1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (** Abstract representations of values in a vo *) (** NB: UPDATE THIS FILE EACH TIME cic.mli IS MODIFIED ! To ensure this file is up-to-date, 'make' now compares the md5 of cic.mli with a copy we maintain here: MD5 56ac4cade33eff3d26ed5cdadb580c7e checker/cic.mli *) (** We reify here the types of values present in a vo (see cic.mli), in order to validate its structure. Maybe this reification could become automatically generated someday ? - [Any] stands for a value that we won't check, - [Fail] means a value that shouldn't be there at all, - [Tuple] provides a name and sub-values in this block - [Sum] provides a name, a number of constant constructors, and sub-values at each position of each possible constructed variant - [List] and [Opt] could have been defined via [Sum], but having them here helps defining some recursive values below - [Annot] is a no-op, just there for improving debug messages *) type value = | Any | Fail of string | Tuple of string * value array | Sum of string * int * value array array | Array of value | List of value | Opt of value | Int | String | Annot of string * value | Dyn (** Some pseudo-constructors *) let v_tuple name v = Tuple(name,v) let v_sum name cc vv = Sum(name,cc,vv) let v_enum name n = Sum(name,n,[||]) (** Ocaml standard library *) let v_pair v1 v2 = v_tuple "*" [|v1; v2|] let v_bool = v_enum "bool" 2 let v_unit = v_enum "unit" 1 let v_ref v = v_tuple "ref" [|v|] let v_set v = let rec s = Sum ("Set.t",1, [|[|s; Annot("elem",v); s; Annot("bal",Int)|]|]) in s let v_map vk vd = let rec m = Sum ("Map.t",1, [|[|m; Annot("key",vk); Annot("data",vd); m; Annot("bal",Int)|]|]) in m let v_hset v = v_map Int (v_set v) let v_hmap vk vd = v_map Int (v_map vk vd) (* lib/future *) let v_computation f = Annot ("Future.computation", v_ref (v_sum "Future.comput" 0 [| [| Fail "Future.ongoing" |]; [| f |] |])) (** kernel/names *) let v_id = String let v_dp = Annot ("dirpath", List v_id) let v_name = v_sum "name" 1 [|[|v_id|]|] let v_uid = v_tuple "uniq_ident" [|Int;String;v_dp|] let rec v_mp = Sum("module_path",0, [|[|v_dp|]; [|v_uid|]; [|v_mp;v_id|]|]) let v_kn = v_tuple "kernel_name" [|Any;v_mp;v_dp;v_id;Int|] let v_cst = v_sum "cst|mind" 0 [|[|v_kn|];[|v_kn;v_kn|]|] let v_ind = v_tuple "inductive" [|v_cst;Int|] let v_cons = v_tuple "constructor" [|v_ind;Int|] (** kernel/univ *) let v_raw_level = v_sum "raw_level" 2 (* Prop, Set *) [|(*Level*)[|Int;v_dp|]; (*Var*)[|Int|]|] let v_level = v_tuple "level" [|Int;v_raw_level|] let v_expr = v_tuple "levelexpr" [|v_level;Int|] let v_univ = List v_expr let v_cstrs = Annot ("Univ.constraints", v_set (v_tuple "univ_constraint" [|v_level;v_enum "order_request" 3;v_level|])) let v_instance = Annot ("instance", Array v_level) let v_context = v_tuple "universe_context" [|v_instance;v_cstrs|] let v_abs_context = v_context (* only for clarity *) let v_abs_cum_info = v_tuple "cumulativity_info" [|v_abs_context; v_context|] let v_context_set = v_tuple "universe_context_set" [|v_hset v_level;v_cstrs|] (** kernel/term *) let v_sort = v_sum "sort" 0 [|[|v_enum "cnt" 2|];[|v_univ|]|] let v_sortfam = v_enum "sorts_family" 3 let v_puniverses v = v_tuple "punivs" [|v;v_instance|] let v_boollist = List