1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Created by Hugo Herbelin from contents related to lemma proofs in
   file command.ml, Aug 2009 *)

open CErrors
open Util
open Pp
open Names
open Constr
open Declareops
open Nameops
open Pretyping
open Impargs

module NamedDecl = Context.Named.Declaration

(* Support for terminators and proofs with an associated constant
   [that can be saved] *)

type lemma_possible_guards = int list list

module Proof_ending = struct

  type t =
    | Regular
    | End_obligation of DeclareObl.obligation_qed_info
    | End_derive of { f : Id.t; name : Id.t }
    | End_equations of { hook : Constant.t list -> Evd.evar_map -> unit
                       ; i : Id.t
                       ; types : (Environ.env * Evar.t * Evd.evar_info * EConstr.named_context * Evd.econstr) list
                       ; wits : EConstr.t list ref
                       (* wits are actually computed by the proof
                          engine by side-effect after creating the
                          proof! This is due to the start_dependent_proof API *)
                       ; sigma : Evd.evar_map
                       }

end

module Recthm = struct
  type t =
    { name : Id.t
    ; typ : EConstr.t
    ; args : Name.t list
    ; impargs : Impargs.manual_implicits
    }
end

module Info = struct

  type t =
    { hook : DeclareDef.Hook.t option
    ; compute_guard : lemma_possible_guards
    ; impargs : Impargs.manual_implicits
    ; proof_ending : Proof_ending.t CEphemeron.key
    (* This could be improved and the CEphemeron removed *)
    ; other_thms : Recthm.t list
    ; scope : DeclareDef.locality
    ; kind : Decls.logical_kind
    }

  let make ?hook ?(proof_ending=Proof_ending.Regular) ?(scope=DeclareDef.Global Declare.ImportDefaultBehavior)
      ?(kind=Decls.(IsProof Lemma)) () =
    { hook
    ; compute_guard = []
    ; impargs = []
    ; proof_ending = CEphemeron.create proof_ending
    ; other_thms = []
    ; scope
    ; kind
    }
end

(* Proofs with a save constant function *)
type t =
  { proof : Proof_global.t
  ; info : Info.t
  }

let pf_map f pf = { pf with proof = f pf.proof }
let pf_fold f pf = f pf.proof

let set_endline_tactic t = pf_map (Proof_global.set_endline_tactic t)

(* To be removed *)
module Internal = struct

  (** Gets the current terminator without checking that the proof has
      been completed. Useful for the likes of [Admitted]. *)
  let get_info ps = ps.info

end

let by tac pf =
  let proof, res = Pfedit.by tac pf.proof in
  { pf with proof }, res

(************************************************************************)
(* Creating a lemma-like constant                                       *)
(************************************************************************)

let initialize_named_context_for_proof () =
  let sign = Global.named_context () in
  List.fold_right
    (fun d signv ->
      let id = NamedDecl.get_id d in
      let d = if Decls.variable_opacity id then NamedDecl.drop_body d else d in
      Environ.push_named_context_val d signv) sign Environ.empty_named_context_val

(* Starting a goal *)
let start_lemma ~name ~poly
    ?(udecl=UState.default_univ_decl)
    ?(info=Info.make ())
    sigma c =
  (* We remove the bodies of variables in the named context marked
     "opaque", this is a hack tho, see #10446 *)
  let sign = initialize_named_context_for_proof () in
  let goals = [ Global.env_of_context sign , c ] in
  let proof = Proof_global.start_proof sigma ~name ~udecl ~poly goals in
  { proof ; info }

let start_dependent_lemma ~name ~poly
    ?(udecl=UState.default_univ_decl)
    ?(info=Info.make ()) telescope =
  let proof = Proof_global.start_dependent_proof ~name ~udecl ~poly telescope in
  { proof; info }

let rec_tac_initializer finite guard thms snl =
  if finite then
    match List.map (fun { Recthm.name; typ } -> name,typ) thms with
    | (id,_)::l -> Tactics.mutual_cofix id l 0
    | _ -> assert false
  else
    (* nl is dummy: it will be recomputed at Qed-time *)
    let nl = match snl with
     | None -> List.map succ (List.map List.last guard)
     | Some nl -> nl
    in match List.map2 (fun { Recthm.name; typ } n -> (name, n, typ)) thms nl with
       | (id,n,_)::l -> Tactics.mutual_fix id n l 0
       | _ -> assert false

