1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) (* Created under Benjamin Werner account by Bruno Barras to implement a call-by-value conversion algorithm and a lazy reduction machine with sharing, Nov 1996 *) (* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *) (* Irreversibility of opacity by Bruno Barras *) (* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *) (* Equal inductive types by Jacek Chrzaszcz as part of the module system, Aug 2002 *) open CErrors open Util open Names open Constr open Vars open Environ open CClosure open Esubst open Context.Rel.Declaration let rec is_empty_stack = function [] -> true | Zupdate _::s -> is_empty_stack s | Zshift _::s -> is_empty_stack s | _ -> false (* Compute the lift to be performed on a term placed in a given stack *) let el_stack el stk = let n = List.fold_left (fun i z -> match z with Zshift n -> i+n | _ -> i) 0 stk in el_shft n el let compare_stack_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> Int.equal bal 0 | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2 | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2 | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2 | (Zproj (n1,m1,p1)::s1, Zproj (n2,m2,p2)::s2) -> Int.equal bal 0 && compare_rec 0 s1 s2 | (ZcaseT(c1,_,_,_)::s1, ZcaseT(c2,_,_,_)::s2) -> Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | [], _ :: _ | (Zproj _ | ZcaseT _ | Zfix _) :: _, _ -> false in compare_rec 0 stk1 stk2 type lft_constr_stack_elt = Zlapp of (lift * fconstr) array | Zlproj of Constant.t * lift | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * fconstr * fconstr array and lft_constr_stack = lft_constr_stack_elt list let rec zlapp v = function Zlapp v2 :: s -> zlapp (Array.append v v2) s | s -> Zlapp v :: s (** Hand-unrolling of the map function to bypass the call to the generic array allocation. Type annotation is required to tell OCaml that the array does not contain floats. *) let map_lift (l : lift) (v : fconstr array) = match v with | [||] -> assert false | [|c0|] -> [|(l, c0)|] | [|c0; c1|] -> [|(l, c0); (l, c1)|] | [|c0; c1; c2|] -> [|(l, c0); (l, c1); (l, c2)|] | [|c0; c1; c2; c3|] -> [|(l, c0); (l, c1); (l, c2); (l, c3)|] | v -> CArray.Fun1.map (fun l t -> (l, t)) l v let pure_stack lfts stk = let rec pure_rec lfts stk = match stk with [] -> (lfts,[]) | zi::s -> (match (zi,pure_rec lfts s) with (Zupdate _,lpstk) -> lpstk | (Zshift n,(l,pstk)) -> (el_shft n l, pstk) | (Zapp a, (l,pstk)) -> (l,zlapp (map_lift l a) pstk) | (Zproj (n,m,c), (l,pstk)) -> (l, Zlproj (c,l)::pstk) | (Zfix(fx,a),(l,pstk)) -> let (lfx,pa) = pure_rec l a in (l, Zlfix((lfx,fx),pa)::pstk) | (ZcaseT(ci,p,br,e),(l,pstk)) -> (l,Zlcase(ci,l,mk_clos e p,Array.map (mk_clos e) br)::pstk)) in snd (pure_rec lfts stk) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) let whd_betaiota env t = match kind t with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ | LetIn _ -> t | _ -> whd_val (create_clos_infos betaiota env) (inject t) end | _ -> whd_val (create_clos_infos betaiota env) (inject t) let nf_betaiota env t = norm_val (create_clos_infos betaiota env) (inject t) let whd_betaiotazeta env x = match kind x with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> x | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ -> x | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (inject x) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (inject x) let whd_all env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Const _ |Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos all env) (inject t) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos all env) (inject t) let whd_allnolet env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | LetIn _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | App _ | Const _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos allnolet env) (inject t) end | Rel _ | Cast _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos allnolet env) (inject t) (********************************************************************) (* Conversion *) (********************************************************************) (* Conversion utility functions *) (* functions of this type are called from the kernel *) type 'a kernel_conversion_function = env -> 'a -> 'a -> unit (* functions of this type can be called from outside the kernel *) type 'a extended_conversion_function = ?l2r:bool -> ?reds:Names.transparent_state -> env -> ?evars:((existential->constr option) * UGraph.t) -> 'a -> 'a -> unit exception NotConvertible exception NotConvertibleVect of int (* Convertibility of sorts *) (* The sort cumulativity is Prop <= Set <= Type 1 <= ... <= Type i <= ... and this holds whatever Set is predicative or impredicative *) type conv_pb = | CONV | CUMUL let is_cumul = function CUMUL -> true | CONV -> false type 'a universe_compare = { (* Might raise NotConvertible *) compare : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a -> 'a; compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a; conv_inductives : conv_pb -> (Declarations.mutual_inductive_body * int) -> Univ.Instance.t -> int -> Univ.Instance.t -> int -> 'a -> 'a; conv_constructors : (Declarations.mutual_inductive_body * int * int) -> Univ.Instance.t -> int -> Univ.Instance.t -> int -> 'a -> 'a; } type 'a universe_state = 'a * 'a universe_compare type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.constraints let sort_cmp_universes env pb s0 s1 (u, check) = (check.compare env pb s0 s1 u, check) (* [flex] should be true for constants, false for inductive types and constructors. *) let convert_instances ~flex u u' (s, check) = (check.compare_instances ~flex u u' s, check) let convert_inductives cv_pb ind u1 sv1 u2 sv2 (s, check) = (check.conv_inductives cv_pb ind u1 sv1 u2 sv2 s, check) let convert_constructors cons u1 sv1 u2 sv2 (s, check) = (check.conv_constructors cons u1 sv1 u2 sv2 s, check) let conv_table_key infos k1 k2 cuniv = if k1 == k2 then cuniv else match k1, k2 with | ConstKey (cst, u), ConstKey (cst', u') when Constant.equal cst cst' -> if Univ.Instance.equal u u' then cuniv else let flex = evaluable_constant cst (info_env infos) && RedFlags.red_set (info_flags infos) (RedFlags.fCONST cst) in convert_instances ~flex u u' cuniv | VarKey id, VarKey id' when Id.equal id id' -> cuniv | RelKey n, RelKey n' when Int.equal n n' -> cuniv | _ -> raise NotConvertible let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv = let rec cmp_rec pstk1 pstk2 cuniv = match (pstk1,pstk2) with | (z1::s1, z2::s2) -> let cu1 = cmp_rec s1 s2 cuniv in (match (z1,z2) with | (Zlapp a1,Zlapp a2) -> Array.fold_right2 f a1 a2 cu1 | (Zlproj (c1,l1),Zlproj (c2,l2)) -> if not (Constant.equal c1 c2) then raise NotConvertible else cu1 | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> let cu2 = f fx1 fx2 cu1 in cmp_rec a1 a2 cu2 | (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) -> if not (fmind ci1.ci_ind ci2.ci_ind) then raise NotConvertible; let cu2 = f (l1,p1) (l2,p2) cu1 in Array.fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2 | _ -> assert false) | _ -> cuniv in if compare_stack_shape stk1 stk2 then cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv else raise NotConvertible let rec no_arg_available = function | [] -> true | Zupdate _ :: stk -> no_arg_available stk | Zshift _ :: stk -> no_arg_available stk | Zapp v :: stk -> Int.equal (Array.length v) 0 && no_arg_available stk | Zproj _ :: _ -> true | ZcaseT _ :: _ -> true | Zfix _ :: _ -> true let rec no_nth_arg_available n = function | [] -> true | Zupdate _ :: stk -> no_nth_arg_available n stk | Zshift _ :: stk -> no_nth_arg_available n stk | Zapp v :: stk -> let k = Array.length v in if n >= k then no_nth_arg_available (n-k) stk else false | Zproj _ :: _ -> true | ZcaseT _ :: _ -> true | Zfix _ :: _ -> true