1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)

(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey *)

open Pp
open CErrors
open Util

(* Universes are stratified by a partial ordering $\le$.
   Let $\~{}$ be the associated equivalence. We also have a strict ordering
   $<$ between equivalence classes, and we maintain that $<$ is acyclic,
   and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.

   At every moment, we have a finite number of universes, and we
   maintain the ordering in the presence of assertions $U<V$ and $U\le V$.

   The equivalence $\~{}$ is represented by a tree structure, as in the
   union-find algorithm. The assertions $<$ and $\le$ are represented by
   adjacency lists *)

module RawLevel =
struct
  open Names
  type t =
    | Prop
    | Set
    | Level of int * DirPath.t
    | Var of int

  (* Hash-consing *)

  let equal x y =
    x == y ||
      match x, y with
      | Prop, Prop -> true
      | Set, Set -> true
      | Level (n,d), Level (n',d') ->
        Int.equal n n' && DirPath.equal d d'
      | Var n, Var n' -> Int.equal n n'
      | _ -> false

  let compare u v =
    match u, v with
    | Prop,Prop -> 0
    | Prop, _ -> -1
    | _, Prop -> 1
    | Set, Set -> 0
    | Set, _ -> -1
    | _, Set -> 1
    | Level (i1, dp1), Level (i2, dp2) ->
      if i1 < i2 then -1
      else if i1 > i2 then 1
      else DirPath.compare dp1 dp2
    | Level _, _ -> -1
    | _, Level _ -> 1
    | Var n, Var m -> Int.compare n m

  open Hashset.Combine

  let hash = function
    | Prop -> combinesmall 1 0
    | Set -> combinesmall 1 1
    | Var n -> combinesmall 2 n
    | Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d))
end

module Level = struct

  open Names

  type raw_level = RawLevel.t =
  | Prop
  | Set
  | Level of int * DirPath.t
  | Var of int

  (** Embed levels with their hash value *)
  type t = { 
    hash : int;
    data : RawLevel.t }

  let equal x y = 
    x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data

  let hash x = x.hash

  let data x = x.data

  let make l = { hash = RawLevel.hash l; data = l }

  let set = make Set
  let prop = make Prop
  let var i = make (Var i)
                  
  let is_small x = 
    match data x with
    | Level _ -> false
    | _ -> true

  let is_prop x =
    match data x with
    | Prop -> true
    | _ -> false

  let is_set x =
    match data x with
    | Set -> true
    | _ -> false

  let compare u v =
    if u == v then 0
    else
      let c = Int.compare (hash u) (hash v) in
        if c == 0 then RawLevel.compare (data u) (data v)
        else c
            
  let to_string x = 
    match data x with
    | Prop -> "Prop"
    | Set -> "Set"
    | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n
    | Var i -> "Var("^string_of_int i^")"

  let pr u = str (to_string u)

  let make m n = make (Level (n, m))

end

(** Level sets and maps *)
module LMap = HMap.Make (Level)
module LSet = LMap.Set

type 'a universe_map = 'a LMap.t

type universe_level = Level.t

type universe_level_subst_fn = universe_level -> universe_level

(* An algebraic universe [universe] is either a universe variable
   [Level.t] or a formal universe known to be greater than some
   universe variables and strictly greater than some (other) universe
   variables

   Universes variables denote universes initially present in the term
   to type-check and non variable algebraic universes denote the
   universes inferred while type-checking: it is either the successor
   of a universe present in the initial term to type-check or the
   maximum of two algebraic universes
*)

module Universe =
struct
  (* Invariants: non empty, sorted and without duplicates *)

  module Expr = 
  struct
    type t = Level.t * int
        
    let make l = (l, 0)

    let prop = (Level.prop, 0)
    let set = (Level.set, 0)
    let type1 = (Level.set, 1)

    let is_prop = function
      | (l,0) -> Level.is_prop l
      | _ -> false

    let equal x y = x == y ||
      (let (u,n) = x and (v,n') = y in
         Int.equal n n' && Level.equal u v)

