1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Hugo Herbelin from contents related to inductive schemes initially developed by Christine Paulin (induction schemes), Vincent Siles (decidable equality and boolean equality) and Matthieu Sozeau (combined scheme) in file command.ml, Sep 2009 *) (* This file provides entry points for manually or automatically declaring new schemes *) open Pp open CErrors open Util open Names open Declarations open Term open Constr open Inductive open Indrec open Declare open Libnames open Goptions open Nameops open Termops open Smartlocate open Vernacexpr open Ind_tables open Auto_ind_decl open Eqschemes open Elimschemes open Context.Rel.Declaration (* Flags governing automatic synthesis of schemes *) let elim_flag = ref true let () = declare_bool_option { optdepr = false; optname = "automatic declaration of induction schemes"; optkey = ["Elimination";"Schemes"]; optread = (fun () -> !elim_flag) ; optwrite = (fun b -> elim_flag := b) } let bifinite_elim_flag = ref false let () = declare_bool_option { optdepr = false; optname = "automatic declaration of induction schemes for non-recursive types"; optkey = ["Nonrecursive";"Elimination";"Schemes"]; optread = (fun () -> !bifinite_elim_flag) ; optwrite = (fun b -> bifinite_elim_flag := b) } let case_flag = ref false let () = declare_bool_option { optdepr = false; optname = "automatic declaration of case analysis schemes"; optkey = ["Case";"Analysis";"Schemes"]; optread = (fun () -> !case_flag) ; optwrite = (fun b -> case_flag := b) } let eq_flag = ref false let () = declare_bool_option { optdepr = false; optname = "automatic declaration of boolean equality"; optkey = ["Boolean";"Equality";"Schemes"]; optread = (fun () -> !eq_flag) ; optwrite = (fun b -> eq_flag := b) } let is_eq_flag () = !eq_flag let eq_dec_flag = ref false let () = declare_bool_option { optdepr = false; optname = "automatic declaration of decidable equality"; optkey = ["Decidable";"Equality";"Schemes"]; optread = (fun () -> !eq_dec_flag) ; optwrite = (fun b -> eq_dec_flag := b) } let rewriting_flag = ref false let () = declare_bool_option { optdepr = false; optname ="automatic declaration of rewriting schemes for equality types"; optkey = ["Rewriting";"Schemes"]; optread = (fun () -> !rewriting_flag) ; optwrite = (fun b -> rewriting_flag := b) } (* Util *) let define ~poly name sigma c types = let f = declare_constant ~kind:Decls.(IsDefinition Scheme) in let univs = Evd.univ_entry ~poly sigma in let entry = Declare.definition_entry ~univs ?types c in let kn = f ~name (DefinitionEntry entry) in definition_message name; kn (* Boolean equality *) let declare_beq_scheme_gen internal names kn = ignore (define_mutual_scheme beq_scheme_kind internal names kn) let alarm what internal msg = let debug = false in match internal with | UserAutomaticRequest | InternalTacticRequest -> (if debug then Feedback.msg_debug (hov 0 msg ++ fnl () ++ what ++ str " not defined.")); None | _ -> Some msg let try_declare_scheme what f internal names kn = try f internal names kn with e -> let e = CErrors.push e in let rec extract_exn = function Logic_monad.TacticFailure e -> extract_exn e | e -> e in let msg = match extract_exn (fst e) with | ParameterWithoutEquality cst -> alarm what internal (str "Boolean equality not found for parameter " ++ Printer.pr_global cst ++ str".") | InductiveWithProduct -> alarm what internal (str "Unable to decide equality of functional arguments.") | InductiveWithSort -> alarm what internal (str "Unable to decide equality of type arguments.") | NonSingletonProp ind -> alarm what internal (str "Cannot extract computational content from proposition " ++ quote (Printer.pr_inductive (Global.env()) ind) ++ str ".") | EqNotFound (ind',ind) -> alarm what internal (str "Boolean equality on " ++ quote (Printer.pr_inductive (Global.env()) ind') ++ strbrk " is missing.") | UndefinedCst s -> alarm what internal (strbrk "Required constant " ++ str s ++ str " undefined.") | AlreadyDeclared (kind, id) as exn -> let msg = CErrors.print exn in alarm what internal msg | DecidabilityMutualNotSupported -> alarm what internal (str "Decidability lemma for mutual inductive types not supported.") | EqUnknown s -> alarm what internal (str "Found unsupported " ++ str s ++ str " while building Boolean equality.") | NoDecidabilityCoInductive -> alarm what internal (str "Scheme Equality is only for inductive types.") | DecidabilityIndicesNotSupported -> alarm what internal (str "Inductive types with annotations not supported.") | ConstructorWithNonParametricInductiveType ind -> alarm what internal (strbrk "Unsupported constructor with an argument whose type is a non-parametric inductive type." ++ strbrk " Type " ++ quote (Printer.pr_inductive (Global.env()) ind) ++ str " is applied to an argument which is not a variable.") | e when CErrors.noncritical e -> alarm what internal (str "Unexpected error during scheme creation: " ++ CErrors.print e) | _ -> iraise e in match msg with | None -> () | Some msg -> iraise (UserError (None, msg), snd e) let beq_scheme_msg mind = let mib = Global.lookup_mind mind in (* TODO: mutual inductive case *) str "Boolean equality on " ++ pr_enum (fun ind -> quote (Printer.pr_inductive (Global.env()) ind)) (List.init (Array.length mib.mind_packets) (fun i -> (mind,i))) let declare_beq_scheme_with l kn = try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserIndividualRequest l kn let try_declare_beq_scheme kn = (* TODO: handle Fix, eventually handle proof-irrelevance; improve decidability by depending on decidability for the parameters rather than on the bl and lb properties *) try_declare_scheme (beq_scheme_msg kn) declare_beq_scheme_gen UserAutomaticRequest [] kn let declare_beq_scheme = declare_beq_scheme_with [] (* Case analysis schemes *) let declare_one_case_analysis_scheme ind = let (mib,mip) = Global.lookup_inductive ind in let kind = inductive_sort_family mip in let dep = if kind == InProp then case_scheme_kind_from_prop else if not (Inductiveops.has_dependent_elim mib) then case_scheme_kind_from_type else case_dep_scheme_kind_from_type in let kelim = elim_sort (mib,mip) in (* in case the inductive has a type elimination, generates only one induction scheme, the other ones share the same code with the appropriate type *) if Sorts.family_leq InType kelim then ignore (define_individual_scheme dep UserAutomaticRequest None ind) (* Induction/recursion schemes *) let kinds_from_prop = [InType,rect_scheme_kind_from_prop; InProp,ind_scheme_kind_from_prop; InSet,rec_scheme_kind_from_prop; InSProp,sind_scheme_kind_from_prop] let kinds_from_type = [InType,rect_dep_scheme_kind_from_type; InProp,ind_dep_scheme_kind_from_type; InSet,rec_dep_scheme_kind_from_type; InSProp,sind_dep_scheme_kind_from_type] let nondep_kinds_from_type = [InType,rect_scheme_kind_from_type; InProp,ind_scheme_kind_from_type; InSet,rec_scheme_kind_from_type; InSProp,sind_scheme_kind_from_type] let declare_one_induction_scheme ind = let (mib,mip) = Global.lookup_inductive ind in let kind = inductive_sort_family mip in let from_prop = kind == InProp in let depelim = Inductiveops.has_dependent_elim mib in let kelim = Inductiveops.sorts_below (elim_sort (mib,mip)) in let kelim = if Global.sprop_allowed () then kelim else List.filter (fun s -> s <> InSProp) kelim in let elims = List.map_filter (fun (sort,kind) -> if List.mem_f Sorts.family_equal sort kelim then Some kind else None) (if from_prop then kinds_from_prop else if depelim then kinds_from_type else nondep_kinds_from_type) in List.iter (fun kind -> ignore (define_individual_scheme kind UserAutomaticRequest None ind)) elims let declare_induction_schemes kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Declarations.CoFinite