1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *) (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *) (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *) (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *) (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey *) open Pp open CErrors open Util (* Universes are stratified by a partial ordering $\le$. Let $\~{}$ be the associated equivalence. We also have a strict ordering $<$ between equivalence classes, and we maintain that $<$ is acyclic, and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$. At every moment, we have a finite number of universes, and we maintain the ordering in the presence of assertions $U<V$ and $U\le V$. The equivalence $\~{}$ is represented by a tree structure, as in the union-find algorithm. The assertions $<$ and $\le$ are represented by adjacency lists *) module RawLevel = struct open Names type t = | Prop | Set | Level of int * DirPath.t | Var of int (* Hash-consing *) let equal x y = x == y || match x, y with | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> Int.equal n n' && DirPath.equal d d' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (i1, dp1), Level (i2, dp2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m open Hashset.Combine let hash = function | Prop -> combinesmall 1 0 | Set -> combinesmall 1 1 | Var n -> combinesmall 2 n | Level (n, d) -> combinesmall 3 (combine n (Names.DirPath.hash d)) end module Level = struct open Names type raw_level = RawLevel.t = | Prop | Set | Level of int * DirPath.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data let make l = { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let var i = make (Var i) let is_small x = match data x with | Level _ -> false | _ -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let compare u v = if u == v then 0 else let c = Int.compare (hash u) (hash v) in if c == 0 then RawLevel.compare (data u) (data v) else c let to_string x = match data x with | Prop -> "Prop" | Set -> "Set" | Level (n,d) -> Names.DirPath.to_string d^"."^string_of_int n | Var i -> "Var("^string_of_int i^")" let pr u = str (to_string u) let make m n = make (Level (n, m)) end (** Level sets and maps *) module LMap = HMap.Make (Level) module LSet = LMap.Set type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int let make l = (l, 0) let prop = (Level.prop, 0) let set = (Level.set, 0) let type1 = (Level.set, 1) let is_prop = function | (l,0) -> Level.is_prop l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && Level.is_small v) else false let successor (u,n) = if Level.is_prop u then type1 else (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_prop u then (Level.set,n+k) else (u,n+k) let super (u,n as x) (v,n' as y) = let cmp = Level.compare u v in if Int.equal cmp 0 then if n < n' then Inl true else Inl false else if is_prop x then Inl true else if is_prop y then Inl false else Inr cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let level = function | (v,0) -> Some v | _ -> None let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then (Level.set, n) else (v', n) end type t = Expr.t list let tip u = [u] let cons u v = u :: v let equal x y = x == y || List.equal Expr.equal x y let make l = tip (Expr.make l) let pr l = match l with | [u] -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr l) ++ str ")" let level l = match l with | [l] -> Expr.level l | _ -> None (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip (Expr.successor Expr.set) let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies juste above the universe variable u. Used to type the sort u. *) let super l = List.map (fun x -> Expr.successor x) l let addn n l = List.