    let leq (u,n) (v,n') =
      let cmp = Level.compare u v in
        if Int.equal cmp 0 then n <= n'
        else if n <= n' then 
          (Level.is_prop u && Level.is_small v)
        else false

    let successor (u,n) =
      if Level.is_prop u then type1
      else (u, n + 1)

    let addn k (u,n as x) = 
      if k = 0 then x 
      else if Level.is_prop u then
        (Level.set,n+k)
      else (u,n+k)
        
    let super (u,n as x) (v,n' as y) =
      let cmp = Level.compare u v in
        if Int.equal cmp 0 then 
          if n < n' then Inl true
          else Inl false
        else if is_prop x then Inl true
        else if is_prop y then Inl false
        else Inr cmp

    let to_string (v, n) =
      if Int.equal n 0 then Level.to_string v
      else Level.to_string v ^ "+" ^ string_of_int n

    let pr x = str(to_string x)

    let level = function
      | (v,0) -> Some v
      | _ -> None

    let map f (v, n as x) = 
      let v' = f v in 
        if v' == v then x
        else if Level.is_prop v' && n != 0 then
          (Level.set, n)
        else (v', n)

  end

  type t = Expr.t list

  let tip u = [u]
  let cons u v = u :: v

  let equal x y = x == y || List.equal Expr.equal x y

  let make l = tip (Expr.make l)

  let pr l = match l with
    | [u] -> Expr.pr u
    | _ -> 
      str "max(" ++ hov 0
        (prlist_with_sep pr_comma Expr.pr l) ++
        str ")"

  let level l = match l with
    | [l] -> Expr.level l
    | _ -> None

  (* The lower predicative level of the hierarchy that contains (impredicative)
     Prop and singleton inductive types *)
  let type0m = tip Expr.prop

  (* The level of sets *)
  let type0 = tip Expr.set

  (* When typing [Prop] and [Set], there is no constraint on the level,
     hence the definition of [type1_univ], the type of [Prop] *)    
  let type1 = tip (Expr.successor Expr.set)

  let is_type0m x = equal type0m x
  let is_type0 x = equal type0 x

  (* Returns the formal universe that lies juste above the universe variable u.
     Used to type the sort u. *)
  let super l = 
    List.map (fun x -> Expr.successor x) l

  let addn n l =
    List.map (fun x -> Expr.addn n x) l

  let rec merge_univs l1 l2 =
    match l1, l2 with
    | [], _ -> l2
    | _, [] -> l1
    | h1 :: t1, h2 :: t2 ->
      (match Expr.super h1 h2 with
      | Inl true (* h1 < h2 *) -> merge_univs t1 l2
      | Inl false -> merge_univs l1 t2
      | Inr c -> 
        if c <= 0 (* h1 < h2 is name order *)
        then cons h1 (merge_univs t1 l2)
        else cons h2 (merge_univs l1 t2))

  let sort u =
    let rec aux a l = 
      match l with
      | b :: l' ->
        (match Expr.super a b with
        | Inl false -> aux a l'
        | Inl true -> l
        | Inr c ->
          if c <= 0 then cons a l
          else cons b (aux a l'))
      | [] -> cons a l
    in 
      List.fold_right (fun a acc -> aux a acc) u []
        
  (* Returns the formal universe that is greater than the universes u and v.
     Used to type the products. *)
  let sup x y = merge_univs x y

  let empty = []

  let exists = List.exists

  let for_all = List.for_all

  let smartmap = List.smartmap

end

type universe = Universe.t

(* The level of predicative Set *)
let type0m_univ = Universe.type0m
let type0_univ = Universe.type0
let type1_univ = Universe.type1
let is_type0m_univ = Universe.is_type0m
let is_type0_univ = Universe.is_type0
let is_univ_variable l = Universe.level l != None
let pr_uni = Universe.pr

let sup = Universe.sup
let super = Universe.super

open Universe

(* Comparison on this type is pointer equality *)
type canonical_arc =
    { univ: Level.t;
      lt: Level.t list;
      le: Level.t list;
      rank : int;
      predicative : bool}

let terminal u = {univ=u; lt=[]; le=[]; rank=0; predicative=false}

module UMap :
sig
  type key = Level.t
  type +'a t
  val empty : 'a t
  val add : key -> 'a -> 'a t -> 'a t
  val find : key -> 'a t -> 'a
  val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
end = HMap.Make(Level)

