1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* Created under Benjamin Werner account by Bruno Barras to implement
   a call-by-value conversion algorithm and a lazy reduction machine
   with sharing, Nov 1996 *)
(* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *)
(* Irreversibility of opacity by Bruno Barras *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)
(* Equal inductive types by Jacek Chrzaszcz as part of the module
   system, Aug 2002 *)

open CErrors
open Util
open Names
open Constr
open Vars
open Environ
open CClosure
open Esubst
open Context.Rel.Declaration

let rec is_empty_stack = function
  [] -> true
  | Zupdate _::s -> is_empty_stack s
  | Zshift _::s -> is_empty_stack s
  | _ -> false

(* Compute the lift to be performed on a term placed in a given stack *)
let el_stack el stk =
  let n =
    List.fold_left
      (fun i z ->
        match z with
            Zshift n -> i+n
          | _ -> i)
      0
      stk in
  el_shft n el

let compare_stack_shape stk1 stk2 =
  let rec compare_rec bal stk1 stk2 =
  match (stk1,stk2) with
      ([],[]) -> Int.equal bal 0
    | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2
    | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2
    | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2
    | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2
    | (Zproj (n1,m1,p1)::s1, Zproj (n2,m2,p2)::s2) ->
        Int.equal bal 0 && compare_rec 0 s1 s2
    | (ZcaseT(c1,_,_,_)::s1, ZcaseT(c2,_,_,_)::s2) ->
        Int.equal bal 0 (* && c1.ci_ind  = c2.ci_ind *) && compare_rec 0 s1 s2
    | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) ->
        Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
    | [], _ :: _
    | (Zproj _ | ZcaseT _ | Zfix _) :: _, _ -> false
  in
  compare_rec 0 stk1 stk2

type lft_constr_stack_elt =
    Zlapp of (lift * fconstr) array
  | Zlproj of Constant.t * lift
  | Zlfix of (lift * fconstr) * lft_constr_stack
  | Zlcase of case_info * lift * fconstr * fconstr array
and lft_constr_stack = lft_constr_stack_elt list

let rec zlapp v = function
    Zlapp v2 :: s -> zlapp (Array.append v v2) s
  | s -> Zlapp v :: s

(** Hand-unrolling of the map function to bypass the call to the generic array
    allocation. Type annotation is required to tell OCaml that the array does
    not contain floats. *)
let map_lift (l : lift) (v : fconstr array) = match v with
| [||] -> assert false
| [|c0|] -> [|(l, c0)|]
| [|c0; c1|] -> [|(l, c0); (l, c1)|]
| [|c0; c1; c2|] -> [|(l, c0); (l, c1); (l, c2)|]
| [|c0; c1; c2; c3|] -> [|(l, c0); (l, c1); (l, c2); (l, c3)|]
| v -> CArray.Fun1.map (fun l t -> (l, t)) l v

let pure_stack lfts stk =
  let rec pure_rec lfts stk =
    match stk with
        [] -> (lfts,[])
      | zi::s ->
          (match (zi,pure_rec lfts s) with
              (Zupdate _,lpstk)  -> lpstk
            | (Zshift n,(l,pstk)) -> (el_shft n l, pstk)
            | (Zapp a, (l,pstk)) ->
                (l,zlapp (map_lift l a) pstk)
            | (Zproj (n,m,c), (l,pstk)) ->
                (l, Zlproj (c,l)::pstk)
            | (Zfix(fx,a),(l,pstk)) ->
                let (lfx,pa) = pure_rec l a in
                (l, Zlfix((lfx,fx),pa)::pstk)
            | (ZcaseT(ci,p,br,e),(l,pstk)) ->
                (l,Zlcase(ci,l,mk_clos e p,Array.map (mk_clos e) br)::pstk))
  in
  snd (pure_rec lfts stk)

(****************************************************************************)
(*                   Reduction Functions                                    *)
(****************************************************************************)

let whd_betaiota env t =
  match kind t with
    | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
       Prod _|Lambda _|Fix _|CoFix _) -> t
    | App (c, _) ->
      begin match kind c with
      | Ind _ | Construct _ | Evar _ | Meta _ | Const _ | LetIn _ -> t
      | _ -> whd_val (create_clos_infos betaiota env) (inject t)
      end
    | _ -> whd_val (create_clos_infos betaiota env) (inject t)

let nf_betaiota env t =
  norm_val (create_clos_infos betaiota env) (inject t)

let whd_betaiotazeta env x =
  match kind x with
  | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _|
       Prod _|Lambda _|Fix _|CoFix _) -> x
    | App (c, _) ->
      begin match kind c with
      | Ind _ | Construct _ | Evar _ | Meta _ | Const _ -> x
      | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _
        | Case _ | Fix _ | CoFix _ | Proj _ ->
         whd_val (create_clos_infos betaiotazeta env) (inject x)
      end
    | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ ->
        whd_val (create_clos_infos betaiotazeta env) (inject x)

