1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Util open Names open Constr open Declarations open Libobject open Environ open Pattern open Libnames module NamedDecl = Context.Named.Declaration type filter_function = GlobRef.t -> env -> constr -> bool type display_function = GlobRef.t -> env -> constr -> unit (* This option restricts the output of [SearchPattern ...], [SearchAbout ...], etc. to the names of the symbols matching the query, separated by a newline. This type of output is useful for editors (like emacs), to generate a list of completion candidates without having to parse through the types of all symbols. *) type glob_search_about_item = | GlobSearchSubPattern of constr_pattern | GlobSearchString of string module SearchBlacklist = Goptions.MakeStringTable (struct let key = ["Search";"Blacklist"] let title = "Current search blacklist : " let member_message s b = str "Search blacklist does " ++ (if b then mt () else str "not ") ++ str "include " ++ str s end) (* The functions iter_constructors and iter_declarations implement the behavior needed for the Coq searching commands. These functions take as first argument the procedure that will be called to treat each entry. This procedure receives the name of the object, the assumptions that will make it possible to print its type, and the constr term that represent its type. *) let iter_constructors indsp u fn env nconstr = for i = 1 to nconstr do let typ = Inductiveops.type_of_constructor env ((indsp, i), u) in fn (GlobRef.ConstructRef (indsp, i)) env typ done let iter_named_context_name_type f = List.iter (fun decl -> f (NamedDecl.get_id decl) (NamedDecl.get_type decl)) let get_current_or_goal_context ?pstate glnum = match pstate with | None -> let env = Global.env () in Evd.(from_env env, env) | Some p -> Pfedit.get_goal_context p glnum (* General search over hypothesis of a goal *) let iter_hypothesis ?pstate glnum (fn : GlobRef.t -> env -> constr -> unit) = let env = Global.env () in let iter_hyp idh typ = fn (GlobRef.VarRef idh) env typ in let evmap,e = get_current_or_goal_context ?pstate glnum in let pfctxt = named_context e in iter_named_context_name_type iter_hyp pfctxt (* General search over declarations *) let iter_declarations (fn : GlobRef.t -> env -> constr -> unit) = let env = Global.env () in List.iter (fun d -> fn (GlobRef.VarRef (NamedDecl.get_id d)) env (NamedDecl.get_type d)) (Environ.named_context env); let iter_obj (sp, kn) lobj = match lobj with | AtomicObject o -> begin match object_tag o with | "CONSTANT" -> let cst = Global.constant_of_delta_kn kn in let gr = GlobRef.ConstRef cst in let (typ, _) = Typeops.type_of_global_in_context (Global.env ()) gr in fn gr env typ | "INDUCTIVE" -> let mind = Global.mind_of_delta_kn kn in let mib = Global.lookup_mind mind in let iter_packet i mip = let ind = (mind, i) in let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in let i = (ind, u) in let typ = Inductiveops.type_of_inductive env i in let () = fn (GlobRef.IndRef ind) env typ in let len = Array.length mip.mind_user_lc in iter_constructors ind u fn env len in Array.iteri iter_packet mib.mind_packets | _ -> () end | _ -> () in try Declaremods.iter_all_segments iter_obj with Not_found -> () let generic_search ?pstate glnumopt fn = (match glnumopt with | None -> () | Some glnum -> iter_hypothesis ?pstate glnum fn); iter_declarations fn (** This module defines a preference on constrs in the form of a [compare] function (preferred constr must be big for this functions, so preferences such as small constr must use a reversed order). This priority will be used to order search results and propose first results which are more likely to be relevant to the query, this is why the type [t] contains the other elements required of a search. *) module ConstrPriority = struct (* The priority is memoised here. Because of the very localised use of this