] "eq_true") let coq_existS_ref = lazy (anomaly (Pp.str "use coq_existT_ref.")) let coq_existT_ref = lazy (init_reference ["Specif"] "existT") let coq_exist_ref = lazy (init_reference ["Specif"] "exist") let coq_not_ref = lazy (init_reference ["Logic"] "not") let coq_False_ref = lazy (init_reference ["Logic"] "False") let coq_sumbool_ref = lazy (init_reference ["Specif"] "sumbool") let coq_sig_ref = lazy (init_reference ["Specif"] "sig") let coq_or_ref = lazy (init_reference ["Logic"] "or") let coq_iff_ref = lazy (init_reference ["Logic"] "iff")