let whd_all env t =
  match kind t with
    | (Sort _|Meta _|Evar _|Ind _|Construct _|
       Prod _|Lambda _|Fix _|CoFix _) -> t
    | App (c, _) ->
      begin match kind c with
      | Ind _ | Construct _ | Evar _ | Meta _ -> t
      | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _
        | Const _ |Case _ | Fix _ | CoFix _ | Proj _ ->
         whd_val (create_clos_infos all env) (inject t)
      end
    | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ | Const _ | Var _ ->
        whd_val (create_clos_infos all env) (inject t)

let whd_allnolet env t =
  match kind t with
    | (Sort _|Meta _|Evar _|Ind _|Construct _|
       Prod _|Lambda _|Fix _|CoFix _|LetIn _) -> t
    | App (c, _) ->
      begin match kind c with
      | Ind _ | Construct _ | Evar _ | Meta _ | LetIn _ -> t
      | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | App _
        | Const _ | Case _ | Fix _ | CoFix _ | Proj _ ->
         whd_val (create_clos_infos allnolet env) (inject t)
      end
    | Rel _ | Cast _ | Case _ | Proj _ | Const _ | Var _ ->
        whd_val (create_clos_infos allnolet env) (inject t)

(********************************************************************)
(*                         Conversion                               *)
(********************************************************************)

(* Conversion utility functions *)

(* functions of this type are called from the kernel *)
type 'a kernel_conversion_function = env -> 'a -> 'a -> unit

(* functions of this type can be called from outside the kernel *)
type 'a extended_conversion_function =
  ?l2r:bool -> ?reds:Names.transparent_state -> env ->
  ?evars:((existential->constr option) * UGraph.t) ->
  'a -> 'a -> unit

exception NotConvertible
exception NotConvertibleVect of int


(* Convertibility of sorts *)

(* The sort cumulativity is

    Prop <= Set <= Type 1 <= ... <= Type i <= ...

    and this holds whatever Set is predicative or impredicative
*)

type conv_pb =
  | CONV
  | CUMUL

let is_cumul = function CUMUL -> true | CONV -> false

type 'a universe_compare = 
  { (* Might raise NotConvertible *)
    compare : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a -> 'a;
    compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a;
    conv_inductives : conv_pb -> (Declarations.mutual_inductive_body * int) -> Univ.Instance.t -> int ->
      Univ.Instance.t -> int -> 'a -> 'a;
    conv_constructors : (Declarations.mutual_inductive_body * int * int) ->
      Univ.Instance.t -> int -> Univ.Instance.t -> int -> 'a -> 'a;
  } 

type 'a universe_state = 'a * 'a universe_compare

type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b

type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.constraints

let sort_cmp_universes env pb s0 s1 (u, check) =
  (check.compare env pb s0 s1 u, check)

(* [flex] should be true for constants, false for inductive types and
   constructors. *)
let convert_instances ~flex u u' (s, check) =
  (check.compare_instances ~flex u u' s, check)
  
let convert_inductives cv_pb ind u1 sv1 u2 sv2 (s, check) =
  (check.conv_inductives cv_pb ind u1 sv1 u2 sv2 s, check)

let convert_constructors cons u1 sv1 u2 sv2 (s, check) =
  (check.conv_constructors cons u1 sv1 u2 sv2 s, check)

let conv_table_key infos k1 k2 cuniv =
  if k1 == k2 then cuniv else
  match k1, k2 with
  | ConstKey (cst, u), ConstKey (cst', u') when Constant.equal cst cst' ->
    if Univ.Instance.equal u u' then cuniv
    else 
      let flex = evaluable_constant cst (info_env infos) 
        && RedFlags.red_set (info_flags infos) (RedFlags.fCONST cst)
      in convert_instances ~flex u u' cuniv
  | VarKey id, VarKey id' when Id.equal id id' -> cuniv
  | RelKey n, RelKey n' when Int.equal n n' -> cuniv
  | _ -> raise NotConvertible

let compare_stacks f fmind lft1 stk1 lft2 stk2 cuniv =
  let rec cmp_rec pstk1 pstk2 cuniv =
    match (pstk1,pstk2) with
      | (z1::s1, z2::s2) ->
          let cu1 = cmp_rec s1 s2 cuniv in
          (match (z1,z2) with
            | (Zlapp a1,Zlapp a2) -> 
               Array.fold_right2 f a1 a2 cu1
            | (Zlproj (c1,l1),Zlproj (c2,l2)) -> 
              if not (Constant.equal c1 c2) then 
                raise NotConvertible
              else cu1
            | (Zlfix(fx1,a1),Zlfix(fx2,a2)) ->
                let cu2 = f fx1 fx2 cu1 in
                cmp_rec a1 a2 cu2
            | (Zlcase(ci1,l1,p1,br1),Zlcase(ci2,l2,p2,br2)) ->
                if not (fmind ci1.ci_ind ci2.ci_ind) then
                  raise NotConvertible;
                let cu2 = f (l1,p1) (l2,p2) cu1 in
                Array.fold_right2 (fun c1 c2 -> f (l1,c1) (l2,c2)) br1 br2 cu2
            | _ -> assert false)
      | _ -> cuniv in
  if compare_stack_shape stk1 stk2 then
    cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv
  else raise NotConvertible