let rec no_case_available = function | [] -> true | Zupdate _ :: stk -> no_case_available stk | Zshift _ :: stk -> no_case_available stk | Zapp _ :: stk -> no_case_available stk | Zproj (_,_,p) :: _ -> false | ZcaseT _ :: _ -> false | Zfix _ :: _ -> true let in_whnf (t,stk) = match fterm_of t with | (FLetIn _ | FCaseT _ | FApp _ | FCLOS _ | FLIFT _ | FCast _) -> false | FLambda _ -> no_arg_available stk | FConstruct _ -> no_case_available stk | FCoFix _ -> no_case_available stk | FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk | (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _ | FProj _) -> true | FLOCKED -> assert false let unfold_projection infos p c = let unf = Projection.unfolded p in if unf || RedFlags.red_set infos.i_flags (RedFlags.fCONST (Projection.constant p)) then (match try Some (lookup_projection p (info_env infos)) with Not_found -> None with | Some pb -> let s = Zproj (pb.Declarations.proj_npars, pb.Declarations.proj_arg, Projection.constant p) in Some (c, s) | None -> None) else None (* Conversion between [lft1]term1 and [lft2]term2 *) let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv = eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv (* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *) and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv = Control.check_for_interrupt (); (* First head reduce both terms *) let whd = whd_stack (infos_with_reds infos betaiotazeta) in let rec whd_both (t1,stk1) (t2,stk2) = let st1' = whd t1 stk1 in let st2' = whd t2 stk2 in (* Now, whd_stack on term2 might have modified st1 (due to sharing), and st1 might not be in whnf anymore. If so, we iterate ccnv. *) if in_whnf st1' then (st1',st2') else whd_both st1' st2' in let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in (* compute the lifts that apply to the head of the term (hd1 and hd2) *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in match (fterm_of hd1, fterm_of hd2) with (* case of leaves *) | (FAtom a1, FAtom a2) -> (match kind a1, kind a2 with | (Sort s1, Sort s2) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (Sort)."); sort_cmp_universes (env_of_infos infos) cv_pb s1 s2 cuniv | (Meta n, Meta m) -> if Int.equal n m then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | _ -> raise NotConvertible) | (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) -> if Evar.equal ev1 ev2 then let cuniv = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in convert_vect l2r infos el1 el2 (Array.map (mk_clos env1) args1) (Array.map (mk_clos env2) args2) cuniv else raise NotConvertible (* 2 index known to be bound to no constant *) | (FRel n, FRel m) -> if Int.equal (reloc_rel n el1) (reloc_rel m el2) then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* 2 constants, 2 local defined vars or 2 defined rels *) | (FFlex fl1, FFlex fl2) -> (try let cuniv = conv_table_key infos fl1 fl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with NotConvertible | Univ.UniverseInconsistency _ -> (* else the oracle tells which constant is to be expanded *) let oracle = CClosure.oracle_of_infos infos in let (app1,app2) = if Conv_oracle.oracle_order Univ.out_punivs oracle l2r fl1 fl2 then match unfold_reference infos fl1 with | Some def1 -> ((lft1, (def1, v1)), appr2) | None -> (match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, (def2, v2))) | None -> raise NotConvertible) else match unfold_reference infos fl2 with | Some def2 -> (appr1, (lft2, (def2, v2))) | None -> (match unfold_reference infos fl1 with | Some def1 -> ((lft1, (def1, v1)), appr2) | None -> raise NotConvertible) in eqappr cv_pb l2r infos app1 app2 cuniv) | (FProj (p1,c1), FProj (p2, c2)) -> (* Projections: prefer unfolding to first-order unification, which will happen naturally if the terms c1, c2 are not in constructor form *) (match unfold_projection infos p1 c1 with | Some (def1,s1) -> eqappr cv_pb l2r infos (lft1, (def1, (s1 :: v1))) appr2 cuniv | None -> match unfold_projection infos p2 c2 with | Some (def2,s2) -> eqappr cv_pb l2r infos appr1 (lft2, (def2, (s2 :: v2))) cuniv | None -> if Constant.equal (Projection.constant p1) (Projection.constant p2) && compare_stack_shape v1 v2 then let u1 = ccnv CONV l2r infos el1 el2 c1 c2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 u1 else (* Two projections in WHNF: unfold *) raise NotConvertible) | (FProj (p1,c1), t2) -> (match unfold_projection infos p1 c1 with | Some (def1,s1) -> eqappr cv_pb l2r infos (lft1, (def1, (s1 :: v1))) appr2 cuniv | None -> (match t2 with | FFlex fl2 -> (match unfold_reference infos fl2 with | Some def2 -> eqappr cv_pb l2r infos appr1 (lft2, (def2, v2)) cuniv | None -> raise NotConvertible) | _ -> raise NotConvertible)) | (t1, FProj (p2,c2)) -> (match unfold_projection infos p2 c2 with | Some (def2,s2) -> eqappr cv_pb l2r infos appr1 (lft2, (def2, (s2 :: v2))) cuniv | None -> (match t1 with | FFlex fl1 -> (match unfold_reference infos fl1 with | Some def1 -> eqappr cv_pb l2r infos (lft1, (def1, v1)) appr2 cuniv | None -> raise NotConvertible) | _ -> raise NotConvertible)) (* other constructors *) | (FLambda _, FLambda _) -> (* Inconsistency: we tolerate that v1, v2 contain shift and update but we throw them away *) if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FLambda)."); let (_,ty1,bd1) = destFLambda mk_clos hd1 in let (_,ty2,bd2) = destFLambda mk_clos hd2 in let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 cuniv | (FProd (_,c1,c2), FProd (_,c'1,c'2)) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FProd)."); (* Luo's system *) let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 cuniv (* Eta-expansion on the fly *) | (FLambda _, _) -> let () = match v1 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (_,_ty1,bd1) = destFLambda mk_clos hd1 in eqappr CONV l2r infos (el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv | (_, FLambda _) -> let () = match v2 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (_,_ty2,bd2) = destFLambda mk_clos hd2 in eqappr CONV l2r infos (el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv (* only one constant, defined var or defined rel *) | (FFlex fl1, c2) -> (match unfold_reference infos fl1 with | Some def1 -> eqappr cv_pb l2r infos (lft1, (def1, v1)) appr2 cuniv | None -> match c2 with | FConstruct ((ind2,j2),u2) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) | (c1, FFlex fl2) -> (match unfold_reference infos fl2 with | Some def2 -> eqappr cv_pb l2r infos appr1 (lft2, (def2, v2)) cuniv | None -> match c1 with | FConstruct ((ind1,j1),u1) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) (* Inductive types: MutInd MutConstruct Fix Cofix *) | (FInd (ind1,u1), FInd (ind2,u2)) -> if eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos) in let cuniv = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ -> convert_instances ~flex:false u1 u2 cuniv | Declarations.Cumulative_ind cumi -> convert_inductives cv_pb (mind, snd ind1) u1 (CClosure.stack_args_size v1) u2 (CClosure.stack_args_size v2) cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) -> if Int.equal j1 j2 && eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos) in let cuniv = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ -> convert_instances ~flex:false u1 u2 cuniv | Declarations.Cumulative_ind _ -> convert_constructors (mind, snd ind1, j1) u1 (CClosure.stack_args_size v1) u2 (CClosure.stack_args_size v2) cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Eta expansion of records *) | (FConstruct ((ind1,j1),u1), _) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (_, FConstruct ((ind2,j2),u2)) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (FFix (((op1, i1),(_,tys1,cl1)),e1), FFix(((op2, i2),(_,tys2,cl2)),e2)) -> if Int.equal i1 i2 && Array.equal Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) -> if Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *) | ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_) | (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED) ) | (FCast _, _) | (_, FCast _) -> assert false | (FRel _ | FAtom _ | FInd _ | FFix _ | FCoFix _ | FProd _ | FEvar _), _ -> raise NotConvertible and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv = compare_stacks (fun (l1,t1) (l2,t2) cuniv -> ccnv CONV l2r infos l1 l2 t1 t2 cuniv) (eq_ind) lft1 stk1 lft2 stk2 cuniv and convert_vect l2r infos lft1 lft2 v1 v2 cuniv = let lv1 = Array.length v1 in let lv2 = Array.length v2 in if Int.equal lv1 lv2 then let rec fold n cuniv = if n >= lv1 then cuniv else let cuniv = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) cuniv in fold (n+1) cuniv in fold 0 cuniv else raise NotConvertible let clos_gen_conv trans cv_pb l2r evars env univs t1 t2 = let reds = CClosure.RedFlags.red_add_transparent betaiotazeta trans in let infos = create_clos_infos ~evars reds env in ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) univs let check_eq univs u u' = if not (UGraph.check_eq univs u u') then raise NotConvertible let check_leq univs u u' = if not (UGraph.check_leq univs u u') then raise NotConvertible let check_sort_cmp_universes env pb s0 s1 univs = let open Sorts in match (s0,s1) with | (Prop c1, Prop c2) when is_cumul pb -> begin match c1, c2 with | Null, _ | _, Pos -> () (* Prop <= Set *) | _ -> raise NotConvertible end | (Prop c1, Prop c2) -> if c1 != c2 then raise NotConvertible | (Prop c1, Type u) -> if not (type_in_type env) then let u0 = univ_of_sort s0 in (match pb with | CUMUL -> check_leq univs u0 u | CONV -> check_eq univs u0 u) | (Type u, Prop c) -> raise NotConvertible | (Type u1, Type u2) -> if not (type_in_type env) then (match pb with | CUMUL -> check_leq univs u1 u2 | CONV -> check_eq univs u1 u2) let checked_sort_cmp_universes env pb s0 s1 univs = check_sort_cmp_universes env pb s0 s1 univs; univs let check_convert_instances ~flex u u' univs = if UGraph.check_eq_instances univs u u' then univs else raise NotConvertible (* general conversion and inference functions *) let infer_check_conv_inductives infer_check_convert_instances infer_check_inductive_instances cv_pb (mind, ind) u1 sv1 u2 sv2 univs = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ -> infer_check_convert_instances ~flex:false u1 u2 univs | Declarations.Cumulative_ind cumi -> let num_param_arity = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs in if not (num_param_arity = sv1 && num_param_arity = sv2) then infer_check_convert_instances ~flex:false u1 u2 univs else infer_check_inductive_instances cv_pb cumi u1 u2 univs let infer_check_conv_constructors infer_check_convert_instances infer_check_inductive_instances (mind, ind, cns) u1 sv1 u2 sv2 univs = match mind.Declarations.mind_universes with | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ -> infer_check_convert_instances ~flex:false u1 u2 univs | Declarations.Cumulative_ind cumi -> let num_cnstr_args = let nparamsctxt = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs (* Context.Rel.length mind.Declarations.mind_params_ctxt *) in nparamsctxt + mind.Declarations.mind_packets.(ind).Declarations.mind_consnrealargs.(cns - 1) in if not (num_cnstr_args = sv1 && num_cnstr_args = sv2) then infer_check_convert_instances ~flex:false u1 u2 univs else infer_check_inductive_instances CONV cumi u1 u2 univs let check_inductive_instances cv_pb cumi u u' univs = let length_ind_instance = Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi) in let ind_subtypctx = Univ.ACumulativityInfo.subtyp_context cumi in if not ((length_ind_instance = Univ.Instance.length u) && (length_ind_instance = Univ.Instance.length u')) then anomaly (Pp.str "Invalid inductive subtyping encountered!") else let comp_cst = let comp_subst = (Univ.Instance.append u u') in Univ.AUContext.instantiate comp_subst