let start_lemma_with_initialization ?hook ~poly ~scope ~kind ~udecl sigma recguard thms snl =
  let intro_tac { Recthm.args; _ } = Tactics.auto_intros_tac args in
  let init_tac, compute_guard = match recguard with
  | Some (finite,guard,init_tac) ->
    let rec_tac = rec_tac_initializer finite guard thms snl in
    Some (match init_tac with
        | None ->
          Tacticals.New.tclTHENS rec_tac (List.map intro_tac thms)
        | Some tacl ->
          Tacticals.New.tclTHENS rec_tac
            List.(map2 (fun tac thm -> Tacticals.New.tclTHEN tac (intro_tac thm)) tacl thms)
      ),guard
  | None ->
    let () = match thms with [_] -> () | _ -> assert false in
    Some (intro_tac (List.hd thms)), [] in
  match thms with
  | [] -> anomaly (Pp.str "No proof to start.")
  | { Recthm.name; typ; impargs; _}::other_thms ->
    let info =
      Info.{ hook
           ; impargs
           ; compute_guard
           ; other_thms
           ; proof_ending = CEphemeron.create Proof_ending.Regular
           ; scope
           ; kind
           } in
    let lemma = start_lemma ~name ~poly ~udecl ~info sigma typ in
    pf_map (Proof_global.map_proof (fun p ->
        match init_tac with
        | None -> p
        | Some tac -> pi1 @@ Proof.run_tactic Global.(env ()) tac p)) lemma

(************************************************************************)
(* Commom constant saving path, for both Qed and Admitted               *)
(************************************************************************)

(* Helper for process_recthms *)
let retrieve_first_recthm uctx = function
  | GlobRef.VarRef id ->
    NamedDecl.get_value (Global.lookup_named id),
    Decls.variable_opacity id
  | GlobRef.ConstRef cst ->
    let cb = Global.lookup_constant cst in
    (* we get the right order somehow but surely it could be enforced in a better way *)
    let uctx = UState.context uctx in
    let inst = Univ.UContext.instance uctx in
    let map (c, _, _) = Vars.subst_instance_constr inst c in
    (Option.map map (Global.body_of_constant_body Library.indirect_accessor cb), is_opaque cb)
  | _ -> assert false

(* Helper for process_recthms *)
let save_remaining_recthms env sigma ~poly ~scope ~udecl uctx body opaq i { Recthm.name; typ; impargs } =
  let norm c = EConstr.to_constr (Evd.from_ctx uctx) c in
  let body = Option.map EConstr.of_constr body in
  let univs = UState.check_univ_decl ~poly uctx udecl in
  let t_i = norm typ in
  let kind = Decls.(IsAssumption Conjectural) in
  match body with
  | None ->
    let open DeclareDef in
    (match scope with
     | Discharge ->
       (* Let Fixpoint + Admitted gets turned into axiom so scope is Global,
          see finish_admitted *)
       assert false
     | Global local ->
       let kind = Decls.(IsAssumption Conjectural) in
       let decl = Declare.ParameterEntry (None,(t_i,univs),None) in
       let kn = Declare.declare_constant ~name ~local ~kind decl in
       GlobRef.ConstRef kn, impargs)
  | Some body ->
    let body = norm body in
    let rec body_i t = match Constr.kind t with
      | Fix ((nv,0),decls) -> mkFix ((nv,i),decls)
      | CoFix (0,decls) -> mkCoFix (i,decls)
      | LetIn(na,t1,ty,t2) -> mkLetIn (na,t1,ty, body_i t2)
      | Lambda(na,ty,t) -> mkLambda(na,ty,body_i t)
      | App (t, args) -> mkApp (body_i t, args)
      | _ ->
        anomaly Pp.(str "Not a proof by induction: " ++ Printer.pr_constr_env env sigma body ++ str ".") in
    let body_i = body_i body in
    let open DeclareDef in
    match scope with
    | Discharge ->
      let const = Declare.definition_entry ~types:t_i ~opaque:opaq ~univs body_i in
      let c = Declare.SectionLocalDef const in
      let () = Declare.declare_variable ~name ~kind c in
      GlobRef.VarRef name, impargs
    | Global local ->
      let const = Declare.definition_entry ~types:t_i ~univs ~opaque:opaq body_i in
      let kn = Declare.declare_constant ~name ~local ~kind (Declare.DefinitionEntry const) in
      GlobRef.ConstRef kn, impargs