v_bool let v_caseinfo = let v_cstyle = v_enum "case_style" 5 in let v_cprint = v_tuple "case_printing" [|v_boollist;Array v_boollist;v_cstyle|] in v_tuple "case_info" [|v_ind;Int;Array Int;Array Int;v_cprint|] let v_cast = v_enum "cast_kind" 4 let v_proj = v_tuple "projection" [|v_cst; v_bool|] let rec v_constr = Sum ("constr",0,[| [|Int|]; (* Rel *) [|Fail "Var"|]; (* Var *) [|Fail "Meta"|]; (* Meta *) [|Fail "Evar"|]; (* Evar *) [|v_sort|]; (* Sort *) [|v_constr;v_cast;v_constr|]; (* Cast *) [|v_name;v_constr;v_constr|]; (* Prod *) [|v_name;v_constr;v_constr|]; (* Lambda *) [|v_name;v_constr;v_constr;v_constr|]; (* LetIn *) [|v_constr;Array v_constr|]; (* App *) [|v_puniverses v_cst|]; (* Const *) [|v_puniverses v_ind|]; (* Ind *) [|v_puniverses v_cons|]; (* Construct *) [|v_caseinfo;v_constr;v_constr;Array v_constr|]; (* Case *) [|v_fix|]; (* Fix *) [|v_cofix|]; (* CoFix *) [|v_proj;v_constr|] (* Proj *) |]) and v_prec = Tuple ("prec_declaration", [|Array v_name; Array v_constr; Array v_constr|]) and v_fix = Tuple ("pfixpoint", [|Tuple ("fix2",[|Array Int;Int|]);v_prec|]) and v_cofix = Tuple ("pcofixpoint",[|Int;v_prec|]) let v_rdecl = v_sum "rel_declaration" 0 [| [|v_name; v_constr|]; (* LocalAssum *) [|v_name; v_constr; v_constr|] |] (* LocalDef *) let v_rctxt = List v_rdecl let v_section_ctxt = v_enum "emptylist" 1 (** kernel/mod_subst *) let v_delta_hint = v_sum "delta_hint" 0 [|[|Int; Opt v_constr|];[|v_kn|]|] let v_resolver = v_tuple "delta_resolver" [|v_map v_mp v_mp; v_hmap v_kn v_delta_hint|] let v_mp_resolver = v_tuple "" [|v_mp;v_resolver|] let v_subst = v_tuple "substitution" [|v_map v_mp v_mp_resolver; v_map v_uid v_mp_resolver|] (** kernel/lazyconstr *) let v_substituted v_a = v_tuple "substituted" [|v_a; List v_subst|] let v_cstr_subst = v_substituted v_constr (** NB: Second constructor [Direct] isn't supposed to appear in a .vo *) let v_lazy_constr = v_sum "lazy_constr" 0 [|[|List v_subst;v_dp;Int|]|] (** kernel/declarations *) let v_impredicative_set = v_enum "impr-set" 2 let v_engagement = v_impredicative_set let v_pol_arity = v_tuple "polymorphic_arity" [|List(Opt v_level);v_univ|] let v_cst_def = v_sum "constant_def" 0 [|[|Opt Int|]; [|v_cstr_subst|]; [|v_lazy_constr|]|] let v_projbody = v_tuple "projection_body" [|v_cst;Int;Int;v_constr; v_tuple "proj_eta" [|v_constr;v_constr|]; v_constr|] let v_typing_flags = v_tuple "typing_flags" [|v_bool; v_bool|] let v_const_univs = v_sum "constant_universes" 0 [|[|v_context_set|]; [|v_abs_context|]|] let v_cb = v_tuple "constant_body" [|v_section_ctxt; v_cst_def; v_constr; Any; v_const_univs; Opt v_projbody; v_bool; v_typing_flags|] let v_recarg = v_sum "recarg" 1 (* Norec *) [|[|v_ind|] (* Mrec *);[|v_ind|] (* Imbr *)|] let rec v_wfp = Sum ("wf_paths",0, [|[|Int;Int|]; (* Rtree.Param *) [|v_recarg;Array v_wfp|]; (* Rtree.Node *) [|Int;Array v_wfp|] (* Rtree.Rec *) |]) let v_mono_ind_arity = v_tuple "monomorphic_inductive_arity" [|v_constr;v_sort|] let v_ind_arity = v_sum "inductive_arity" 0 [|[|v_mono_ind_arity|];[|v_pol_arity|]|] let v_one_ind = v_tuple "one_inductive_body" [|v_id; v_rctxt; v_ind_arity; Array v_id; Array v_constr; Int; Int; List v_sortfam; Array v_constr; Array Int; Array Int; v_wfp; Int; Int; Any|] let v_finite = v_enum "recursivity_kind" 3 let v_mind_record = Annot ("mind_record", Opt (Opt (v_tuple "record" [| v_id; Array v_cst; Array v_projbody |]))) let v_ind_pack_univs = v_sum "abstract_inductive_universes" 0 [|[|v_context_set|]; [|v_abs_context|]; [|v_abs_cum_info|]|] let v_ind_pack = v_tuple "mutual_inductive_body" [|Array v_one_ind; v_mind_record; v_finite; Int; v_section_ctxt; Int; Int; v_rctxt; v_ind_pack_univs; (* universes *) Opt v_bool; v_typing_flags|] let v_with = Sum ("with_declaration_body",0, [|[|List v_id;v_mp|]; [|List v_id;v_tuple "with_def" [|v_constr;v_context|]|]|]) let rec v_mae = Sum ("module_alg_expr",0, [|[|v_mp|]; (* SEBident *) [|v_mae;v_mp|]; (* SEBapply *) [|v_mae;v_with|] (* SEBwith *) |]) let rec v_sfb = Sum ("struct_field_body",0, [|[|v_cb|]; (* SFBconst *) [|v_ind_pack|]; (* SFBmind *) [|v_module|]; (* SFBmodule *) [|v_modtype|] (* SFBmodtype *) |]) and v_struc = List (Tuple ("label*sfb",[|v_id;v_sfb|])) and v_sign = Sum ("module_sign",0, [|[|v_struc|]; (* NoFunctor *) [|v_uid;v_modtype;v_sign|]|]) (* MoreFunctor *) and v_mexpr = Sum ("module_expr",0, [|[|v_mae|]; (* NoFunctor *) [|v_uid;v_modtype;v_mexpr|]|]) (* MoreFunctor *) and v_impl = Sum ("module_impl",2, (* Abstract, FullStruct *) [|[|v_mexpr|]; (* Algebraic *) [|v_sign|]|]) (* Struct *) and v_noimpl = v_unit and v_module = Tuple ("module_body", [|v_mp;v_impl;v_sign;Opt v_mexpr;v_context_set;v_resolver;Any|]) and v_modtype = Tuple ("module_type_body", [|v_mp;v_noimpl;v_sign;Opt v_mexpr;v_context_set;v_resolver;v_unit|]) (** kernel/safe_typing *) let v_vodigest = Sum ("module_impl",0, [| [|String|]; [|String;String|] |]) let v_deps = Array (v_tuple "dep" [|v_dp;v_vodigest|]) let v_compiled_lib = v_tuple "compiled" [|v_dp;v_module;v_deps;v_engagement;Any|] (** Library objects *) let v_obj = Dyn let v_libobj = Tuple ("libobj", [|v_id;v_obj|]) let v_libobjs = List v_libobj let v_libraryobjs = Tuple ("library_objects",[|v_libobjs;v_libobjs|]) (** STM objects *) let v_frozen = Tuple ("frozen", [|List (v_pair Int Dyn); Opt Dyn|]) let v_states = v_pair Any v_frozen let v_state = Tuple ("state", [|v_states; Any; v_bool|]) let v_vcs = let data = Opt Any in let vcs = Tuple ("vcs", [|Any; Any; Tuple ("dag", [|Any; Any; v_map Any (Tuple ("state_info", [|Any; Any; Opt v_state; v_pair data Any|])) |]) |]) in let () = Obj.set_field (Obj.magic data) 0 (Obj.magic vcs) in vcs let v_uuid = Any let v_request id doc = Tuple ("request", [|Any; Any; doc; Any; id; String|]) let v_tasks = List (v_pair (v_request v_uuid v_vcs) v_bool) let v_counters = Any let v_stm_seg = v_pair v_tasks v_counters (** Toplevel structures in a vo (see Cic.mli) *) let v_libsum = Tuple ("summary", [|v_dp;Array v_dp;v_deps|]) let v_lib = Tuple ("library",[|v_compiled_lib;v_libraryobjs|]) let v_opaques = Array (v_computation v_constr) let v_univopaques = Opt (Tuple ("univopaques",[|Array (v_computation v_context_set);v_context_set;v_bool|])) (** Registering dynamic values *) module IntOrd = struct type t = int let compare (x : t) (y : t) = compare x y end module IntMap = Map.Make(IntOrd) let dyn_table : value IntMap.t ref = ref IntMap.empty let register_dyn name t = dyn_table := IntMap.add name t !dyn_table let find_dyn name = try IntMap.find name !dyn_table with Not_found -> Any