1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created by Amokrane Saïbi, Dec 1998 *) (* Addition of products and sorts in canonical structures by Pierre Corbineau, Feb 2008 *) (* This file registers properties of records: projections and canonical structures *) open CErrors open Util open Pp open Names open Globnames open Nametab open Constr open Libobject open Mod_subst open Reductionops (*s A structure S is a non recursive inductive type with a single constructor (the name of which defaults to Build_S) *) (* Table des structures: le nom de la structure (un [inductive]) donne le nom du constructeur, le nombre de paramètres et pour chaque argument réel du constructeur, le nom de la projection correspondante, si valide, et un booléen disant si c'est une vraie projection ou bien une fonction constante (associée à un LetIn) *) type struc_typ = { s_CONST : constructor; s_EXPECTEDPARAM : int; s_PROJKIND : (Name.t * bool) list; s_PROJ : Constant.t option list } let structure_table = Summary.ref (Indmap.empty : struc_typ Indmap.t) ~name:"record-structs" let projection_table = Summary.ref Cmap.empty ~name:"record-projs" (* TODO: could be unify struc_typ and struc_tuple ? in particular, is the inductive always (fst constructor) ? It seems so... *) type struc_tuple = inductive * constructor * (Name.t * bool) list * Constant.t option list let load_structure i (_,(ind,id,kl,projs)) = let n = (fst (Global.lookup_inductive ind)).Declarations.mind_nparams in let struc = { s_CONST = id; s_EXPECTEDPARAM = n; s_PROJ = projs; s_PROJKIND = kl } in structure_table := Indmap.add ind struc !structure_table; projection_table := List.fold_right (Option.fold_right (fun proj -> Cmap.add proj struc)) projs !projection_table let cache_structure o = load_structure 1 o let subst_structure (subst,((kn,i),id,kl,projs as obj)) = let kn' = subst_mind subst kn in let projs' = (* invariant: struc.s_PROJ is an evaluable reference. Thus we can take *) (* the first component of subst_con. *) List.smartmap (Option.smartmap (fun kn -> fst (subst_con_kn subst kn))) projs in let id' = fst (subst_constructor subst id) in if projs' == projs && kn' == kn && id' == id then obj else ((kn',i),id',kl,projs') let discharge_constructor (ind, n) = (Lib.discharge_inductive ind, n) let discharge_structure (_,(ind,id,kl,projs)) = Some (Lib.discharge_inductive ind, discharge_constructor id, kl, List.map (Option.map Lib.discharge_con) projs) let inStruc : struc_tuple -> obj = declare_object {(default_object "STRUCTURE") with cache_function = cache_structure; load_function = load_structure; subst_function = subst_structure; classify_function = (fun x -> Substitute x); discharge_function = discharge_structure } let declare_structure (s,c,kl,pl) = Lib.add_anonymous_leaf (inStruc (s,c,kl,pl)) let lookup_structure indsp = Indmap.find indsp !structure_table let lookup_projections indsp = (lookup_structure indsp).s_PROJ let find_projection_nparams = function | ConstRef cst -> (Cmap.find cst !projection_table).s_EXPECTEDPARAM | _ -> raise Not_found let find_projection = function | ConstRef cst -> Cmap.find cst !projection_table | _ -> raise Not_found (************************************************************************) (*s A canonical structure declares "canonical" conversion hints between *) (* the effective components of a structure and the projections of the *) (* structure *) (* Table des definitions "object" : pour chaque object c, c := [x1:B1]...