(* A Level.t is either an alias for another one, or a canonical one,
   for which we know the universes that are above *)

type univ_entry =
    Canonical of canonical_arc
  | Equiv of Level.t

type universes = univ_entry UMap.t

let enter_equiv_arc u v g =
  UMap.add u (Equiv v) g

let enter_arc ca g =
  UMap.add ca.univ (Canonical ca) g

(* Every Level.t has a unique canonical arc representative *)

(* repr : universes -> Level.t -> canonical_arc *)
(* canonical representative : we follow the Equiv links *)

let repr g u =
  let rec repr_rec u =
    let a =
      try UMap.find u g
      with Not_found -> anomaly ~label:"Univ.repr"
          (str"Universe " ++ Level.pr u ++ str" undefined.")
    in
    match a with
      | Equiv v -> repr_rec v
      | Canonical arc -> arc
  in
  repr_rec u

let get_set_arc g = repr g Level.set

exception AlreadyDeclared
            
let add_universe vlev strict g =
  try
    let _arcv = UMap.find vlev g in
      raise AlreadyDeclared
  with Not_found -> 
    let v = terminal vlev in
    let arc =
      let arc = get_set_arc g in
        if strict then
          { arc with lt=vlev::arc.lt}
        else 
          { arc with le=vlev::arc.le}
    in
    let g = enter_arc arc g in
      enter_arc v g
                       
(* reprleq : canonical_arc -> canonical_arc list *)
(* All canonical arcv such that arcu<=arcv with arcv#arcu *)
let reprleq g arcu =
  let rec searchrec w = function
    | [] -> w
    | v :: vl ->
        let arcv = repr g v in
        if List.memq arcv w || arcu==arcv then
          searchrec w vl
        else
          searchrec (arcv :: w) vl
  in
  searchrec [] arcu.le


(* between : Level.t -> canonical_arc -> canonical_arc list *)
(* between u v = { w | u<=w<=v, w canonical }          *)
(* between is the most costly operation *)

let between g arcu arcv =
  (* good are all w | u <= w <= v  *)
  (* bad are all w | u <= w ~<= v *)
    (* find good and bad nodes in {w | u <= w} *)
    (* explore b u = (b or "u is good") *)
  let rec explore ((good, bad, b) as input) arcu =
    if List.memq arcu good then
      (good, bad, true) (* b or true *)
    else if List.memq arcu bad then
      input    (* (good, bad, b or false) *)
    else
      let leq = reprleq g arcu in
        (* is some universe >= u good ? *)
      let good, bad, b_leq =
        List.fold_left explore (good, bad, false) leq
      in
        if b_leq then
          arcu::good, bad, true (* b or true *)
        else
          good, arcu::bad, b    (* b or false *)
  in
  let good,_,_ = explore ([arcv],[],false) arcu in
    good

(* We assume  compare(u,v) = LE with v canonical (see compare below).
   In this case List.hd(between g u v) = repr u
   Otherwise, between g u v = []
 *)

type constraint_type = Lt | Le | Eq

let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1

(** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ?

  In [strict] mode, we fully distinguish between LE and LT, while in
  non-strict mode, we simply answer LE for both situations.

  If [arcv] is encountered in a LT part, we could directly answer
  without visiting unneeded parts of this transitive closure.
  In [strict] mode, if [arcv] is encountered in a LE part, we could only
  change the default answer (1st arg [c]) from NLE to LE, since a strict
  constraint may appear later. During the recursive traversal,
  [lt_done] and [le_done] are universes we have already visited,
  they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)],
  two lists of universes not yet considered, known to be above [arcu],
  strictly or not.