let rec no_arg_available = function
  | [] -> true
  | Zupdate _ :: stk -> no_arg_available stk
  | Zshift _ :: stk -> no_arg_available stk
  | Zapp v :: stk -> Int.equal (Array.length v) 0 && no_arg_available stk
  | Zproj _ :: _ -> true
  | ZcaseT _ :: _ -> true
  | Zfix _ :: _ -> true

let rec no_nth_arg_available n = function
  | [] -> true
  | Zupdate _ :: stk -> no_nth_arg_available n stk
  | Zshift _ :: stk -> no_nth_arg_available n stk
  | Zapp v :: stk ->
      let k = Array.length v in
      if n >= k then no_nth_arg_available (n-k) stk
      else false
  | Zproj _ :: _ -> true
  | ZcaseT _ :: _ -> true
  | Zfix _ :: _ -> true

let rec no_case_available = function
  | [] -> true
  | Zupdate _ :: stk -> no_case_available stk
  | Zshift _ :: stk -> no_case_available stk
  | Zapp _ :: stk -> no_case_available stk
  | Zproj (_,_,p) :: _ -> false
  | ZcaseT _ :: _ -> false
  | Zfix _ :: _ -> true

let in_whnf (t,stk) =
  match fterm_of t with
    | (FLetIn _ | FCaseT _ | FApp _ 
          | FCLOS _ | FLIFT _ | FCast _) -> false
    | FLambda _ -> no_arg_available stk
    | FConstruct _ -> no_case_available stk
    | FCoFix _ -> no_case_available stk
    | FFix(((ri,n),(_,_,_)),_) -> no_nth_arg_available ri.(n) stk
    | (FFlex _ | FProd _ | FEvar _ | FInd _ | FAtom _ | FRel _ | FProj _) -> true
    | FLOCKED -> assert false

let unfold_projection infos p c =
  let unf = Projection.unfolded p in
    if unf || RedFlags.red_set infos.i_flags (RedFlags.fCONST (Projection.constant p)) then
      (match try Some (lookup_projection p (info_env infos)) with Not_found -> None with
      | Some pb -> 
        let s = Zproj (pb.Declarations.proj_npars, pb.Declarations.proj_arg, 
                       Projection.constant p) in
          Some (c, s)
      | None -> None)
  else None

(* Conversion between  [lft1]term1 and [lft2]term2 *)
let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv =
  eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv

(* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *)
and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv =
  Control.check_for_interrupt ();
  (* First head reduce both terms *)
  let whd = whd_stack (infos_with_reds infos betaiotazeta) in
  let rec whd_both (t1,stk1) (t2,stk2) =
    let st1' = whd t1 stk1 in
    let st2' = whd t2 stk2 in
    (* Now, whd_stack on term2 might have modified st1 (due to sharing),
       and st1 might not be in whnf anymore. If so, we iterate ccnv. *)
    if in_whnf st1' then (st1',st2') else whd_both st1' st2' in
  let ((hd1,v1),(hd2,v2)) = whd_both st1 st2 in
  let appr1 = (lft1,(hd1,v1)) and appr2 = (lft2,(hd2,v2)) in
  (* compute the lifts that apply to the head of the term (hd1 and hd2) *)
  let el1 = el_stack lft1 v1 in
  let el2 = el_stack lft2 v2 in
  match (fterm_of hd1, fterm_of hd2) with
    (* case of leaves *)
    | (FAtom a1, FAtom a2) ->
        (match kind a1, kind a2 with
           | (Sort s1, Sort s2) ->
               if not (is_empty_stack v1 && is_empty_stack v2) then
                 anomaly (Pp.str "conversion was given ill-typed terms (Sort).");
               sort_cmp_universes (env_of_infos infos) cv_pb s1 s2 cuniv
           | (Meta n, Meta m) ->
               if Int.equal n m
               then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
               else raise NotConvertible
           | _ -> raise NotConvertible)
    | (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) ->
        if Evar.equal ev1 ev2 then
          let cuniv = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in
          convert_vect l2r infos el1 el2
            (Array.map (mk_clos env1) args1)
            (Array.map (mk_clos env2) args2) cuniv
        else raise NotConvertible

    (* 2 index known to be bound to no constant *)
    | (FRel n, FRel m) ->
        if Int.equal (reloc_rel n el1) (reloc_rel m el2)
        then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
        else raise NotConvertible