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | [], _ -> l2 | _, [] -> l1 | h1 :: t1, h2 :: t2 -> (match Expr.super h1 h2 with | Inl true (* h1 < h2 *) -> merge_univs t1 l2 | Inl false -> merge_univs l1 t2 | Inr c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | b :: l' -> (match Expr.super a b with | Inl false -> aux a l' | Inl true -> l | Inr c -> if c <= 0 then cons a l else cons b (aux a l')) | [] -> cons a l in List.fold_right (fun a acc -> aux a acc) u [] (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let empty = [] let exists = List.exists let for_all = List.for_all let smartmap = List.smartmap end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super open Universe (* Comparison on this type is pointer equality *) type canonical_arc = { univ: Level.t; lt: Level.t list; le: Level.t list; rank : int; predicative : bool} let terminal u = {univ=u; lt=[]; le=[]; rank=0; predicative=false} module UMap : sig type key = Level.t type +'a t val empty : 'a t val add : key -> 'a -> 'a t -> 'a t val find : key -> 'a t -> 'a val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b end = HMap.Make(Level) (* A Level.t is either an alias for another one, or a canonical one, for which we know the universes that are above *) type univ_entry = Canonical of canonical_arc | Equiv of Level.t type universes = univ_entry UMap.t let enter_equiv_arc u v g = UMap.add u (Equiv v) g let enter_arc ca g = UMap.add ca.univ (Canonical ca) g (* Every Level.t has a unique canonical arc representative *) (* repr : universes -> Level.t -> canonical_arc *) (* canonical representative : we follow the Equiv links *) let repr g u = let rec repr_rec u = let a = try UMap.find u g with Not_found -> anomaly ~label:"Univ.repr" (str"Universe " ++ Level.pr u ++ str" undefined.") in match a with | Equiv v -> repr_rec v | Canonical arc -> arc in repr_rec u let get_set_arc g = repr g Level.set exception AlreadyDeclared let add_universe vlev strict g = try let _arcv = UMap.find vlev g in raise AlreadyDeclared with Not_found -> let v = terminal vlev in let arc = let arc = get_set_arc g in if strict then { arc with lt=vlev::arc.lt} else { arc with le=vlev::arc.le} in let g = enter_arc arc g in enter_arc v g (* reprleq : canonical_arc -> canonical_arc list *) (* All canonical arcv such that arcu<=arcv with arcv#arcu *) let reprleq g arcu = let rec searchrec w = function | [] -> w | v :: vl -> let arcv = repr g v in if List.memq arcv w || arcu==arcv then searchrec w vl else searchrec (arcv :: w) vl in searchrec [] arcu.le (* between : Level.t -> canonical_arc -> canonical_arc list *) (* between u v = { w | u<=w<=v, w canonical } *) (* between is the most costly operation *) let between g arcu arcv = (* good are all w | u <= w <= v *) (* bad are all w | u <= w ~<= v *) (* find good and bad nodes in {w | u <= w} *) (* explore b u = (b or "u is good") *) let rec explore ((good, bad, b) as input) arcu = if List.memq arcu good then (good, bad, true) (* b or true *) else if List.memq arcu bad then input (* (good, bad, b or false) *) else let leq = reprleq g arcu in (* is some universe >= u good ? *) let good, bad, b_leq = List.fold_left explore (good, bad, false) leq in if b_leq then arcu::good, bad, true (* b or true *) else good, arcu::bad, b (* b or false *) in let good,_,_ = explore ([arcv],[],false) arcu in good (* We assume compare(u,v) = LE with v canonical (see compare below). In this case List.hd(between g u v) = repr u Otherwise, between g u v = [] *) type constraint_type = Lt | Le | Eq let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (** [compare_neq] : is [arcv] in the transitive upward closure of [arcu] ? In [strict] mode, we fully distinguish between LE and LT, while in non-strict mode, we simply answer LE for both situations. If [arcv] is encountered in a LT part, we could directly answer without visiting unneeded parts of this transitive closure. In [strict] mode, if [arcv] is encountered in a LE part, we could only change the default answer (1st arg [c]) from NLE to LE, since a strict constraint may appear later. During the recursive traversal, [lt_done] and [le_done] are universes we have already visited, they do not contain [arcv]. The 4rd arg is [(lt_todo,le_todo)], two lists of universes not yet considered, known to be above [arcu], strictly or not. We use depth-first search, but the presence of [arcv] in [new_lt] is checked as soon as possible : this seems to be slightly faster on a test. *) type fast_order = FastEQ | FastLT | FastLE | FastNLE let fast_compare_neq strict g arcu arcv = (* [c] characterizes whether arcv has already been related to arcu among the lt_done,le_done universe *) let rec cmp c lt_done le_done lt_todo le_todo = match lt_todo, le_todo with | [],[] -> c | arc::lt_todo, le_todo -> if List.memq arc lt_done then cmp c lt_done le_done lt_todo le_todo else let rec find lt_todo lt le = match le with | [] -> begin match lt with | [] -> cmp c (arc :: lt_done) le_done lt_todo le_todo | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le end | u :: le -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt le in find lt_todo arc.lt arc.le | [], arc::le_todo -> if arc == arcv then (* No need to continue inspecting universes above arc: if arcv is strictly above arc, then we would have a cycle. But we cannot answer LE yet, a stronger constraint may come later from [le_todo]. *) if strict then cmp FastLE lt_done le_done [] le_todo else FastLE else if (List.memq arc lt_done) || (List.memq arc le_done) then cmp c lt_done le_done [] le_todo else let rec find lt_todo lt = match lt with | [] -> let fold accu u = let node = repr g u in node :: accu in let le_new = List.fold_left fold le_todo arc.le in cmp c lt_done (arc :: le_done) lt_todo le_new | u :: lt -> let arc = repr g u in if arc == arcv then if strict then FastLT else FastLE else find (arc :: lt_todo) lt in find [] arc.lt in cmp FastNLE [] [] [] [arcu] let fast_compare g arcu arcv = if arcu == arcv then FastEQ else fast_compare_neq true g arcu arcv let is_leq g arcu arcv = arcu == arcv || (match fast_compare_neq false g arcu arcv with | FastNLE -> false | (FastEQ|FastLE|FastLT) -> true) let is_lt g arcu arcv = if arcu == arcv then false else match fast_compare_neq true g arcu arcv with | FastLT -> true | (FastEQ|FastLE|FastNLE) -> false (* Invariants : compare(u,v) = EQ <=> compare(v,u) = EQ compare(u,v) = LT or LE => compare(v,u) = NLE compare(u,v) = NLE => compare(v,u) = NLE or LE or LT Adding u>=v is consistent iff compare(v,u) # LT and then it is redundant iff compare(u,v) # NLE Adding u>v is consistent iff compare(v,u) = NLE and then it is redundant iff compare(u,v) = LT *) (** * Universe checks [check_eq] and [check_leq], used in coqchk *) (** First, checks on universe levels *) let check_equal g u v = let arcu = repr g u in let arcv = repr g v in arcu == arcv let check_eq_level g u v = u == v || check_equal g u v let is_set_arc u = Level.is_set u.univ let is_prop_arc u = Level.is_prop u.univ let check_smaller g strict u v = let arcu = repr g u in let arcv = repr g v in if strict then is_lt g arcu arcv else is_prop_arc arcu || (is_set_arc arcu && arcv.predicative) || is_leq g arcu arcv (** Then, checks on universes *) type 'a check_function = universes -> 'a -> 'a -> bool let check_equal_expr g x y = x == y || (let (u, n) = x and (v, m) = y in Int.equal n m && check_equal g u v) let check_eq_univs g l1 l2 = let f x1 x2 = check_equal_expr g x1 x2 in let exists x1 l = List.exists (fun x2 -> f x1 x2) l in List.for_all (fun x1 -> exists x1 l2) l1 && List.for_all (fun x2 -> exists x2 l1) l2 let check_eq g u v = Universe.equal u v || check_eq_univs g u v let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> check_smaller g false u v | 1 -> check_smaller g true u v | x when x < 0 -> check_smaller g false u v | _ -> false let exists_bigger g ul l = Universe.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Universe.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = Universe.equal u v || Universe.is_type0m u || check_eq_univs g u v || real_check_leq g u v (** Enforcing new constraints : [setlt], [setleq], [merge], [merge_disc] *) (** To speed up tests of Set </<= i *) let set_predicative g arcv = enter_arc {arcv with predicative = true} g (* setlt : Level.t -> Level.t -> reason -> unit *) (* forces u > v *) (* this is normally an update of u in g rather than a creation. *) let setlt g arcu arcv = let arcu' = {arcu with lt=arcv.univ::arcu.lt} in let g = if is_set_arc arcu then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setlt_if (g,arcu) v = let arcv = repr g v in if is_lt g arcu arcv then g, arcu else setlt g arcu arcv (* setleq : Level.t -> Level.t -> unit *) (* forces u >= v *) (* this is normally an update of u in g rather than a creation. *) let setleq g arcu arcv = let arcu' = {arcu with le=arcv.univ::arcu.le} in let g = if is_set_arc arcu' then set_predicative g arcv else g in enter_arc arcu' g, arcu' (* checks that non-redundant *) let setleq_if (g,arcu) v = let arcv = repr g v in if is_leq g arcu arcv then g, arcu else setleq g arcu arcv (* merge : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = LE *) (* merge u v forces u ~ v with repr u as canonical repr *) let merge g arcu arcv = (* we find the arc with the biggest rank, and we redirect all others to it *) let arcu, g, v = let