  We use depth-first search, but the presence of [arcv] in [new_lt]
  is checked as soon as possible : this seems to be slightly faster
  on a test.
*)

type fast_order = FastEQ | FastLT | FastLE | FastNLE

let fast_compare_neq strict g arcu arcv =
  (* [c] characterizes whether arcv has already been related
     to arcu among the lt_done,le_done universe *)
  let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with
  | [],[] -> c
  | arc::lt_todo, le_todo ->
    if List.memq arc lt_done then
      cmp c lt_done le_done lt_todo le_todo
    else
      let rec find lt_todo lt le = match le with
      | [] ->
        begin match lt with
        | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo
        | u :: lt ->
          let arc = repr g u in
          if arc == arcv then
            if strict then FastLT else FastLE
          else find (arc :: lt_todo) lt le
        end
      | u :: le ->
        let arc = repr g u in
        if arc == arcv then
          if strict then FastLT else FastLE
        else find (arc :: lt_todo) lt le
      in
      find lt_todo arc.lt arc.le
  | [], arc::le_todo ->
    if arc == arcv then
      (* No need to continue inspecting universes above arc:
         if arcv is strictly above arc, then we would have a cycle.
         But we cannot answer LE yet, a stronger constraint may
         come later from [le_todo]. *)
      if strict then cmp FastLE lt_done le_done [] le_todo else FastLE
    else
      if (List.memq arc lt_done) || (List.memq arc le_done) then
        cmp c lt_done le_done [] le_todo
      else
        let rec find lt_todo lt = match lt with
        | [] ->
          let fold accu u =
            let node = repr g u in
            node :: accu
          in
          let le_new = List.fold_left fold le_todo arc.le in
          cmp c lt_done (arc :: le_done) lt_todo le_new
        | u :: lt ->
          let arc = repr g u in
          if arc == arcv then
            if strict then FastLT else FastLE
          else find (arc :: lt_todo) lt
        in
        find [] arc.lt
  in
  cmp FastNLE [] [] [] [arcu]

let fast_compare g arcu arcv =
  if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv

let is_leq g arcu arcv =
  arcu == arcv ||
    (match fast_compare_neq false g arcu arcv with
    | FastNLE -> false
    | (FastEQ|FastLE|FastLT) -> true)
    
let is_lt g arcu arcv =
  if arcu == arcv then false
  else
    match fast_compare_neq true g arcu arcv with
    | FastLT -> true
    | (FastEQ|FastLE|FastNLE) -> false

(* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ
                compare(u,v) = LT or LE => compare(v,u) = NLE
                compare(u,v) = NLE => compare(v,u) = NLE or LE or LT

   Adding u>=v is consistent iff compare(v,u) # LT
    and then it is redundant iff compare(u,v) # NLE
   Adding u>v is consistent iff compare(v,u) = NLE
    and then it is redundant iff compare(u,v) = LT *)

(** * Universe checks [check_eq] and [check_leq], used in coqchk *)

(** First, checks on universe levels *)

let check_equal g u v =
  let arcu = repr g u in
  let arcv = repr g v in
  arcu == arcv

let check_eq_level g u v = u == v || check_equal g u v

let is_set_arc u = Level.is_set u.univ
let is_prop_arc u = Level.is_prop u.univ

let check_smaller g strict u v =
  let arcu = repr g u in
  let arcv = repr g v in
  if strict then
    is_lt g arcu arcv
  else
    is_prop_arc arcu 
    || (is_set_arc arcu && arcv.predicative) 
    || is_leq g arcu arcv

(** Then, checks on universes *)

type 'a check_function = universes -> 'a -> 'a -> bool

let check_equal_expr g x y =
  x == y || (let (u, n) = x and (v, m) = y in 
               Int.equal n m && check_equal g u v)

let check_eq_univs g l1 l2 =
  let f x1 x2 = check_equal_expr g x1 x2 in
  let exists x1 l = List.exists (fun x2 -> f x1 x2) l in
    List.for_all (fun x1 -> exists x1 l2) l1
    && List.for_all (fun x2 -> exists x2 l1) l2

let check_eq g u v =
  Universe.equal u v || check_eq_univs g u v

let check_smaller_expr g (u,n) (v,m) =
  let diff = n - m in
    match diff with
    | 0 -> check_smaller g false u v
    | 1 -> check_smaller g true u v
    | x when x < 0 -> check_smaller g false u v
    | _ -> false

let exists_bigger g ul l =
  Universe.exists (fun ul' -> 
    check_smaller_expr g ul ul') l

let real_check_leq g u v =
  Universe.for_all (fun ul -> exists_bigger g ul v) u
    
let check_leq g u v =
  Universe.equal u v ||
    Universe.is_type0m u ||
    check_eq_univs g u v || real_check_leq g u v

(** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *)

(** To speed up tests of Set </<= i *)
let set_predicative g arcv = 
  enter_arc {arcv with predicative = true} g

(* setlt : Level.t -> Level.t -> reason -> unit *)
(* forces u > v *)
(* this is normally an update of u in g rather than a creation. *)
let setlt g arcu arcv =
  let arcu' = {arcu with lt=arcv.univ::arcu.lt} in
  let g = 
    if is_set_arc arcu then set_predicative g arcv
    else g
  in
    enter_arc arcu' g, arcu'

(* checks that non-redundant *)
let setlt_if (g,arcu) v =
  let arcv = repr g v in
  if is_lt g arcu arcv then g, arcu
  else setlt g arcu arcv

(* setleq : Level.t -> Level.t -> unit *)
(* forces u >= v *)
(* this is normally an update of u in g rather than a creation. *)
let setleq g arcu arcv =
  let arcu' = {arcu with le=arcv.univ::arcu.le} in
  let g = 
    if is_set_arc arcu' then
      set_predicative g arcv
    else g
  in
    enter_arc arcu' g, arcu'

(* checks that non-redundant *)
let setleq_if (g,arcu) v =
  let arcv = repr g v in
  if is_leq g arcu arcv then g, arcu
  else setleq g arcu arcv

(* merge : Level.t -> Level.t -> unit *)
(* we assume  compare(u,v) = LE *)
(* merge u v  forces u ~ v with repr u as canonical repr *)
let merge g arcu arcv =
  (* we find the arc with the biggest rank, and we redirect all others to it *)
  let arcu, g, v =
    let best_ranked (max_rank, old_max_rank, best_arc, rest) arc =
      if Level.is_small arc.univ || arc.rank >= max_rank
      then (arc.rank, max_rank, arc, best_arc::rest)
      else (max_rank, old_max_rank, best_arc, arc::rest)
    in
      match between g arcu arcv with
      | [] -> anomaly (str "Univ.between.")
      | arc::rest ->
        let (max_rank, old_max_rank, best_arc, rest) =
          List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in
          if max_rank > old_max_rank then best_arc, g, rest
          else begin
              (* one redirected node also has max_rank *)
            let arcu = {best_arc with rank = max_rank + 1} in
              arcu, enter_arc arcu g, rest
          end 
  in
  let redirect (g,w,w') arcv =
    let g' = enter_equiv_arc arcv.univ arcu.univ g in
    (g',List.unionq arcv.lt w,arcv.le@w')
  in
  let (g',w,w') = List.fold_left redirect (g,[],[]) v in
  let g_arcu = (g',arcu) in
  let g_arcu = List.fold_left setlt_if g_arcu w in
  let g_arcu = List.fold_left setleq_if g_arcu w' in
  fst g_arcu

(* merge_disc : Level.t -> Level.t -> unit *)
(* we assume  compare(u,v) = compare(v,u) = NLE *)
(* merge_disc u v  forces u ~ v with repr u as canonical repr *)
let merge_disc g arc1 arc2 =
  let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in
  let arcu, g = 
    if not (Int.equal arc1.rank arc2.rank) then arcu, g
    else
      let arcu = {arcu with rank = succ arcu.rank} in 
      arcu, enter_arc arcu g
  in
  let g' = enter_equiv_arc arcv.univ arcu.univ g in
  let g_arcu = (g',arcu) in
  let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in
  let g_arcu = List.fold_left setleq_if g_arcu arcv.le in
  fst g_arcu