    (* 2 constants, 2 local defined vars or 2 defined rels *)
    | (FFlex fl1, FFlex fl2) ->
      (try
         let cuniv = conv_table_key infos fl1 fl2 cuniv in
           convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
       with NotConvertible | Univ.UniverseInconsistency _ ->
           (* else the oracle tells which constant is to be expanded *)
         let oracle = CClosure.oracle_of_infos infos in
         let (app1,app2) =
           if Conv_oracle.oracle_order Univ.out_punivs oracle l2r fl1 fl2 then
             match unfold_reference infos fl1 with
             | Some def1 -> ((lft1, (def1, v1)), appr2)
             | None ->
               (match unfold_reference infos fl2 with
               | Some def2 -> (appr1, (lft2, (def2, v2)))
               | None -> raise NotConvertible)
           else
             match unfold_reference infos fl2 with
             | Some def2 -> (appr1, (lft2, (def2, v2)))
             | None ->
               (match unfold_reference infos fl1 with
               | Some def1 -> ((lft1, (def1, v1)), appr2)
               | None -> raise NotConvertible) 
         in
           eqappr cv_pb l2r infos app1 app2 cuniv)

    | (FProj (p1,c1), FProj (p2, c2)) ->
      (* Projections: prefer unfolding to first-order unification,
         which will happen naturally if the terms c1, c2 are not in constructor
         form *)
      (match unfold_projection infos p1 c1 with
      | Some (def1,s1) -> 
        eqappr cv_pb l2r infos (lft1, (def1, (s1 :: v1))) appr2 cuniv
      | None ->
        match unfold_projection infos p2 c2 with
        | Some (def2,s2) ->
          eqappr cv_pb l2r infos appr1 (lft2, (def2, (s2 :: v2))) cuniv
        | None -> 
          if Constant.equal (Projection.constant p1) (Projection.constant p2)
             && compare_stack_shape v1 v2 then
            let u1 = ccnv CONV l2r infos el1 el2 c1 c2 cuniv in
              convert_stacks l2r infos lft1 lft2 v1 v2 u1
          else (* Two projections in WHNF: unfold *)
            raise NotConvertible)

    | (FProj (p1,c1), t2) ->
      (match unfold_projection infos p1 c1 with
      | Some (def1,s1) ->
         eqappr cv_pb l2r infos (lft1, (def1, (s1 :: v1))) appr2 cuniv
      | None -> 
         (match t2 with 
          | FFlex fl2 ->
             (match unfold_reference infos fl2 with
              | Some def2 ->
                 eqappr cv_pb l2r infos appr1 (lft2, (def2, v2)) cuniv
              | None -> raise NotConvertible)
          | _ -> raise NotConvertible))
      
    | (t1, FProj (p2,c2)) ->
      (match unfold_projection infos p2 c2 with
      | Some (def2,s2) -> 
         eqappr cv_pb l2r infos appr1 (lft2, (def2, (s2 :: v2))) cuniv
      | None -> 
         (match t1 with 
          | FFlex fl1 ->
             (match unfold_reference infos fl1 with
              | Some def1 ->
                 eqappr cv_pb l2r infos (lft1, (def1, v1)) appr2 cuniv
              | None -> raise NotConvertible)
          | _ -> raise NotConvertible))
      
    (* other constructors *)
    | (FLambda _, FLambda _) ->
        (* Inconsistency: we tolerate that v1, v2 contain shift and update but
           we throw them away *)
        if not (is_empty_stack v1 && is_empty_stack v2) then
          anomaly (Pp.str "conversion was given ill-typed terms (FLambda).");
        let (_,ty1,bd1) = destFLambda mk_clos hd1 in
        let (_,ty2,bd2) = destFLambda mk_clos hd2 in
        let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in
        ccnv CONV l2r infos (el_lift el1) (el_lift el2) bd1 bd2 cuniv

    | (FProd (_,c1,c2), FProd (_,c'1,c'2)) ->
        if not (is_empty_stack v1 && is_empty_stack v2) then
          anomaly (Pp.str "conversion was given ill-typed terms (FProd).");
        (* Luo's system *)
        let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in
        ccnv cv_pb l2r infos (el_lift el1) (el_lift el2) c2 c'2 cuniv

    (* Eta-expansion on the fly *)
    | (FLambda _, _) ->
        let () = match v1 with
        | [] -> ()
        | _ ->
          anomaly (Pp.str "conversion was given unreduced term (FLambda).")
        in
        let (_,_ty1,bd1) = destFLambda mk_clos hd1 in
        eqappr CONV l2r infos
          (el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv
    | (_, FLambda _) ->
        let () = match v2 with
        | [] -> ()
        | _ ->
          anomaly (Pp.str "conversion was given unreduced term (FLambda).")
        in
        let (_,_ty2,bd2) = destFLambda mk_clos hd2 in
        eqappr CONV l2r infos
          (el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv
        