ind_subtypctx in let comp_cst = match cv_pb with CONV -> let comp_cst' = let comp_subst = (Univ.Instance.append u' u) in Univ.AUContext.instantiate comp_subst ind_subtypctx in Univ.Constraint.union comp_cst comp_cst' | CUMUL -> comp_cst in if (UGraph.check_constraints comp_cst univs) then univs else raise NotConvertible let check_conv_inductives cv_pb ind u1 sv1 u2 sv2 univs = infer_check_conv_inductives check_convert_instances check_inductive_instances cv_pb ind u1 sv1 u2 sv2 univs let check_conv_constructors cns u1 sv1 u2 sv2 univs = infer_check_conv_constructors check_convert_instances check_inductive_instances cns u1 sv1 u2 sv2 univs let checked_universes = { compare = checked_sort_cmp_universes; compare_instances = check_convert_instances; conv_inductives = check_conv_inductives; conv_constructors = check_conv_constructors} let infer_eq (univs, cstrs as cuniv) u u' = if UGraph.check_eq univs u u' then cuniv else univs, (Univ.enforce_eq u u' cstrs) let infer_leq (univs, cstrs as cuniv) u u' = if UGraph.check_leq univs u u' then cuniv else let cstrs' = Univ.enforce_leq u u' cstrs in univs, cstrs' let infer_cmp_universes env pb s0 s1 univs = let open Sorts in match (s0,s1) with | (Prop c1, Prop c2) when is_cumul pb -> begin match c1, c2 with | Null, _ | _, Pos -> univs (* Prop <= Set *) | _ -> raise NotConvertible end | (Prop c1, Prop c2) -> if c1 == c2 then univs else raise NotConvertible | (Prop c1, Type u) -> let u0 = univ_of_sort s0 in (match pb with | CUMUL -> infer_leq univs u0 u | CONV -> infer_eq univs u0 u) | (Type u, Prop c) -> raise NotConvertible | (Type u1, Type u2) -> if not (type_in_type env) then (match pb with | CUMUL -> infer_leq univs u1 u2 | CONV -> infer_eq univs u1 u2) else univs let infer_convert_instances ~flex u u' (univs,cstrs) = let cstrs' = if flex then if UGraph.check_eq_instances univs u u' then cstrs else raise NotConvertible else Univ.enforce_eq_instances u u' cstrs in (univs, cstrs') let infer_inductive_instances cv_pb cumi u u' (univs, cstrs) = let length_ind_instance = Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi) in let ind_subtypctx = Univ.ACumulativityInfo.subtyp_context cumi in if not ((length_ind_instance = Univ.Instance.length u) && (length_ind_instance = Univ.Instance.length u')) then anomaly (Pp.str "Invalid inductive subtyping encountered!") else let comp_cst = let comp_subst = (Univ.Instance.append u u') in Univ.AUContext.instantiate comp_subst ind_subtypctx in let comp_cst = match cv_pb with CONV -> let comp_cst' = let comp_subst = (Univ.Instance.append u' u) in Univ.AUContext.instantiate comp_subst ind_subtypctx in Univ.Constraint.union comp_cst comp_cst' | CUMUL -> comp_cst in (univs, Univ.Constraint.union cstrs comp_cst) let infer_conv_inductives cv_pb ind u1 sv1 u2 sv2 univs = infer_check_conv_inductives infer_convert_instances infer_inductive_instances cv_pb ind u1 sv1 u2 sv2 univs let infer_conv_constructors cns u1 sv1 u2 sv2 univs = infer_check_conv_constructors infer_convert_instances infer_inductive_instances cns u1 sv1 u2 sv2 univs let inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare = { compare = infer_cmp_universes; compare_instances = infer_convert_instances; conv_inductives = infer_conv_inductives; conv_constructors = infer_conv_constructors} let gen_conv cv_pb l2r reds env evars univs t1 t2 = let b = if cv_pb = CUMUL then leq_constr_univs univs t1 t2 else eq_constr_univs univs t1 t2 in if b then () else let _ = clos_gen_conv reds cv_pb l2r evars env (univs, checked_universes) t1 t2 in () (* Profiling *) let gen_conv cv_pb ?(l2r=false) ?(reds=full_transparent_state) env ?