(* Universe inconsistency: error raised when trying to enforce a relation
   that would create a cycle in the graph of universes. *)

type univ_inconsistency = constraint_type * universe * universe

exception UniverseInconsistency of univ_inconsistency

let error_inconsistency o u v =
  raise (UniverseInconsistency (o,make u,make v))

(* enforc_univ_eq : Level.t -> Level.t -> unit *)
(* enforc_univ_eq u v will force u=v if possible, will fail otherwise *)

let enforce_univ_eq u v g =
  let arcu = repr g u in
  let arcv = repr g v in
    match fast_compare g arcu arcv with
    | FastEQ -> g
    | FastLT -> error_inconsistency Eq v u
    | FastLE -> merge g arcu arcv
    | FastNLE ->
      (match fast_compare g arcv arcu with
      | FastLT -> error_inconsistency Eq u v
      | FastLE -> merge g arcv arcu
      | FastNLE -> merge_disc g arcu arcv
      | FastEQ -> anomaly (Pp.str "Univ.compare."))

(* enforce_univ_leq : Level.t -> Level.t -> unit *)
(* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *)
let enforce_univ_leq u v g =
  let arcu = repr g u in
  let arcv = repr g v in
  if is_leq g arcu arcv then g
  else
    match fast_compare g arcv arcu with
    | FastLT -> error_inconsistency Le u v
    | FastLE  -> merge g arcv arcu
    | FastNLE -> fst (setleq g arcu arcv)
    | FastEQ -> anomaly (Pp.str "Univ.compare.")

(* enforce_univ_lt u v will force u<v if possible, will fail otherwise *)
let enforce_univ_lt u v g =
  let arcu = repr g u in
  let arcv = repr g v in
    match fast_compare g arcu arcv with
    | FastLT -> g
    | FastLE -> fst (setlt g arcu arcv)
    | FastEQ -> error_inconsistency Lt u v
    | FastNLE ->
      match fast_compare_neq false g arcv arcu with
        FastNLE -> fst (setlt g arcu arcv)
      | FastEQ -> anomaly (Pp.str "Univ.compare.")
      | FastLE | FastLT -> error_inconsistency Lt u v

(* Prop = Set is forbidden here. *)
let initial_universes =
  let g = enter_arc (terminal Level.set) UMap.empty in
  let g = enter_arc (terminal Level.prop) g in
    enforce_univ_lt Level.prop Level.set g

(* Constraints and sets of constraints. *)    

type univ_constraint = Level.t * constraint_type * Level.t

let enforce_constraint cst g =
  match cst with
    | (u,Lt,v) -> enforce_univ_lt u v g
    | (u,Le,v) -> enforce_univ_leq u v g
    | (u,Eq,v) -> enforce_univ_eq u v g

module UConstraintOrd =
struct
  type t = univ_constraint
  let compare (u,c,v) (u',c',v') =
    let i = constraint_type_ord c c' in
    if not (Int.equal i 0) then i
    else
      let i' = Level.compare u u' in
      if not (Int.equal i' 0) then i'
      else Level.compare v v'
end

let pr_constraint_type op = 
  let op_str = match op with
    | Lt -> " < "
    | Le -> " <= "
    | Eq -> " = "
  in str op_str

module Constraint = 
struct 
  module S = Set.Make(UConstraintOrd)
  include S

  let pr prl c =
    fold (fun (u1,op,u2) pp_std ->
      pp_std ++ prl u1 ++ pr_constraint_type op ++
        prl u2 ++ fnl () )  c (str "")
end

let empty_constraint = Constraint.empty
let merge_constraints c g =
  Constraint.fold enforce_constraint c g
                  
type constraints = Constraint.t

(** A value with universe constraints. *)
type 'a constrained = 'a * constraints

(** Constraint functions. *)

type 'a constraint_function = 'a -> 'a -> constraints -> constraints

let constraint_add_leq v u c =
  (* We just discard trivial constraints like u<=u *)
  if Expr.equal v u then c
  else 
    match v, u with
    | (x,n), (y,m) -> 
    let j = m - n in
      if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
        Constraint.add (x,Lt,y) c
      else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then
        if Level.equal x y then (* u+(k+1) <= u *)
          raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u))
        else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.")
      else if j = 0 then
        Constraint.add (x,Le,y) c
      else (* j >= 1 *) (* m = n + k, u <= v+k *)
        if Level.equal x y then c (* u <= u+k, trivial *)
        else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *)
        else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints.")
          