    (* only one constant, defined var or defined rel *)
    | (FFlex fl1, c2)      ->
       (match unfold_reference infos fl1 with
        | Some def1 ->
           eqappr cv_pb l2r infos (lft1, (def1, v1)) appr2 cuniv
        | None -> 
           match c2 with
           | FConstruct ((ind2,j2),u2) ->
              (try
              let v2, v1 =
                eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1)
              in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
              with Not_found -> raise NotConvertible)
           | _ -> raise NotConvertible)
       
    | (c1, FFlex fl2)      ->
       (match unfold_reference infos fl2 with
        | Some def2 ->
           eqappr cv_pb l2r infos appr1 (lft2, (def2, v2)) cuniv
        | None -> 
           match c1 with
           | FConstruct ((ind1,j1),u1) ->
               (try let v1, v2 =
                          eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2)
                   in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
               with Not_found -> raise NotConvertible)
           | _ -> raise NotConvertible)
       
    (* Inductive types:  MutInd MutConstruct Fix Cofix *)
    | (FInd (ind1,u1), FInd (ind2,u2)) ->
      if eq_ind ind1 ind2 then
        if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then
          let cuniv = convert_instances ~flex:false u1 u2 cuniv in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
        else
          let mind = Environ.lookup_mind (fst ind1) (info_env infos) in
          let cuniv =
            match mind.Declarations.mind_universes with
            | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
              convert_instances ~flex:false u1 u2 cuniv
            | Declarations.Cumulative_ind cumi ->
              convert_inductives cv_pb (mind, snd ind1) u1 (CClosure.stack_args_size v1)
                u2 (CClosure.stack_args_size v2) cuniv
          in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
      else raise NotConvertible

    | (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) ->
      if Int.equal j1 j2 && eq_ind ind1 ind2 then
        if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then
          let cuniv = convert_instances ~flex:false u1 u2 cuniv in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
        else
          let mind = Environ.lookup_mind (fst ind1) (info_env infos) in
          let cuniv =
            match mind.Declarations.mind_universes with
            | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
              convert_instances ~flex:false u1 u2 cuniv
            | Declarations.Cumulative_ind _ ->
              convert_constructors
                (mind, snd ind1, j1) u1 (CClosure.stack_args_size v1)
                u2 (CClosure.stack_args_size v2) cuniv
          in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
      else raise NotConvertible
          
    (* Eta expansion of records *)
    | (FConstruct ((ind1,j1),u1), _) ->
      (try
             let v1, v2 =
               eta_expand_ind_stack (info_env infos) ind1 hd1 v1 (snd appr2)
         in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
       with Not_found -> raise NotConvertible)

    | (_, FConstruct ((ind2,j2),u2)) ->
      (try
             let v2, v1 =
               eta_expand_ind_stack (info_env infos) ind2 hd2 v2 (snd appr1)
         in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
       with Not_found -> raise NotConvertible)

    | (FFix (((op1, i1),(_,tys1,cl1)),e1), FFix(((op2, i2),(_,tys2,cl2)),e2)) ->
        if Int.equal i1 i2 && Array.equal Int.equal op1 op2
        then
          let n = Array.length cl1 in
          let fty1 = Array.map (mk_clos e1) tys1 in
          let fty2 = Array.map (mk_clos e2) tys2 in
          let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
          let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
          let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
          let cuniv =
            convert_vect l2r infos
              (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
        else raise NotConvertible

    | (FCoFix ((op1,(_,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) ->
        if Int.equal op1 op2
        then
          let n = Array.length cl1 in
          let fty1 = Array.map (mk_clos e1) tys1 in
          let fty2 = Array.map (mk_clos e2) tys2 in
          let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in
          let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in
          let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in
          let cuniv =
            convert_vect l2r infos
              (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in
          convert_stacks l2r infos lft1 lft2 v1 v2 cuniv
        else raise NotConvertible

     (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *)
     | ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_)
       | (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _)
       | (FLOCKED,_) | (_,FLOCKED) ) | (FCast _, _) | (_, FCast _) -> assert false

     | (FRel _ | FAtom _ | FInd _ | FFix _ | FCoFix _
        | FProd _ | FEvar _), _ -> raise NotConvertible

and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv =
  compare_stacks
    (fun (l1,t1) (l2,t2) cuniv -> ccnv CONV l2r infos l1 l2 t1 t2 cuniv)
    (eq_ind)
    lft1 stk1 lft2 stk2 cuniv

and convert_vect l2r infos lft1 lft2 v1 v2 cuniv =
  let lv1 = Array.length v1 in
  let lv2 = Array.length v2 in
  if Int.equal lv1 lv2
  then
    let rec fold n cuniv =
      if n >= lv1 then cuniv
      else
        let cuniv = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) cuniv in
        fold (n+1) cuniv in
    fold 0 cuniv
  else raise NotConvertible