(* This declares implicits and calls the hooks for all the theorems,
   including the main one *)
let process_recthms ?fix_exn ?hook env sigma uctx ~udecl ~poly ~scope dref imps other_thms =
  let other_thms_data =
    if List.is_empty other_thms then [] else
      (* there are several theorems defined mutually *)
      let body,opaq = retrieve_first_recthm uctx dref in
      List.map_i (save_remaining_recthms env sigma ~poly ~scope ~udecl uctx body opaq) 1 other_thms in
  let thms_data = (dref,imps)::other_thms_data in
  List.iter (fun (dref,imps) ->
      maybe_declare_manual_implicits false dref imps;
      DeclareDef.Hook.(call ?fix_exn ?hook { S.uctx; obls = []; scope; dref})) thms_data

(************************************************************************)
(* Admitting a lemma-like constant                                      *)
(************************************************************************)

(* Admitted *)
let warn_let_as_axiom =
  CWarnings.create ~name:"let-as-axiom" ~category:"vernacular"
                   (fun id -> strbrk "Let definition" ++ spc () ++ Id.print id ++
                                spc () ++ strbrk "declared as an axiom.")

let get_keep_admitted_vars =
  Goptions.declare_bool_option_and_ref
    ~depr:false
    ~name:"keep section variables in admitted proofs"
    ~key:["Keep"; "Admitted"; "Variables"]
    ~value:true

let finish_admitted env sigma ~name ~poly ~scope pe ctx hook ~udecl impargs other_thms =
  let open DeclareDef in
  let local = match scope with
  | Global local -> local
  | Discharge -> warn_let_as_axiom name; Declare.ImportNeedQualified
  in
  let kn = Declare.declare_constant ~name ~local ~kind:Decls.(IsAssumption Conjectural) (Declare.ParameterEntry pe) in
  let () = Declare.assumption_message name in
  DeclareUniv.declare_univ_binders (GlobRef.ConstRef kn) (UState.universe_binders ctx);
  (* This takes care of the implicits and hook for the current constant*)
  process_recthms ?fix_exn:None ?hook env sigma ctx ~udecl ~poly ~scope:(Global local) (GlobRef.ConstRef kn) impargs other_thms

let save_lemma_admitted ~(lemma : t) : unit =
  (* Used for printing in recthms *)
  let env = Global.env () in
  let { Info.hook; scope; impargs; other_thms } = lemma.info in
  let udecl = Proof_global.get_universe_decl lemma.proof in
  let Proof.{ sigma; name; poly; entry } = Proof.data (Proof_global.get_proof lemma.proof) in
  let typ = match Proofview.initial_goals entry with
    | [typ] -> snd typ
    | _ -> CErrors.anomaly ~label:"Lemmas.save_proof" (Pp.str "more than one statement.")
  in
  let typ = EConstr.Unsafe.to_constr typ in
  (* This will warn if the proof is complete *)
  let pproofs, _univs = Proof_global.return_proof ~allow_partial:true lemma.proof in
  let sec_vars =
    if not (get_keep_admitted_vars ()) then None
    else match Proof_global.get_used_variables lemma.proof, pproofs with
      | Some _ as x, _ -> x
      | None, (pproof, _) :: _ ->
        let env = Global.env () in
        let ids_typ = Environ.global_vars_set env typ in
        let ids_def = Environ.global_vars_set env pproof in
        Some (Environ.really_needed env (Id.Set.union ids_typ ids_def))
      | _ -> None in
  let universes = Proof_global.get_initial_euctx lemma.proof in
  let ctx = UState.check_univ_decl ~poly universes udecl in
  finish_admitted env sigma ~name ~poly ~scope (sec_vars, (typ, ctx), None) universes hook ~udecl impargs other_thms

(************************************************************************)
(* Saving a lemma-like constant                                         *)
(************************************************************************)

let default_thm_id = Id.of_string "Unnamed_thm"

let check_anonymity id save_ident =
  if not (String.equal (atompart_of_id id) (Id.to_string (default_thm_id))) then
    user_err Pp.(str "This command can only be used for unnamed theorem.")

