1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) open Pp open CErrors open Util open Names open Nameops open Constr open Vars open Termops open Environ open Reductionops open Inductiveops open Typing open Proof_type open Type_errors open Retyping open Misctypes module NamedDecl = Context.Named.Declaration type refiner_error = (* Errors raised by the refiner *) | BadType of constr * constr * constr | UnresolvedBindings of Name.t list | CannotApply of constr * constr | NotWellTyped of constr | NonLinearProof of constr | MetaInType of EConstr.constr (* Errors raised by the tactics *) | IntroNeedsProduct | DoesNotOccurIn of constr * Id.t | NoSuchHyp of Id.t exception RefinerError of refiner_error open Pretype_errors (** FIXME: this is quite brittle. Why not accept any PretypeError? *) let is_typing_error = function | UnexpectedType (_, _) | NotProduct _ | VarNotFound _ | TypingError _ -> true | _ -> false let is_unification_error = function | CannotUnify _ | CannotUnifyLocal _| CannotGeneralize _ | NoOccurrenceFound _ | CannotUnifyBindingType _ | ActualTypeNotCoercible _ | UnifOccurCheck _ | CannotFindWellTypedAbstraction _ | WrongAbstractionType _ | UnsolvableImplicit _| AbstractionOverMeta _ | UnsatisfiableConstraints _ -> true | _ -> false let catchable_exception = function | CErrors.UserError _ | TypeError _ | RefinerError _ | Indrec.RecursionSchemeError _ | Nametab.GlobalizationError _ (* reduction errors *) | Tacred.ReductionTacticError _ -> true (* unification and typing errors *) | PretypeError(_,_, e) -> is_unification_error e || is_typing_error e | _ -> false let error_no_such_hypothesis id = raise (RefinerError (NoSuchHyp id)) (* Tells if the refiner should check that the submitted rules do not produce invalid subgoals *) let check = ref false let with_check = Flags.with_option check (* [apply_to_hyp sign id f] splits [sign] into [tail::[id,_,_]::head] and returns [tail::(f head (id,_,_) (rev tail))] *) let apply_to_hyp check sign id f = try apply_to_hyp sign id f with Hyp_not_found -> if check then error_no_such_hypothesis id else sign let check_typability env sigma c = if !check then let _ = unsafe_type_of env sigma (EConstr.of_constr c) in () (************************************************************************) (************************************************************************) (* Implementation of the structural rules (moving and deleting hypotheses around) *) (* The ClearBody tactic *) (* Reordering of the context *) (* faire le minimum d'echanges pour que l'ordre donne soit un *) (* sous-ordre du resultat. Par exemple, 2 hyps non mentionnee ne sont *) (* pas echangees. Choix: les hyps mentionnees ne peuvent qu'etre *) (* reculees par rapport aux autres (faire le contraire!) *) let mt_q = (Id.Map.empty,[]) let push_val y = function (_,[] as q) -> q | (m, (x,l)::q) -> (m, (x,Id.Set.add y l)::q) let push_item x v (m,l) = (Id.Map.add x v m, (x,Id.Set.empty)::l) let mem_q x (m,_) = Id.Map.mem x m let find_q x (m,q) = let v = Id.Map.find x m in let m' = Id.Map.remove x m in let rec find accs acc = function [] -> raise Not_found | [(x',l)] -> if Id.equal x x' then ((v,Id.Set.union accs l),(m',List.rev acc)) else raise Not_found | (x',l as i)::((x'',l'')::q as itl) -> if Id.equal x x' then ((v,Id.Set.union accs l), (m',List.rev acc@(x'',Id.Set.add x (Id.Set.union l l''))::q)) else find (Id.Set.union l accs) (i::acc) itl in find Id.Set.empty [] q let occur_vars_in_decl env sigma hyps d = if Id.Set.is_empty hyps then false else let ohyps = global_vars_set_of_decl env sigma d in Id.Set.exists (fun h -> Id.Set.mem h ohyps) hyps let reorder_context env sigma sign ord = let ords = List.fold_right Id.Set.add ord Id.Set.empty in if not (Int.equal (List.length ord) (Id.Set.cardinal ords)) then user_err Pp.