let clos_gen_conv trans cv_pb l2r evars env univs t1 t2 =
  let reds = CClosure.RedFlags.red_add_transparent betaiotazeta trans in
  let infos = create_clos_infos ~evars reds env in
  ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) univs


let check_eq univs u u' = 
  if not (UGraph.check_eq univs u u') then raise NotConvertible

let check_leq univs u u' = 
  if not (UGraph.check_leq univs u u') then raise NotConvertible

let check_sort_cmp_universes env pb s0 s1 univs =
  let open Sorts in
  match (s0,s1) with
    | (Prop c1, Prop c2) when is_cumul pb ->
      begin match c1, c2 with
      | Null, _ | _, Pos -> () (* Prop <= Set *)
      | _ -> raise NotConvertible
      end
    | (Prop c1, Prop c2) -> if c1 != c2 then raise NotConvertible
    | (Prop c1, Type u) ->
        if not (type_in_type env) then
        let u0 = univ_of_sort s0 in
        (match pb with
        | CUMUL -> check_leq univs u0 u
        | CONV -> check_eq univs u0 u)
    | (Type u, Prop c) -> raise NotConvertible
    | (Type u1, Type u2) ->
        if not (type_in_type env) then
        (match pb with
        | CUMUL -> check_leq univs u1 u2
        | CONV -> check_eq univs u1 u2)

let checked_sort_cmp_universes env pb s0 s1 univs =
  check_sort_cmp_universes env pb s0 s1 univs; univs

let check_convert_instances ~flex u u' univs =
  if UGraph.check_eq_instances univs u u' then univs
  else raise NotConvertible

(* general conversion and inference functions *)
let infer_check_conv_inductives
    infer_check_convert_instances
    infer_check_inductive_instances
    cv_pb (mind, ind) u1 sv1 u2 sv2 univs =
  match mind.Declarations.mind_universes with
  | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
    infer_check_convert_instances ~flex:false u1 u2 univs
  | Declarations.Cumulative_ind cumi ->
    let num_param_arity =
      mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs
    in
    if not (num_param_arity = sv1 && num_param_arity = sv2) then
      infer_check_convert_instances ~flex:false u1 u2 univs
    else
      infer_check_inductive_instances cv_pb cumi u1 u2 univs

let infer_check_conv_constructors
    infer_check_convert_instances
    infer_check_inductive_instances
    (mind, ind, cns) u1 sv1 u2 sv2 univs =
  match mind.Declarations.mind_universes with
  | Declarations.Monomorphic_ind _ | Declarations.Polymorphic_ind _ ->
    infer_check_convert_instances ~flex:false u1 u2 univs
  | Declarations.Cumulative_ind cumi ->
    let num_cnstr_args =
      let nparamsctxt =
        mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs
        (* Context.Rel.length mind.Declarations.mind_params_ctxt *) in
      nparamsctxt + mind.Declarations.mind_packets.(ind).Declarations.mind_consnrealargs.(cns - 1)
    in
    if not (num_cnstr_args = sv1 && num_cnstr_args = sv2) then
      infer_check_convert_instances ~flex:false u1 u2 univs
    else
      infer_check_inductive_instances CONV cumi u1 u2 univs

let check_inductive_instances cv_pb cumi u u' univs =
  let length_ind_instance = 
    Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi)
  in
  let ind_subtypctx = Univ.ACumulativityInfo.subtyp_context cumi in
  if not ((length_ind_instance = Univ.Instance.length u) &&
          (length_ind_instance = Univ.Instance.length u')) then
     anomaly (Pp.str "Invalid inductive subtyping encountered!")
  else
    let comp_cst =
      let comp_subst = (Univ.Instance.append u u') in
      Univ.AUContext.instantiate comp_subst ind_subtypctx
    in
    let comp_cst =
      match cv_pb with
        CONV -> 
        let comp_cst' = 
          let comp_subst = (Univ.Instance.append u' u) in
          Univ.AUContext.instantiate comp_subst ind_subtypctx
        in
        Univ.Constraint.union comp_cst comp_cst'
      | CUMUL -> comp_cst
    in
    if (UGraph.check_constraints comp_cst univs) then univs
    else raise NotConvertible

let check_conv_inductives cv_pb ind u1 sv1 u2 sv2 univs =
  infer_check_conv_inductives
    check_convert_instances
    check_inductive_instances
    cv_pb ind u1 sv1 u2 sv2 univs

let check_conv_constructors cns u1 sv1 u2 sv2 univs =
  infer_check_conv_constructors
    check_convert_instances
    check_inductive_instances
    cns u1 sv1 u2 sv2 univs

let checked_universes =
  { compare = checked_sort_cmp_universes;
    compare_instances = check_convert_instances;
    conv_inductives = check_conv_inductives;
    conv_constructors = check_conv_constructors}