(evars=(fun _->None), universes env) = let evars, univs = evars in if Flags.profile then let fconv_universes_key = CProfile.declare_profile "trans_fconv_universes" in CProfile.profile8 fconv_universes_key gen_conv cv_pb l2r reds env evars univs else gen_conv cv_pb l2r reds env evars univs let conv = gen_conv CONV let conv_leq = gen_conv CUMUL let generic_conv cv_pb ~l2r evars reds env univs t1 t2 = let (s, _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in s let infer_conv_universes cv_pb l2r evars reds env univs t1 t2 = let b, cstrs = if cv_pb == CUMUL then Constr.leq_constr_univs_infer univs t1 t2 else Constr.eq_constr_univs_infer univs t1 t2 in if b then cstrs else let univs = ((univs, Univ.Constraint.empty), inferred_universes) in let ((_,cstrs), _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in cstrs (* Profiling *) let infer_conv_universes = if Flags.profile then let infer_conv_universes_key = CProfile.declare_profile "infer_conv_universes" in CProfile.profile8 infer_conv_universes_key infer_conv_universes else infer_conv_universes let infer_conv ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state) env univs t1 t2 = infer_conv_universes CONV l2r evars ts env univs t1 t2 let infer_conv_leq ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state) env univs t1 t2 = infer_conv_universes CUMUL l2r evars ts env univs t1 t2 (* This reference avoids always having to link C code with the kernel *) let vm_conv = ref (fun cv_pb env -> gen_conv cv_pb env ~evars:((fun _->None), universes env)) let warn_bytecode_compiler_failed = let open Pp in CWarnings.create ~name:"bytecode-compiler-failed" ~category:"bytecode-compiler" (fun () -> strbrk "Bytecode compiler failed, " ++ strbrk "falling back to standard conversion") let set_vm_conv (f:conv_pb -> types kernel_conversion_function) = vm_conv := f let vm_conv cv_pb env t1 t2 = try !vm_conv cv_pb env t1 t2 with Not_found | Invalid_argument _ -> warn_bytecode_compiler_failed (); gen_conv cv_pb env t1 t2 let default_conv cv_pb ?(l2r=false) env t1 t2 = gen_conv cv_pb env t1 t2 let default_conv_leq = default_conv CUMUL (* let convleqkey = CProfile.declare_profile "Kernel_reduction.conv_leq";; let conv_leq env t1 t2 = CProfile.profile4 convleqkey conv_leq env t1 t2;; let convkey = CProfile.declare_profile "Kernel_reduction.conv";; let conv env t1 t2 = CProfile.profile4 convleqkey conv env t1 t2;; *) (* Application with on-the-fly reduction *) let beta_applist c l = let rec app subst c l = match kind c, l with | Lambda(_,_,c), arg::l -> app (arg::subst) c l | _ -> Term.applist (substl subst c, l) in app [] c l let beta_appvect c v = beta_applist c (Array.to_list v) let beta_app c a = beta_applist c [a] (* Compatibility *) let betazeta_appvect = Term.lambda_appvect_assum (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) (* pseudo-reduction rule: * [hnf_prod_app env (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env t n = match kind (whd_all env t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.") let hnf_prod_applist env t nl = List.fold_left (hnf_prod_app env) t nl (* Dealing with arities *) let dest_prod env = let rec decrec env m c = let t = whd_all env c in match kind t with | Prod (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (Context.Rel.add d m) c0 | _ -> m,t in decrec env Context.Rel.empty (* The same but preserving lets in the context, not internal ones. *) let dest_prod_assum env = let rec prodec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Prod (x,t,c) -> let d = LocalAssum (x,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> let rty' = whd_all env rty in if Constr.equal rty' rty then l, rty else prodec_rec env l rty' in prodec_rec env Context.Rel.empty let dest_lam_assum env = let rec lamec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Lambda (x,t,c) -> let d = LocalAssum (x,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | Cast (c,_,_) -> lamec_rec env l c | _ -> l,rty in lamec_rec env Context.Rel.empty exception NotArity let dest_arity env c = let l, c = dest_prod_assum env c in match kind c with | Sort s -> l,s | _ -> raise NotArity let is_arity env c = try let _ = dest_arity env c in true with NotArity -> false