(str "Order list has duplicates"); let rec step ord expected ctxt_head moved_hyps ctxt_tail = match ord with | [] -> List.rev ctxt_tail @ ctxt_head | top::ord' when mem_q top moved_hyps -> let ((d,h),mh) = find_q top moved_hyps in if occur_vars_in_decl env sigma h d then user_err ~hdr:"reorder_context" (str "Cannot move declaration " ++ Id.print top ++ spc() ++ str "before " ++ pr_sequence Id.print (Id.Set.elements (Id.Set.inter h (global_vars_set_of_decl env sigma d)))); step ord' expected ctxt_head mh (d::ctxt_tail) | _ -> (match ctxt_head with | [] -> error_no_such_hypothesis (List.hd ord) | d :: ctxt -> let x = NamedDecl.get_id d in if Id.Set.mem x expected then step ord (Id.Set.remove x expected) ctxt (push_item x d moved_hyps) ctxt_tail else step ord expected ctxt (push_val x moved_hyps) (d::ctxt_tail)) in step ord ords sign mt_q [] let reorder_val_context env sigma sign ord = let open EConstr in val_of_named_context (reorder_context env sigma (named_context_of_val sign) ord) let check_decl_position env sigma sign d = let open EConstr in let x = NamedDecl.get_id d in let needed = global_vars_set_of_decl env sigma d in let deps = dependency_closure env sigma (named_context_of_val sign) needed in if Id.List.mem x deps then user_err ~hdr:"Logic.check_decl_position" (str "Cannot create self-referring hypothesis " ++ Id.print x); x::deps (* Auxiliary functions for primitive MOVE tactic * * [move_hyp with_dep toleft (left,(hfrom,typfrom),right) hto] moves * hyp [hfrom] at location [hto] which belongs to the hyps on the * left side [left] of the full signature if [toleft=true] or to the hyps * on the right side [right] if [toleft=false]. * If [with_dep] then dependent hypotheses are moved accordingly. *) let move_location_eq m1 m2 = match m1, m2 with | MoveAfter id1, MoveAfter id2 -> Id.equal id1 id2 | MoveBefore id1, MoveBefore id2 -> Id.equal id1 id2 | MoveLast, MoveLast -> true | MoveFirst, MoveFirst -> true | _ -> false let split_sign hfrom hto l = let rec splitrec left toleft = function | [] -> error_no_such_hypothesis hfrom | d :: right -> let hyp = NamedDecl.get_id d in if Id.equal hyp hfrom then (left,right,d, toleft || move_location_eq hto MoveLast) else let is_toleft = match hto with | MoveAfter h' | MoveBefore h' -> Id.equal hyp h' | _ -> false in splitrec (d::left) (toleft || is_toleft) right in splitrec [] false l let hyp_of_move_location = function | MoveAfter id -> id | MoveBefore id -> id | _ -> assert false let move_hyp sigma toleft (left,declfrom,right) hto = let env = Global.env() in let test_dep d d2 = if toleft then occur_var_in_decl env sigma (NamedDecl.get_id d2) d else occur_var_in_decl env sigma (NamedDecl.get_id d) d2 in let rec moverec first middle = function | [] -> if match hto with MoveFirst | MoveLast -> false | _ -> true then error_no_such_hypothesis (hyp_of_move_location hto); List.rev first @ List.rev middle | d :: _ as right when move_location_eq hto (MoveBefore (NamedDecl.get_id d)) -> List.rev first @ List.rev middle @ right | d :: right -> let hyp = NamedDecl.get_id d in let (first',middle') = if List.exists (test_dep d) middle then if not (move_location_eq hto (MoveAfter hyp)) then (first, d::middle) else user_err ~hdr:"move_hyp" (str "Cannot move " ++ Id.print (NamedDecl.get_id declfrom) ++ Miscprint.pr_move_location Id.print hto ++ str (if toleft then ": it occurs in the type of " else ": it depends on ") ++ Id.print hyp ++ str ".") else (d::first, middle) in if move_location_eq hto (MoveAfter hyp) then List.rev first' @ List.rev middle' @ right else moverec first' middle' right in let open EConstr in if toleft then let right = List.fold_right push_named_context_val right empty_named_context_val in List.fold_left (fun sign d -> push_named_context_val d sign) right (moverec [] [declfrom] left) else let right = List.fold_right push_named_context_val (moverec [] [declfrom] right) empty_named_context_val in List.fold_left (fun sign d -> push_named_context_val d sign) right left let move_hyp_in_named_context sigma hfrom hto sign = let open EConstr in let (left,right,declfrom,toleft) = split_sign hfrom hto (named_context_of_val sign) in move_hyp sigma toleft (left,declfrom,right) hto let insert_decl_in_named_context sigma decl hto sign = let open EConstr in move_hyp sigma false ([],decl,named_context_of_val sign) hto (**********************************************************************) (************************************************************************) (************************************************************************) (* Implementation of the logical rules *) (* Will only be used on terms given to the Refine rule which have meta variables only in Application and Case *) let error_unsupported_deep_meta c = user_err (strbrk "Application of lemmas whose beta-iota normal " ++ strbrk "form contains metavariables deep inside