best_ranked (max_rank, old_max_rank, best_arc, rest) arc = if Level.is_small arc.univ || arc.rank >= max_rank then (arc.rank, max_rank, arc, best_arc::rest) else (max_rank, old_max_rank, best_arc, arc::rest) in match between g arcu arcv with | [] -> anomaly (str "Univ.between.") | arc::rest -> let (max_rank, old_max_rank, best_arc, rest) = List.fold_left best_ranked (arc.rank, min_int, arc, []) rest in if max_rank > old_max_rank then best_arc, g, rest else begin (* one redirected node also has max_rank *) let arcu = {best_arc with rank = max_rank + 1} in arcu, enter_arc arcu g, rest end in let redirect (g,w,w') arcv = let g' = enter_equiv_arc arcv.univ arcu.univ g in (g',List.unionq arcv.lt w,arcv.le@w') in let (g',w,w') = List.fold_left redirect (g,[],[]) v in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu w in let g_arcu = List.fold_left setleq_if g_arcu w' in fst g_arcu (* merge_disc : Level.t -> Level.t -> unit *) (* we assume compare(u,v) = compare(v,u) = NLE *) (* merge_disc u v forces u ~ v with repr u as canonical repr *) let merge_disc g arc1 arc2 = let arcu, arcv = if arc1.rank < arc2.rank then arc2, arc1 else arc1, arc2 in let arcu, g = if not (Int.equal arc1.rank arc2.rank) then arcu, g else let arcu = {arcu with rank = succ arcu.rank} in arcu, enter_arc arcu g in let g' = enter_equiv_arc arcv.univ arcu.univ g in let g_arcu = (g',arcu) in let g_arcu = List.fold_left setlt_if g_arcu arcv.lt in let g_arcu = List.fold_left setleq_if g_arcu arcv.le in fst g_arcu (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v = raise (UniverseInconsistency (o,make u,make v)) (* enforc_univ_eq : Level.t -> Level.t -> unit *) (* enforc_univ_eq u v will force u=v if possible, will fail otherwise *) let enforce_univ_eq u v g = let arcu = repr g u in let arcv = repr g v in match fast_compare g arcu arcv with | FastEQ -> g | FastLT -> error_inconsistency Eq v u | FastLE -> merge g arcu arcv | FastNLE -> (match fast_compare g arcv arcu with | FastLT -> error_inconsistency Eq u v | FastLE -> merge g arcv arcu | FastNLE -> merge_disc g arcu arcv | FastEQ -> anomaly (Pp.str "Univ.compare.")) (* enforce_univ_leq : Level.t -> Level.t -> unit *) (* enforce_univ_leq u v will force u<=v if possible, will fail otherwise *) let enforce_univ_leq u v g = let arcu = repr g u in let arcv = repr g v in if is_leq g arcu arcv then g else match fast_compare g arcv arcu with | FastLT -> error_inconsistency Le u v | FastLE -> merge g arcv arcu | FastNLE -> fst (setleq g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") (* enforce_univ_lt u v will force u<v if possible, will fail otherwise *) let enforce_univ_lt u v g = let arcu = repr g u in let arcv = repr g v in match fast_compare g arcu arcv with | FastLT -> g | FastLE -> fst (setlt g arcu arcv) | FastEQ -> error_inconsistency Lt u v | FastNLE -> match fast_compare_neq false g arcv arcu with FastNLE -> fst (setlt g arcu arcv) | FastEQ -> anomaly (Pp.str "Univ.compare.") | FastLE | FastLT -> error_inconsistency Lt u v (* Prop = Set is forbidden here. *) let initial_universes = let g = enter_arc (terminal Level.set) UMap.empty in let g = enter_arc (terminal Level.prop) g in enforce_univ_lt Level.prop Level.set g (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let enforce_constraint cst g = match cst with | (u,Lt,v) -> enforce_univ_lt u v g | (u,Le,v) -> enforce_univ_leq u v g | (u,Eq,v) -> enforce_univ_eq u v g module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = fold (fun (u1,op,u2) pp_std -> pp_std ++ prl u1 ++ pr_constraint_type op ++ prl u2 ++ fnl () ) c (str "") end let empty_constraint = Constraint.empty let merge_constraints c g = Constraint.fold enforce_constraint c g type constraints = Constraint.t (** A value with universe constraints. *) type 'a constrained = 'a * constraints (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then if Level.equal x y then (* u+(k+1) <= u *) raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u)) else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else anomaly (Pp.str"Unable to handle arbitrary u <= v+k constraints.") let check_univ_leq_one u v = Universe.exists (Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = match v with | [v] -> List.fold_right (fun u -> constraint_add_leq u v) u c | _ -> anomaly (Pp.str"A universe bound can only be a