let check_univ_leq_one u v = Universe.exists (Expr.leq u) v

let check_univ_leq u v = 
  Universe.for_all (fun u -> check_univ_leq_one u v) u

let enforce_leq u v c =
  match v with
  | [v] ->
    List.fold_right (fun u -> constraint_add_leq u v) u c
  | _ -> anomaly (Pp.str"A universe bound can only be a variable.")

let enforce_leq u v c =
  if check_univ_leq u v then c
  else enforce_leq u v c

let check_constraint g (l,d,r) =
  match d with
  | Eq -> check_equal g l r
  | Le -> check_smaller g false l r
  | Lt -> check_smaller g true l r

let check_constraints c g =
  Constraint.for_all (check_constraint g) c

(**********************************************************************)
(** Universe polymorphism                                             *)
(**********************************************************************)

(** A universe level substitution, note that no algebraic universes are
    involved *)

type universe_level_subst = universe_level universe_map

(** A full substitution might involve algebraic universes *)
type universe_subst = universe universe_map

let level_subst_of f = 
  fun l -> 
    try let u = f l in 
          match Universe.level u with
          | None -> l
          | Some l -> l
    with Not_found -> l
     
module Instance : sig 
    type t = Level.t array

    val empty : t
    val is_empty : t -> bool
    val equal : t -> t -> bool
    val subst_fn : universe_level_subst_fn -> t -> t
    val subst : universe_level_subst -> t -> t
    val pr : t -> Pp.t
    val check_eq : t check_function
    val length : t -> int
    val append : t -> t -> t
    val of_array : Level.t array -> t
end = 
struct
  type t = Level.t array

  let empty = [||]

  let is_empty x = Int.equal (Array.length x) 0

  let subst_fn fn t = 
    let t' = CArray.smartmap fn t in
      if t' == t then t else t'

  let subst s t =
    let t' = 
      CArray.smartmap (fun x -> try LMap.find x s with Not_found -> x) t
    in if t' == t then t else t'

  let pr =
    prvect_with_sep spc Level.pr

  let equal t u = 
    t == u ||
      (Array.is_empty t && Array.is_empty u) ||
      (CArray.for_all2 Level.equal t u 
         (* Necessary as universe instances might come from different modules and 
            unmarshalling doesn't preserve sharing *))

  let check_eq g t1 t2 =
    t1 == t2 ||
      (Int.equal (Array.length t1) (Array.length t2) &&
         let rec aux i =
           (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
         in aux 0)

  let length = Array.length

  let append = Array.append

  let of_array i = i

end

(** Substitute instance inst for ctx in csts *)

let subst_instance_level s l =
  match l.Level.data with
  | Level.Var n -> s.(n) 
  | _ -> l

let subst_instance_instance s i = 
  Array.smartmap (fun l -> subst_instance_level s l) i

let subst_instance_universe s u =
  let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in
  let u' = Universe.smartmap f u in
    if u == u' then u
    else Universe.sort u'

let subst_instance_constraint s (u,d,v as c) =
  let u' = subst_instance_level s u in
  let v' = subst_instance_level s v in
    if u' == u && v' == v then c
    else (u',d,v')

let subst_instance_constraints s csts =
  Constraint.fold 
    (fun c csts -> Constraint.add (subst_instance_constraint s c) csts)
    csts Constraint.empty

type universe_instance = Instance.t

type 'a puniverses = 'a * Instance.t
(** A context of universe levels with universe constraints,
    representiong local universe variables and constraints *)

module UContext =
struct
  type t = Instance.t constrained

  (** Universe contexts (variables as a list) *)
  let empty = (Instance.empty, Constraint.empty)
  let make x = x
  let instance (univs, cst) = univs
  let constraints (univs, cst) = cst
  let size (univs, _) = Instance.length univs