[xk:Bk](Build_R a1...am t1...t_n) If ti has the form (ci ui1...uir) where ci is a global reference (or a sort, or a product or a reference to a parameter) and if the corresponding projection Li of the structure R is defined, one declares a "conversion" between ci and Li. x1:B1..xk:Bk |- (Li a1..am (c x1..xk)) =_conv (ci ui1...uir) that maps the pair (Li,ci) to the following data o_DEF = c o_TABS = B1...Bk o_INJ = Some n (when ci is a reference to the parameter xi) o_PARAMS = a1...am o_NARAMS = m o_TCOMP = ui1...uir *) type obj_typ = { o_DEF : constr; o_CTX : Univ.AUContext.t; o_INJ : int option; (* position of trivial argument if any *) o_TABS : constr list; (* ordered *) o_TPARAMS : constr list; (* ordered *) o_NPARAMS : int; o_TCOMPS : constr list } (* ordered *) type cs_pattern = Const_cs of global_reference | Prod_cs | Sort_cs of Sorts.family | Default_cs let eq_cs_pattern p1 p2 = match p1, p2 with | Const_cs gr1, Const_cs gr2 -> eq_gr gr1 gr2 | Prod_cs, Prod_cs -> true | Sort_cs s1, Sort_cs s2 -> Sorts.family_equal s1 s2 | Default_cs, Default_cs -> true | _ -> false let rec assoc_pat a = function | ((pat, t), e) :: xs -> if eq_cs_pattern pat a then (t, e) else assoc_pat a xs | [] -> raise Not_found let object_table = Summary.ref (Refmap.empty : ((cs_pattern * constr) * obj_typ) list Refmap.t) ~name:"record-canonical-structs" let canonical_projections () = Refmap.fold (fun x -> List.fold_right (fun ((y,_),c) acc -> ((x,y),c)::acc)) !object_table [] let keep_true_projections projs kinds = let filter (p, (_, b)) = if b then Some p else None in List.map_filter filter (List.combine projs kinds) let cs_pattern_of_constr env t = match kind t with App (f,vargs) -> begin try Const_cs (global_of_constr f) , None, Array.to_list vargs with e when CErrors.noncritical e -> raise Not_found end | Rel n -> Default_cs, Some n, [] | Prod (_,a,b) when Vars.noccurn 1 b -> Prod_cs, None, [a; Vars.lift (-1) b] | Proj (p, c) -> let { Environ.uj_type = ty } = Typeops.infer env c in let _, params = Inductive.find_rectype env ty in Const_cs (ConstRef (Projection.constant p)), None, params @ [c] | Sort s -> Sort_cs (Sorts.family s), None, [] | _ -> begin try Const_cs (global_of_constr t) , None, [] with e when CErrors.noncritical e -> raise Not_found end let warn_projection_no_head_constant = CWarnings.create ~name:"projection-no-head-constant" ~category:"typechecker" (fun (sign,env,t,con,proji_sp) -> let env = Termops.push_rels_assum sign env in let con_pp = Nametab.pr_global_env Id.Set.empty (ConstRef con) in let proji_sp_pp = Nametab.pr_global_env Id.Set.empty (ConstRef proji_sp) in let term_pp = Termops.print_constr_env env Evd.empty (EConstr.of_constr t) in strbrk "Projection value has no head constant: " ++ term_pp ++ strbrk " in canonical instance " ++ con_pp ++ str " of " ++ proji_sp_pp ++ strbrk ", ignoring it.") (* Intended to always succeed *) let compute_canonical_projections warn (con,ind) = let env = Global.env () in let ctx = Environ.constant_context env con in let u = Univ.make_abstract_instance ctx in let v = (mkConstU (con,u)) in let c = Environ.constant_value_in env (con,u) in let sign,t = Reductionops.splay_lam env Evd.empty (EConstr.of_constr c) in let sign = List.map (on_snd EConstr.Unsafe.to_constr) sign in let t = EConstr.Unsafe.to_constr t in let lt = List.rev_map snd sign in let args = snd (decompose_app t) in let { s_EXPECTEDPARAM = p; s_PROJ = lpj; s_PROJKIND = kl } = lookup_structure ind in let params, projs = List.chop p args in let lpj = keep_true_projections lpj kl in let lps = List.combine lpj projs in let nenv = Termops.push_rels_assum sign env in let comp = List.fold_left (fun l (spopt,t) -> (* comp=components *) match spopt with | Some proji_sp -> begin try let patt, n , args = cs_pattern_of_constr nenv t in ((ConstRef proji_sp, patt, t, n, args) :: l) with Not_found -> if warn then warn_projection_no_head_constant (sign,env,t,con,proji_sp); l end | _ -> l) [] lps in List.map (fun (refi,c,t,inj,argj) -> (refi,(c,t)), {o_DEF=v; o_CTX=ctx; o_INJ=inj; o_TABS=lt; o_TPARAMS=params; o_NPARAMS=List.length params; o_TCOMPS=argj}) comp let pr_cs_pattern = function Const_cs c -> Nametab.pr_global_env Id.Set.empty c | Prod_cs -> str "_ -> _" | Default_cs -> str "_" | Sort_cs s -> Termops.pr_sort_family s let warn_redundant_canonical_projection = CWarnings.create ~name:"redundant-canonical-projection" ~category:"typechecker" (fun (hd_val,prj,new_can_s,old_can_s) -> strbrk "Ignoring canonical projection to " ++ hd_val ++ strbrk " by " ++ prj ++ strbrk " in " ++ new_can_s ++ strbrk ": redundant with " ++ old_can_s) let add_canonical_structure warn o = let lo = compute_canonical_projections warn o in List.iter (fun ((proj,(cs_pat,_ as pat)),s) -> let l = try Refmap.find proj !object_table with Not_found -> [] in let ocs = try Some (assoc_pat cs_pat l) with Not_found -> None in match ocs with | None -> object_table := Refmap.add proj ((pat,s)::l) !object_table; | Some (c, cs) -> let old_can_s = (Termops.print_constr (EConstr.of_constr cs.o_DEF)) and new_can_s = (Termops.print_constr (EConstr.of_constr s.o_DEF)) in let prj = (Nametab.pr_global_env Id.Set.empty proj) and hd_val = (pr_cs_pattern cs_pat) in if warn then warn_redundant_canonical_projection (hd_val,prj,new_can_s,old_can_s)) lo let open_canonical_structure i (_, o) = if Int.equal i 1 then add_canonical_structure false o let cache_canonical_structure (_, o) = add_canonical_structure true o let subst_canonical_structure (subst,(cst,ind as obj)) = (* invariant: cst is an evaluable reference. Thus we can take *) (* the first component of subst_con. *) let cst' = subst_constant subst cst in let ind' = subst_ind subst ind in if cst' == cst && ind' == ind then obj else (cst',ind') let discharge_canonical_structure (_,(cst,ind)) = Some (Lib.discharge_con cst,Lib.discharge_inductive ind) let inCanonStruc : Constant.t * inductive -> obj = declare_object {(default_object "CANONICAL-STRUCTURE") with open_function = open_canonical_structure; cache_function = cache_canonical_structure; subst_function = subst_canonical_structure; classify_function = (fun x -> Substitute x); discharge_function = discharge_canonical_structure } let add_canonical_structure x = Lib.add_anonymous_leaf (inCanonStruc x) (*s High-level declaration of a canonical structure *) let error_not_structure ref = user_err ~hdr:"object_declare" (Id.print (basename_of_global ref) ++ str" is not a structure object.") let check_and_decompose_canonical_structure ref = let sp = match ref with ConstRef sp -> sp | _ -> error_not_structure ref in let env = Global.env () in let u = Univ.make_abstract_instance (Environ.constant_context env sp) in let vc = match Environ.constant_opt_value_in env (sp, u) with | Some vc -> vc | None -> error_not_structure ref in let body = snd (splay_lam (Global.env()) Evd.empty (EConstr.of_constr vc)) (** FIXME *) in let body = EConstr.Unsafe.to_constr body in let f,args = match kind body with | App (f,args) -> f,args | _ -> error_not_structure ref in let indsp = match kind f with | Construct ((indsp,1),u) -> indsp | _ -> error_not_structure ref in let s = try lookup_structure indsp with Not_found -> error_not_structure ref in let ntrue_projs = List.count snd s.s_PROJKIND in if s.s_EXPECTEDPARAM + ntrue_projs > Array.length args then error_not_structure ref; (sp,indsp) let declare_canonical_structure ref = add_canonical_structure (check_and_decompose_canonical_structure ref) let lookup_canonical_conversion (proj,pat) = assoc_pat pat (Refmap.find proj !object_table) let decompose_projection sigma c args = match EConstr.kind sigma c with | Const (c, u) -> let n = find_projection_nparams (ConstRef c) in (** Check if there is some canonical projection attached to this structure *) let _ = Refmap.find (ConstRef c) !object_table in let arg = Stack.nth args n in arg | Proj (p, c) -> let _ = Refmap.find (ConstRef (Projection.constant p)) !object_table in c | _ -> raise Not_found let is_open_canonical_projection env sigma (c,args) = let open EConstr in try let arg = decompose_projection sigma c args in try let arg = whd_all env sigma arg in let hd = match EConstr.kind sigma arg with App (hd, _) -> hd | _ -> arg in not (isConstruct sigma hd) with Failure _ -> false with Not_found -> false