let infer_eq (univs, cstrs as cuniv) u u' =
  if UGraph.check_eq univs u u' then cuniv
  else
    univs, (Univ.enforce_eq u u' cstrs)

let infer_leq (univs, cstrs as cuniv) u u' =
  if UGraph.check_leq univs u u' then cuniv
  else
    let cstrs' = Univ.enforce_leq u u' cstrs in
      univs, cstrs'

let infer_cmp_universes env pb s0 s1 univs =
  let open Sorts in
  match (s0,s1) with
    | (Prop c1, Prop c2) when is_cumul pb ->
      begin match c1, c2 with
      | Null, _ | _, Pos -> univs (* Prop <= Set *)
      | _ -> raise NotConvertible
      end
    | (Prop c1, Prop c2) -> if c1 == c2 then univs else raise NotConvertible
    | (Prop c1, Type u) ->
      let u0 = univ_of_sort s0 in
        (match pb with
        | CUMUL -> infer_leq univs u0 u
        | CONV -> infer_eq univs u0 u)
    | (Type u, Prop c) -> raise NotConvertible
    | (Type u1, Type u2) ->
        if not (type_in_type env) then
        (match pb with
        | CUMUL -> infer_leq univs u1 u2
        | CONV -> infer_eq univs u1 u2)
        else univs

let infer_convert_instances ~flex u u' (univs,cstrs) =
  let cstrs' =
    if flex then 
      if UGraph.check_eq_instances univs u u' then cstrs
      else raise NotConvertible
    else Univ.enforce_eq_instances u u' cstrs
  in (univs, cstrs')

let infer_inductive_instances cv_pb cumi u u' (univs, cstrs) =
  let length_ind_instance = 
    Univ.AUContext.size (Univ.ACumulativityInfo.univ_context cumi)
  in
  let ind_subtypctx =  Univ.ACumulativityInfo.subtyp_context cumi in
  if not ((length_ind_instance = Univ.Instance.length u) &&
          (length_ind_instance = Univ.Instance.length u')) then
    anomaly (Pp.str "Invalid inductive subtyping encountered!")
  else
    let comp_cst =
      let comp_subst = (Univ.Instance.append u u') in
      Univ.AUContext.instantiate comp_subst ind_subtypctx
    in
    let comp_cst =
      match cv_pb with
        CONV -> 
        let comp_cst' = 
          let comp_subst = (Univ.Instance.append u' u) in
          Univ.AUContext.instantiate comp_subst ind_subtypctx
        in
        Univ.Constraint.union comp_cst comp_cst'
      | CUMUL -> comp_cst
    in
    (univs, Univ.Constraint.union cstrs comp_cst)


let infer_conv_inductives cv_pb ind u1 sv1 u2 sv2 univs =
  infer_check_conv_inductives
    infer_convert_instances
    infer_inductive_instances
    cv_pb ind u1 sv1 u2 sv2 univs

let infer_conv_constructors cns u1 sv1 u2 sv2 univs =
  infer_check_conv_constructors
    infer_convert_instances
    infer_inductive_instances
    cns u1 sv1 u2 sv2 univs
    
let inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare = 
  { compare = infer_cmp_universes;
    compare_instances = infer_convert_instances;
    conv_inductives = infer_conv_inductives;
    conv_constructors = infer_conv_constructors}

let gen_conv cv_pb l2r reds env evars univs t1 t2 =
  let b = 
    if cv_pb = CUMUL then leq_constr_univs univs t1 t2 
    else eq_constr_univs univs t1 t2
  in
    if b then ()
    else 
      let _ = clos_gen_conv reds cv_pb l2r evars env (univs, checked_universes) t1 t2 in
        ()

(* Profiling *)
let gen_conv cv_pb ?(l2r=false) ?(reds=full_transparent_state) env ?(evars=(fun _->None), universes env) =
  let evars, univs = evars in
  if Flags.profile then
    let fconv_universes_key = CProfile.declare_profile "trans_fconv_universes" in
      CProfile.profile8 fconv_universes_key gen_conv cv_pb l2r reds env evars univs
  else gen_conv cv_pb l2r reds env evars univs

let conv = gen_conv CONV

let conv_leq = gen_conv CUMUL

let generic_conv cv_pb ~l2r evars reds env univs t1 t2 =
  let (s, _) = 
    clos_gen_conv reds cv_pb l2r evars env univs t1 t2 
  in s

let infer_conv_universes cv_pb l2r evars reds env univs t1 t2 =
  let b, cstrs =
    if cv_pb == CUMUL then Constr.leq_constr_univs_infer univs t1 t2
    else Constr.eq_constr_univs_infer univs t1 t2
  in
    if b then cstrs
    else
      let univs = ((univs, Univ.Constraint.empty), inferred_universes) in
      let ((_,cstrs), _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in
        cstrs