module, it is not worth it making a convenient interface. *) type t = GlobRef.t * Environ.env * Constr.t * priority and priority = int module ConstrSet = CSet.Make(Constr) (** A measure of the size of a term *) let rec size t = Constr.fold (fun s t -> 1 + s + size t) 0 t (** Set of the "symbols" (definitions, inductives, constructors) which appear in a term. *) let rec symbols acc t = let open Constr in match kind t with | Const _ | Ind _ | Construct _ -> ConstrSet.add t acc | _ -> Constr.fold symbols acc t (** The number of distinct "symbols" (see {!symbols}) which appear in a term. *) let num_symbols t = ConstrSet.(cardinal (symbols empty t)) let priority t : priority = -(3*(num_symbols t) + size t) let compare (_,_,_,p1) (_,_,_,p2) = pervasives_compare p1 p2 end module PriorityQueue = Heap.Functional(ConstrPriority) let rec iter_priority_queue q fn = (* use an option to make the function tail recursive. Will be obsoleted with Ocaml 4.02 with the [match … with | exception …] syntax. *) let next = begin try Some (PriorityQueue.maximum q) with Heap.EmptyHeap -> None end in match next with | Some (gref,env,t,_) -> fn gref env t; iter_priority_queue (PriorityQueue.remove q) fn | None -> () let prioritize_search seq fn = let acc = ref PriorityQueue.empty in let iter gref env t = let p = ConstrPriority.priority t in acc := PriorityQueue.add (gref,env,t,p) !acc in let () = seq iter in iter_priority_queue !acc fn (** Filters *) (** This function tries to see whether the conclusion matches a pattern. FIXME: this is quite dummy, we may find a more efficient algorithm. *) let rec pattern_filter pat ref env sigma typ = let typ = Termops.strip_outer_cast sigma typ in if Constr_matching.is_matching env sigma pat typ then true else match EConstr.kind sigma typ with | Prod (_, _, typ) | LetIn (_, _, _, typ) -> pattern_filter pat ref env sigma typ | _ -> false let rec head_filter pat ref env sigma typ = let typ = Termops.strip_outer_cast sigma typ in if Constr_matching.is_matching_head env sigma pat typ then true else match EConstr.kind sigma typ with | Prod (_, _, typ) | LetIn (_, _, _, typ) -> head_filter pat ref env sigma typ | _ -> false let full_name_of_reference ref = let (dir,id) = repr_path (Nametab.path_of_global ref) in DirPath.to_string dir ^ "." ^ Id.to_string id (** Whether a reference is blacklisted *) let blacklist_filter ref env typ = let name = full_name_of_reference ref in let is_not_bl str = not (String.string_contains ~where:name ~what:str) in CString.Set.for_all is_not_bl (SearchBlacklist.v ()) let module_filter (mods, outside) ref env typ = let sp = Nametab.path_of_global ref in let sl = dirpath sp in let is_outside md = not (is_dirpath_prefix_of md sl) in let is_inside md = is_dirpath_prefix_of md sl in if outside then List.for_all is_outside mods else List.is_empty mods || List.exists is_inside mods let name_of_reference ref = Id.to_string (Nametab.basename_of_global ref) let search_about_filter query gr env typ = match query with | GlobSearchSubPattern pat -> Constr_matching.is_matching_appsubterm ~closed:false env (Evd.from_env env) pat (EConstr.of_constr typ) | GlobSearchString s -> String.string_contains ~where:(name_of_reference gr) ~what:s (** SearchPattern *) let search_pattern ?pstate gopt pat mods pr_search = let filter ref env typ = module_filter mods ref env typ && pattern_filter pat ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) && blacklist_filter ref env typ in let iter ref env typ = if filter ref env typ then pr_search ref env typ in generic_search ?pstate gopt iter (** SearchRewrite *) let eq () = Coqlib.