variable.") let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let check_constraint g (l,d,r) = match d with | Eq -> check_equal g l r | Le -> check_smaller g false l r | Lt -> check_smaller g true l r let check_constraints c g = Constraint.for_all (check_constraint g) c (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val equal : t -> t -> bool val subst_fn : universe_level_subst_fn -> t -> t val subst : universe_level_subst -> t -> t val pr : t -> Pp.t val check_eq : t check_function val length : t -> int val append : t -> t -> t val of_array : Level.t array -> t end = struct type t = Level.t array let empty = [||] let is_empty x = Int.equal (Array.length x) 0 let subst_fn fn t = let t' = CArray.smartmap fn t in if t' == t then t else t' let subst s t = let t' = CArray.smartmap (fun x -> try LMap.find x s with Not_found -> x) t in if t' == t then t else t' let pr = prvect_with_sep spc Level.pr let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) let check_eq g t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) let length = Array.length let append = Array.append let of_array i = i end (** Substitute instance inst for ctx in csts *) let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.smartmap (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty type universe_instance = Instance.t type 'a puniverses = 'a * Instance.t (** A context of universe levels with universe constraints, representiong local universe variables and constraints *) module UContext = struct type t = Instance.t constrained (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let make x = x let instance (univs, cst) = univs let constraints (univs, cst) = cst let size (univs, _) = Instance.length univs let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (Instance.pr univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) end type universe_context = UContext.t module AUContext = struct include UContext let repr (inst, cst) = (Array.mapi (fun i l -> Level.var i) inst, cst) let instantiate inst (u, cst) = assert (Array.length u = Array.length inst); subst_instance_constraints inst cst end type abstract_universe_context = AUContext.t module CumulativityInfo = struct type t = universe_context * universe_context let univ_context (univcst, subtypcst) = univcst let subtyp_context (univcst, subtypcst) = subtypcst end module ACumulativityInfo = CumulativityInfo type abstract_cumulativity_info = ACumulativityInfo.t module ContextSet = struct type t = LSet.t constrained let empty = LSet.empty, Constraint.empty let constraints (_, cst) = cst let levels (ctx, _) = ctx let make ctx cst = (ctx, cst) end type universe_context_set = ContextSet.t (** Instance subtyping *) let check_subtype univs ctxT ctx = if AUContext.size ctx == AUContext.size ctx then let (inst, cst) = AUContext.repr ctx in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v false accu in let univs = Array.fold_left push univs inst in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Substitutions. *) let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smartmap f u in if u == u' then u else Universe.sort u' let make_abstract_instance (ctx, _) = Array.mapi (fun i l -> Level.var i) ctx (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = List.fold_right (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u)) substs nosubst let merge_context strict ctx g = let g = Array.fold_left (* Be lenient, module typing reintroduces universes and constraints due to includes *) (fun g v -> try add_universe v strict g with AlreadyDeclared -> g) g (UContext.instance ctx) in merge_constraints (UContext.constraints ctx) g let merge_context_set strict ctx g = let g = LSet.fold (fun v g -> try add_universe v strict g with AlreadyDeclared -> g) (ContextSet.levels ctx) g in merge_constraints (ContextSet.constraints ctx) g (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_arc = function | _, Canonical {univ=u; lt=[]; le=[]} -> mt () | _, Canonical {univ=u; lt=lt; le=le} -> let opt_sep = match lt, le with | [], _ | _, [] -> mt () | _ -> spc () in Level.pr u ++ str " " ++ v 0 (pr_sequence (fun v -> str "< " ++ Level.pr v) lt ++ opt_sep ++ pr_sequence (fun v -> str "<= " ++ Level.pr v) le) ++ fnl () | u, Equiv v -> Level.pr u ++ str " = " ++ Level.pr v ++ fnl () let pr_universes g = let graph = UMap.fold (fun u a l -> (u,a)::l) g [] in prlist pr_arc graph