  let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst
  let pr prl (univs, cst as ctx) =
    if is_empty ctx then mt() else
      h 0 (Instance.pr univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst))
end

type universe_context = UContext.t

module AUContext =
struct
  include UContext

  let repr (inst, cst) =
    (Array.mapi (fun i l -> Level.var i) inst, cst)

  let instantiate inst (u, cst) =
    assert (Array.length u = Array.length inst);
    subst_instance_constraints inst cst

end

type abstract_universe_context = AUContext.t

module CumulativityInfo =
struct
  type t = universe_context * universe_context

  let univ_context (univcst, subtypcst) = univcst
  let subtyp_context (univcst, subtypcst) = subtypcst

end

module ACumulativityInfo = CumulativityInfo
type abstract_cumulativity_info = ACumulativityInfo.t

module ContextSet =
struct
  type t = LSet.t constrained
  let empty = LSet.empty, Constraint.empty
  let constraints (_, cst) = cst
  let levels (ctx, _) = ctx
  let make ctx cst = (ctx, cst)
end
type universe_context_set = ContextSet.t

(** Instance subtyping *)

let check_subtype univs ctxT ctx =
  if AUContext.size ctx == AUContext.size ctx then
    let (inst, cst) = AUContext.repr ctx in
    let cstT = UContext.constraints (AUContext.repr ctxT) in
    let push accu v = add_universe v false accu in
    let univs = Array.fold_left push univs inst in
    let univs = merge_constraints cstT univs in
    check_constraints cst univs
  else false

(** Substitutions. *)

let is_empty_subst = LMap.is_empty
let empty_level_subst = LMap.empty
let is_empty_level_subst = LMap.is_empty

(** Substitution functions *)

(** With level to level substitutions. *)
let subst_univs_level_level subst l =
  try LMap.find l subst
  with Not_found -> l

let subst_univs_level_universe subst u =
  let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
  let u' = Universe.smartmap f u in
    if u == u' then u
    else Universe.sort u'

let make_abstract_instance (ctx, _) = 
  Array.mapi (fun i l -> Level.var i) ctx

(** With level to universe substitutions. *)
type universe_subst_fn = universe_level -> universe

let make_subst subst = fun l -> LMap.find l subst

let subst_univs_expr_opt fn (l,n) =
  Universe.addn n (fn l)

let subst_univs_universe fn ul =
  let subst, nosubst = 
    List.fold_right (fun u (subst,nosubst) -> 
      try let a' = subst_univs_expr_opt fn u in
            (a' :: subst, nosubst)
      with Not_found -> (subst, u :: nosubst))
      ul ([], [])
  in 
    if CList.is_empty subst then ul
    else 
      let substs = 
        List.fold_left Universe.merge_univs Universe.empty subst
      in
        List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u))
          substs nosubst

let merge_context strict ctx g =
  let g = Array.fold_left
   (* Be lenient, module typing reintroduces universes and 
      constraints due to includes *)
            (fun g v -> try add_universe v strict g with AlreadyDeclared -> g)
            g (UContext.instance ctx)
  in merge_constraints (UContext.constraints ctx) g

let merge_context_set strict ctx g =
  let g = LSet.fold
            (fun v g -> try add_universe v strict g with AlreadyDeclared -> g)
            (ContextSet.levels ctx) g
  in merge_constraints (ContextSet.constraints ctx) g

(** Pretty-printing *)

let pr_constraints prl = Constraint.pr prl
    
let pr_universe_context = UContext.pr

let pr_arc = function
  | _, Canonical {univ=u; lt=[]; le=[]} ->
      mt ()
  | _, Canonical {univ=u; lt=lt; le=le} ->
      let opt_sep = match lt, le with
      | [], _ | _, [] -> mt ()
      | _ -> spc ()
      in
      Level.pr u ++ str " " ++
      v 0
        (pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++
         opt_sep ++
         pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++
      fnl ()
  | u, Equiv v ->
      Level.pr u  ++ str " = " ++ Level.pr v ++ fnl ()

let pr_universes g =
  let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in
  prlist pr_arc graph