(lib_ref "core.eq.type") let rewrite_pat1 pat = PApp (PRef (eq ()), [| PMeta None; pat; PMeta None |]) let rewrite_pat2 pat = PApp (PRef (eq ()), [| PMeta None; PMeta None; pat |]) let search_rewrite ?pstate gopt pat mods pr_search = let pat1 = rewrite_pat1 pat in let pat2 = rewrite_pat2 pat in let filter ref env typ = module_filter mods ref env typ && (pattern_filter pat1 ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) || pattern_filter pat2 ref env (Evd.from_env env) (EConstr.of_constr typ)) && blacklist_filter ref env typ in let iter ref env typ = if filter ref env typ then pr_search ref env typ in generic_search ?pstate gopt iter (** Search *) let search_by_head ?pstate gopt pat mods pr_search = let filter ref env typ = module_filter mods ref env typ && head_filter pat ref env (Evd.from_env env) (* FIXME *) (EConstr.of_constr typ) && blacklist_filter ref env typ in let iter ref env typ = if filter ref env typ then pr_search ref env typ in generic_search ?pstate gopt iter (** SearchAbout *) let search_about ?pstate gopt items mods pr_search = let filter ref env typ = let eqb b1 b2 = if b1 then b2 else not b2 in module_filter mods ref env typ && List.for_all (fun (b,i) -> eqb b (search_about_filter i ref env typ)) items && blacklist_filter ref env typ in let iter ref env typ = if filter ref env typ then pr_search ref env typ in generic_search ?pstate gopt iter type search_constraint = | Name_Pattern of Str.regexp | Type_Pattern of Pattern.constr_pattern | SubType_Pattern of Pattern.constr_pattern | In_Module of Names.DirPath.t | Include_Blacklist type 'a coq_object = { coq_object_prefix : string list; coq_object_qualid : string list; coq_object_object : 'a; } let interface_search ?pstate = let rec extract_flags name tpe subtpe mods blacklist = function | [] -> (name, tpe, subtpe, mods, blacklist) | (Name_Pattern regexp, b) :: l -> extract_flags ((regexp, b) :: name) tpe subtpe mods blacklist l | (Type_Pattern pat, b) :: l -> extract_flags name ((pat, b) :: tpe) subtpe mods blacklist l | (SubType_Pattern pat, b) :: l -> extract_flags name tpe ((pat, b) :: subtpe) mods blacklist l | (In_Module id, b) :: l -> extract_flags name tpe subtpe ((id, b) :: mods) blacklist l | (Include_Blacklist, b) :: l -> extract_flags name tpe subtpe mods b l in fun ?glnum flags -> let (name, tpe, subtpe, mods, blacklist) = extract_flags [] [] [] [] false flags in let filter_function ref env constr = let id = Names.Id.to_string (Nametab.basename_of_global ref) in let path = Libnames.dirpath (Nametab.path_of_global ref) in let toggle x b = if x then b else not b in let match_name (regexp, flag) = toggle (Str.string_match regexp id 0) flag in let match_type (pat, flag) = toggle (Constr_matching.is_matching env (Evd.from_env env) pat (EConstr.of_constr constr)) flag in let match_subtype (pat, flag) = toggle (Constr_matching.is_matching_appsubterm ~closed:false env (Evd.from_env env) pat (EConstr.of_constr constr)) flag in let match_module (mdl, flag) = toggle (Libnames.is_dirpath_prefix_of mdl path) flag in List.for_all match_name name && List.for_all match_type tpe && List.for_all match_subtype subtpe && List.for_all match_module mods && (blacklist || blacklist_filter ref env constr) in let ans = ref [] in let print_function ref env constr = let fullpath = DirPath.repr (Nametab.dirpath_of_global ref) in let qualid = Nametab.shortest_qualid_of_global Id.Set.empty ref in let (shortpath, basename) = Libnames.repr_qualid qualid in let shortpath = DirPath.repr shortpath in (* [shortpath] is a suffix of [fullpath] and we're looking for the missing prefix *) let rec prefix full short accu = match full, short with | _, [] -> let full = List.rev_map Id.to_string full in (full, accu) | _ :: full, m :: short -> prefix full short (Id.to_string m :: accu) | _ -> assert false in let (prefix, qualid) = prefix fullpath shortpath [Id.to_string basename] in let answer = { coq_object_prefix = prefix; coq_object_qualid = qualid; coq_object_object = constr; } in ans := answer :: !ans; in let iter ref env typ = if filter_function ref env typ then print_function ref env typ in let () = generic_search ?pstate glnum iter in !ans