(* Profiling *)
let infer_conv_universes = 
  if Flags.profile then 
    let infer_conv_universes_key = CProfile.declare_profile "infer_conv_universes" in
      CProfile.profile8 infer_conv_universes_key infer_conv_universes
  else infer_conv_universes

let infer_conv ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state)
    env univs t1 t2 = 
  infer_conv_universes CONV l2r evars ts env univs t1 t2

let infer_conv_leq ?(l2r=false) ?(evars=fun _ -> None) ?(ts=full_transparent_state) 
    env univs t1 t2 = 
  infer_conv_universes CUMUL l2r evars ts env univs t1 t2

(* This reference avoids always having to link C code with the kernel *)
let vm_conv = ref (fun cv_pb env ->
                   gen_conv cv_pb env ~evars:((fun _->None), universes env))

let warn_bytecode_compiler_failed =
  let open Pp in
  CWarnings.create ~name:"bytecode-compiler-failed" ~category:"bytecode-compiler"
         (fun () -> strbrk "Bytecode compiler failed, " ++
                      strbrk "falling back to standard conversion")

let set_vm_conv (f:conv_pb -> types kernel_conversion_function) = vm_conv := f
let vm_conv cv_pb env t1 t2 =
  try
    !vm_conv cv_pb env t1 t2
  with Not_found | Invalid_argument _ ->
    warn_bytecode_compiler_failed ();
    gen_conv cv_pb env t1 t2

let default_conv cv_pb ?(l2r=false) env t1 t2 =
    gen_conv cv_pb env t1 t2

let default_conv_leq = default_conv CUMUL
(*
let convleqkey = CProfile.declare_profile "Kernel_reduction.conv_leq";;
let conv_leq env t1 t2 =
  CProfile.profile4 convleqkey conv_leq env t1 t2;;

let convkey = CProfile.declare_profile "Kernel_reduction.conv";;
let conv env t1 t2 =
  CProfile.profile4 convleqkey conv env t1 t2;;
*)

(* Application with on-the-fly reduction *)

let beta_applist c l =
  let rec app subst c l =
    match kind c, l with
    | Lambda(_,_,c), arg::l -> app (arg::subst) c l
    | _ -> Term.applist (substl subst c, l) in
  app [] c l

let beta_appvect c v = beta_applist c (Array.to_list v)

let beta_app c a = beta_applist c [a]

(* Compatibility *)
let betazeta_appvect = Term.lambda_appvect_assum

(********************************************************************)
(*             Special-Purpose Reduction                            *)
(********************************************************************)

(* pseudo-reduction rule:
 * [hnf_prod_app env (Prod(_,B)) N --> B[N]
 * with an HNF on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message. *)

let hnf_prod_app env t n =
  match kind (whd_all env t) with
    | Prod (_,_,b) -> subst1 n b
    | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.")

let hnf_prod_applist env t nl =
  List.fold_left (hnf_prod_app env) t nl

(* Dealing with arities *)

let dest_prod env =
  let rec decrec env m c =
    let t = whd_all env c in
    match kind t with
      | Prod (n,a,c0) ->
          let d = LocalAssum (n,a) in
          decrec (push_rel d env) (Context.Rel.add d m) c0
      | _ -> m,t
  in
  decrec env Context.Rel.empty

(* The same but preserving lets in the context, not internal ones. *)
let dest_prod_assum env =
  let rec prodec_rec env l ty =
    let rty = whd_allnolet env ty in
    match kind rty with
    | Prod (x,t,c)  ->
        let d = LocalAssum (x,t) in
        prodec_rec (push_rel d env) (Context.Rel.add d l) c
    | LetIn (x,b,t,c) ->
        let d = LocalDef (x,b,t) in
        prodec_rec (push_rel d env) (Context.Rel.add d l) c
    | Cast (c,_,_)    -> prodec_rec env l c
    | _               ->
      let rty' = whd_all env rty in
        if Constr.equal rty' rty then l, rty
        else prodec_rec env l rty'
  in
  prodec_rec env Context.Rel.empty

let dest_lam_assum env =
  let rec lamec_rec env l ty =
    let rty = whd_allnolet env ty in
    match kind rty with
    | Lambda (x,t,c)  ->
        let d = LocalAssum (x,t) in
        lamec_rec (push_rel d env) (Context.Rel.add d l) c
    | LetIn (x,b,t,c) ->
        let d = LocalDef (x,b,t) in
        lamec_rec (push_rel d env) (Context.Rel.add d l) c
    | Cast (c,_,_)    -> lamec_rec env l c
    | _               -> l,rty
  in
  lamec_rec env Context.Rel.empty

exception NotArity

let dest_arity env c =
  let l, c = dest_prod_assum env c in
  match kind c with
    | Sort s -> l,s
    | _ -> raise NotArity

let is_arity env c =
  try
    let _ = dest_arity env c in
    true
  with NotArity -> false