(* Support for mutually proved theorems *)

(* Helper for finish_proved *)
let adjust_guardness_conditions const = function
  | [] -> const (* Not a recursive statement *)
  | possible_indexes ->
    (* Try all combinations... not optimal *)
    let env = Global.env() in
    Declare.Internal.map_entry_body const
      ~f:(fun ((body, ctx), eff) ->
          match Constr.kind body with
          | Fix ((nv,0),(_,_,fixdefs as fixdecls)) ->
            let env = Safe_typing.push_private_constants env eff.Evd.seff_private in
            let indexes = search_guard env possible_indexes fixdecls in
            (mkFix ((indexes,0),fixdecls), ctx), eff
          | _ -> (body, ctx), eff)

let finish_proved env sigma idopt po info =
  let open Proof_global in
  let { Info.hook; compute_guard; impargs; other_thms; scope; kind } = info in
  match po with
  | { name; entries=[const]; universes; udecl; poly } ->
    let name = match idopt with
      | None -> name
      | Some { CAst.v = save_id } -> check_anonymity name save_id; save_id in
    let fix_exn = Declare.Internal.get_fix_exn const in
    let () = try
      let const = adjust_guardness_conditions const compute_guard in
      let should_suggest = const.Declare.proof_entry_opaque &&
                           Option.is_empty const.Declare.proof_entry_secctx in
      let open DeclareDef in
      let r = match scope with
        | Discharge ->
          let c = Declare.SectionLocalDef const in
          let () = Declare.declare_variable ~name ~kind c in
          let () = if should_suggest
            then Proof_using.suggest_variable (Global.env ()) name
          in
          GlobRef.VarRef name
        | Global local ->
          let kn =
            Declare.declare_constant ~name ~local ~kind (Declare.DefinitionEntry const) in
          let () = if should_suggest
            then Proof_using.suggest_constant (Global.env ()) kn
          in
          let gr = GlobRef.ConstRef kn in
          DeclareUniv.declare_univ_binders gr (UState.universe_binders universes);
          gr
      in
      Declare.definition_message name;
      (* This takes care of the implicits and hook for the current constant*)
      process_recthms ~fix_exn ?hook env sigma universes ~udecl ~poly ~scope r impargs other_thms
    with e when CErrors.noncritical e ->
      let e = CErrors.push e in
      iraise (fix_exn e)
    in ()
  | _ ->
    CErrors.anomaly Pp.(str "[standard_proof_terminator] close_proof returned more than one proof term")

let finish_derived ~f ~name ~idopt ~entries =
  (* [f] and [name] correspond to the proof of [f] and of [suchthat], respectively. *)

  if Option.has_some idopt then
    CErrors.user_err Pp.(str "Cannot save a proof of Derive with an explicit name.");

  let f_def, lemma_def =
    match entries with
    | [_;f_def;lemma_def] ->
      f_def, lemma_def
    | _ -> assert false
  in
  (* The opacity of [f_def] is adjusted to be [false], as it
     must. Then [f] is declared in the global environment. *)
  let f_def = Declare.Internal.set_opacity ~opaque:false f_def in
  let f_kind = Decls.(IsDefinition Definition) in
  let f_def = Declare.DefinitionEntry f_def in
  let f_kn = Declare.declare_constant ~name:f ~kind:f_kind f_def in
  let f_kn_term = mkConst f_kn in
  (* In the type and body of the proof of [suchthat] there can be
     references to the variable [f]. It needs to be replaced by
     references to the constant [f] declared above. This substitution
     performs this precise action. *)
  let substf c = Vars.replace_vars [f,f_kn_term] c in
  (* Extracts the type of the proof of [suchthat]. *)
  let lemma_pretype typ =
    match typ with
    | Some t -> Some (substf t)
    | None -> assert false (* Proof_global always sets type here. *)
  in
  (* The references of [f] are subsituted appropriately. *)
  let lemma_def = Declare.Internal.map_entry_type lemma_def ~f:lemma_pretype in
  (* The same is done in the body of the proof. *)
  let lemma_def = Declare.Internal.map_entry_body lemma_def ~f:(fun ((b,ctx),fx) -> (substf b, ctx), fx) in
  let lemma_def = Declare.DefinitionEntry lemma_def in
  let _ : Names.Constant.t = Declare.declare_constant ~name ~kind:Decls.(IsProof Proposition) lemma_def in
  ()