the term is not " ++ strbrk "supported; try \"refine\" instead.") let collect_meta_variables c = let rec collrec deep acc c = match kind c with | Meta mv -> if deep then error_unsupported_deep_meta () else mv::acc | Cast(c,_,_) -> collrec deep acc c | (App _| Case _) -> Constr.fold (collrec deep) acc c | Proj (_, c) -> collrec deep acc c | _ -> Constr.fold (collrec true) acc c in List.rev (collrec false [] c) let check_meta_variables c = if not (List.distinct_f Int.compare (collect_meta_variables c)) then raise (RefinerError (NonLinearProof c)) let check_conv_leq_goal env sigma arg ty conclty = if !check then let evm, b = Reductionops.infer_conv env sigma (EConstr.of_constr ty) (EConstr.of_constr conclty) in if b then evm else raise (RefinerError (BadType (arg,ty,conclty))) else sigma exception Stop of EConstr.t list let meta_free_prefix sigma a = try let a = Array.map EConstr.of_constr a in let _ = Array.fold_left (fun acc a -> if occur_meta sigma a then raise (Stop acc) else a :: acc) [] a in a with Stop acc -> Array.rev_of_list acc let goal_type_of env sigma c = if !check then let (sigma,t) = type_of env sigma (EConstr.of_constr c) in (sigma, EConstr.Unsafe.to_constr t) else (sigma, EConstr.Unsafe.to_constr (Retyping.get_type_of env sigma (EConstr.of_constr c))) let rec mk_refgoals sigma goal goalacc conclty trm = let env = Goal.V82.env sigma goal in let hyps = Goal.V82.hyps sigma goal in let mk_goal hyps concl = Goal.V82.mk_goal sigma hyps concl (Goal.V82.extra sigma goal) in if (not !check) && not (occur_meta sigma (EConstr.of_constr trm)) then let t'ty = Retyping.get_type_of env sigma (EConstr.of_constr trm) in let t'ty = EConstr.Unsafe.to_constr t'ty in let sigma = check_conv_leq_goal env sigma trm t'ty conclty in (goalacc,t'ty,sigma,trm) else match kind trm with | Meta _ -> let conclty = nf_betaiota sigma (EConstr.of_constr conclty) in if !check && occur_meta sigma conclty then raise (RefinerError (MetaInType conclty)); let (gl,ev,sigma) = mk_goal hyps conclty in let ev = EConstr.Unsafe.to_constr ev in let conclty = EConstr.Unsafe.to_constr conclty in gl::goalacc, conclty, sigma, ev | Cast (t,k, ty) -> check_typability env sigma ty; let sigma = check_conv_leq_goal env sigma trm ty conclty in let res = mk_refgoals sigma goal goalacc ty t in (** we keep the casts (in particular VMcast and NATIVEcast) except when they are annotating metas *) if isMeta t then begin assert (k != VMcast && k != NATIVEcast); res end else let (gls,cty,sigma,ans) = res in let ans = if ans == t then trm else mkCast(ans,k,ty) in (gls,cty,sigma,ans) | App (f,l) -> let (acc',hdty,sigma,applicand) = if is_template_polymorphic env sigma (EConstr.of_constr f) then let ty = (* Template polymorphism of definitions and inductive types *) let firstmeta = Array.findi (fun i x -> occur_meta sigma (EConstr.of_constr x)) l in let args, _ = Option.cata (fun i -> CArray.chop i l) (l, [||]) firstmeta in type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) (Array.map EConstr.of_constr args) in let ty = EConstr.Unsafe.to_constr ty in goalacc, ty, sigma, f else mk_hdgoals sigma goal goalacc f in let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in let sigma = check_conv_leq_goal env sigma trm conclty' conclty in let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in (acc'',conclty',sigma, ans) | Proj (p,c) -> let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in let c = mkProj (p, c') in let ty = get_type_of env sigma (EConstr.of_constr c) in let ty = EConstr.Unsafe.to_constr ty in (acc',ty,sigma,c) | Case (ci,p,c,lf) -> let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in let sigma = check_conv_leq_goal env sigma trm conclty' conclty in let (acc'',sigma, rbranches) = Array.fold_left2 (fun (lacc,sigma,bacc) ty fi -> let (r,_,s,b') = mk_refgoals sigma goal lacc ty fi in r,s,(b'::bacc)) (acc',sigma,[]) lbrty lf in let lf' = Array.rev_of_list rbranches in let ans = if p' == p && c' == c && Array.equal (==) lf' lf then trm else mkCase (ci,p',c',lf') in (acc'',conclty',sigma, ans) | _ -> if occur_meta sigma (EConstr.of_constr trm) then anomaly (Pp.str "refiner called with a meta in non app/case subterm."); let (sigma, t'ty) = goal_type_of env sigma trm in let sigma = check_conv_leq_goal env sigma trm t'ty conclty in (goalacc,t'ty,sigma, trm) (* Same as mkREFGOALS but without knowing the type of the term. Therefore, * Metas should be casted. *) and mk_hdgoals sigma goal goalacc trm = let env = Goal.V82.env sigma goal in let hyps = Goal.V82.hyps sigma goal in let mk_goal hyps concl = Goal.V82.mk_goal sigma hyps concl (Goal.V82.extra sigma goal) in match kind trm with | Cast (c,_, ty) when isMeta c -> check_typability env sigma ty; let (gl,ev,sigma) = mk_goal hyps (nf_betaiota sigma (EConstr.of_constr ty)) in let ev = EConstr.Unsafe.to_constr ev in gl::goalacc,ty,sigma,ev | Cast (t,_, ty) -> check_typability env sigma ty; mk_refgoals sigma goal goalacc ty t | App (f,l) -> let (acc',hdty,sigma,applicand) = if is_template_polymorphic env sigma (EConstr.of_constr f) then let l' = meta_free_prefix sigma l in (goalacc,EConstr.Unsafe.to_constr (type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) l'),sigma,f) else mk_hdgoals sigma goal goalacc f in let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in (acc'',conclty',sigma, ans) | Case (ci,p,c,lf) -> let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in let (acc'',sigma,rbranches) = Array.fold_left2 (fun (lacc,sigma,bacc) ty fi -> let (r,_,s,b') = mk_refgoals sigma goal lacc ty fi in r,s,(b'::bacc)) (acc',sigma,[]) lbrty lf in let lf' = Array.rev_of_list rbranches in let ans = if p' == p && c' == c && Array.equal (==) lf' lf then trm else mkCase (ci,p',c',lf') in (acc'',conclty',sigma, ans) | Proj (p,c) -> let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in let c = mkProj (p, c') in let ty = get_type_of env sigma (EConstr.of_constr c) in let ty = EConstr.Unsafe.to_constr ty in (acc',ty,sigma,c) | _ -> if !check && occur_meta sigma (EConstr.of_constr trm) then anomaly (Pp.str "refine called with a dependent meta."); let (sigma, ty) = goal_type_of env sigma trm in goalacc, ty, sigma, trm and mk_arggoals sigma goal goalacc funty allargs = let foldmap (goalacc, funty, sigma) harg = let t = whd_all (Goal.V82.env sigma goal) sigma (EConstr.of_constr funty) in let t = EConstr.Unsafe.to_constr t in let rec collapse t = match kind t with | LetIn (_, c1, _, b) -> collapse (subst1 c1 b) | _ -> t in let t = collapse t in match kind t with | Prod (_, c1, b) -> let (acc, hargty, sigma, arg) = mk_refgoals sigma goal goalacc c1 harg in (acc, subst1 harg b, sigma), arg | _ -> raise (RefinerError (CannotApply (t, harg))) in Array.smartfoldmap foldmap (goalacc, funty, sigma) allargs and mk_casegoals sigma goal goalacc p c = let env = Goal.V82.env sigma goal in let (acc',ct,sigma,c') = mk_hdgoals sigma goal goalacc c in let ct = EConstr.of_constr ct in let (acc'',pt,sigma,p') = mk_hdgoals sigma goal acc' p in let ((ind, u), spec) = try Tacred.find_hnf_rectype env sigma ct with Not_found -> anomaly (Pp.str "mk_casegoals.") in let indspec = ((ind, EConstr.EInstance.kind sigma u), spec) in let (lbrty,conclty) = type_case_branches_with_names env sigma indspec p c in (acc'',lbrty,conclty,sigma,p',c') let convert_hyp check sign sigma d = let id = NamedDecl.get_id d in let b = NamedDecl.get_value d in let env = Global.env() in let reorder = ref [] in let sign' = apply_to_hyp check sign id (fun _ d' _ -> let c = Option.map EConstr.of_constr (NamedDecl.get_value d') in let env = Global.env_of_context sign in if check && not (is_conv env sigma (NamedDecl.get_type d) (EConstr.of_constr (NamedDecl.get_type d'))) then user_err ~hdr:"Logic.convert_hyp" (str "Incorrect change of the type of " ++ Id.print id ++ str "."); if check && not (Option.equal (is_conv env sigma) b c) then user_err ~hdr:"Logic.convert_hyp" (str "Incorrect change of the body of "++ Id.print id ++ str "."); if check then reorder := check_decl_position env sigma sign d; map_named_decl EConstr.Unsafe.to_constr d) in reorder_val_context env sigma sign' !reorder (************************************************************************) (************************************************************************) (* Primitive tactics are handled here *) let prim_refiner r sigma goal = let cl = Goal.V82.concl sigma goal in match r with (* Logical rules *) | Refine c -> let cl = EConstr.Unsafe.to_constr cl in check_meta_variables c; let (sgl,cl',sigma,oterm) = mk_refgoals sigma goal [] cl c in let sgl = List.rev sgl in let sigma = Goal.V82.partial_solution sigma goal (EConstr.of_constr oterm) in (sgl, sigma)