let finish_proved_equations lid kind proof_obj hook i types wits sigma0 =

  let obls = ref 1 in
  let sigma, recobls =
    CList.fold_left2_map (fun sigma (wit, (evar_env, ev, evi, local_context, type_)) entry ->
        let id =
          match Evd.evar_ident ev sigma0 with
          | Some id -> id
          | None -> let n = !obls in incr obls; add_suffix i ("_obligation_" ^ string_of_int n)
        in
        let entry, args = Declare.Internal.shrink_entry local_context entry in
        let cst = Declare.declare_constant ~name:id ~kind (Declare.DefinitionEntry entry) in
        let sigma, app = Evarutil.new_global sigma (GlobRef.ConstRef cst) in
        let sigma = Evd.define ev (EConstr.applist (app, List.map EConstr.of_constr args)) sigma in
        sigma, cst) sigma0
      (CList.combine (List.rev !wits) types) proof_obj.Proof_global.entries
  in
  hook recobls sigma

let finalize_proof idopt env sigma proof_obj proof_info =
  let open Proof_global in
  let open Proof_ending in
  match CEphemeron.default proof_info.Info.proof_ending Regular with
  | Regular ->
    finish_proved env sigma idopt proof_obj proof_info
  | End_obligation oinfo ->
    DeclareObl.obligation_terminator proof_obj.entries proof_obj.universes oinfo
  | End_derive { f ; name } ->
    finish_derived ~f ~name ~idopt ~entries:proof_obj.entries
  | End_equations { hook; i; types; wits; sigma } ->
    finish_proved_equations idopt proof_info.Info.kind proof_obj hook i types wits sigma

let save_lemma_proved ~lemma ~opaque ~idopt =
  (* Env and sigma are just used for error printing in save_remaining_recthms *)
  let env = Global.env () in
  let { Proof.sigma } = Proof.data (Proof_global.get_proof lemma.proof) in
  let proof_obj = Proof_global.close_proof ~opaque ~keep_body_ucst_separate:false (fun x -> x) lemma.proof in
  finalize_proof idopt env sigma proof_obj lemma.info

(***********************************************************************)
(* Special case to close a lemma without forcing a proof               *)
(***********************************************************************)
let save_lemma_admitted_delayed ~proof ~info =
  let open Proof_global in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let { name; entries; universes; udecl; poly } = proof in
  let { Info.hook; scope; impargs; other_thms } = info in
  if List.length entries <> 1 then
    user_err Pp.(str "Admitted does not support multiple statements");
  let { Declare.proof_entry_secctx; proof_entry_type; proof_entry_universes } = List.hd entries in
  let poly = match proof_entry_universes with
    | Entries.Monomorphic_entry _ -> false
    | Entries.Polymorphic_entry (_, _) -> true in
  let typ = match proof_entry_type with
    | None -> user_err Pp.(str "Admitted requires an explicit statement");
    | Some typ -> typ in
  let ctx = UState.univ_entry ~poly universes in
  let sec_vars = if get_keep_admitted_vars () then proof_entry_secctx else None in
  finish_admitted env sigma ~name ~poly ~scope (sec_vars, (typ, ctx), None) universes hook ~udecl impargs other_thms

let save_lemma_proved_delayed ~proof ~info ~idopt =
  (* Env and sigma are just used for error printing in save_remaining_recthms *)
  let env = Global.env () in
  let sigma = Evd.from_env env in
  finalize_proof idopt env sigma proof info