then begin for i = 0 to Array.length mib.mind_packets - 1 do declare_one_induction_scheme (kn,i); done; end (* Decidable equality *) let declare_eq_decidability_gen internal names kn = let mib = Global.lookup_mind kn in if mib.mind_finite <> Declarations.CoFinite then ignore (define_mutual_scheme eq_dec_scheme_kind internal names kn) let eq_dec_scheme_msg ind = (* TODO: mutual inductive case *) str "Decidable equality on " ++ quote (Printer.pr_inductive (Global.env()) ind) let declare_eq_decidability_scheme_with l kn = try_declare_scheme (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserIndividualRequest l kn let try_declare_eq_decidability kn = try_declare_scheme (eq_dec_scheme_msg (kn,0)) declare_eq_decidability_gen UserAutomaticRequest [] kn let declare_eq_decidability = declare_eq_decidability_scheme_with [] let ignore_error f x = try ignore (f x) with e when CErrors.noncritical e -> () let declare_rewriting_schemes ind = if Hipattern.is_inductive_equality ind then begin ignore (define_individual_scheme rew_r2l_scheme_kind UserAutomaticRequest None ind); ignore (define_individual_scheme rew_r2l_dep_scheme_kind UserAutomaticRequest None ind); ignore (define_individual_scheme rew_r2l_forward_dep_scheme_kind UserAutomaticRequest None ind); (* These ones expect the equality to be symmetric; the first one also *) (* needs eq *) ignore_error (define_individual_scheme rew_l2r_scheme_kind UserAutomaticRequest None) ind; ignore_error (define_individual_scheme rew_l2r_dep_scheme_kind UserAutomaticRequest None) ind; ignore_error (define_individual_scheme rew_l2r_forward_dep_scheme_kind UserAutomaticRequest None) ind end let warn_cannot_build_congruence = CWarnings.create ~name:"cannot-build-congruence" ~category:"schemes" (fun () -> strbrk "Cannot build congruence scheme because eq is not found") let declare_congr_scheme ind = let env = Global.env () in let sigma = Evd.from_env env in if Hipattern.is_equality_type env sigma (EConstr.of_constr (mkInd ind)) (* FIXME *) then begin if try Coqlib.check_required_library Coqlib.logic_module_name; true with e when CErrors.noncritical e -> false then ignore (define_individual_scheme congr_scheme_kind UserAutomaticRequest None ind) else warn_cannot_build_congruence () end let declare_sym_scheme ind = if Hipattern.is_inductive_equality ind then (* Expect the equality to be symmetric *) ignore_error (define_individual_scheme sym_scheme_kind UserAutomaticRequest None) ind (* Scheme command *) let smart_global_inductive y = smart_global_inductive y let rec split_scheme env l = match l with | [] -> [],[] | (Some id,t)::q -> let l1,l2 = split_scheme env q in ( match t with | InductionScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2 | CaseScheme (x,y,z) -> ((id,x,smart_global_inductive y,z)::l1),l2 | EqualityScheme x -> l1,((Some id,smart_global_inductive x)::l2) ) (* if no name has been provided, we build one from the types of the ind requested *) | (None,t)::q -> let l1,l2 = split_scheme env q in let names inds recs isdep y z = let ind = smart_global_inductive y in let sort_of_ind = inductive_sort_family (snd (lookup_mind_specif env ind)) in let suffix = ( match sort_of_ind with | InProp -> if isdep then (match z with | InSProp -> inds ^ "s_dep" | InProp -> inds ^ "_dep" | InSet -> recs ^ "_dep" | InType -> recs ^ "t_dep") else ( match z with | InSProp -> inds ^ "s" | InProp -> inds | InSet -> recs | InType -> recs ^ "t" ) | _ -> if isdep then (match z with | InSProp -> inds ^ "s" | InProp -> inds | InSet -> recs | InType -> recs ^ "t" ) else (match z with | InSProp -> inds ^ "s_nodep" | InProp -> inds ^ "_nodep" | InSet -> recs ^ "_nodep" | InType -> recs ^ "t_nodep") ) in let newid = add_suffix (Nametab.basename_of_global (GlobRef.IndRef ind)) suffix in let newref = CAst.make newid in ((newref,isdep,ind,z)::l1),l2 in match t with | CaseScheme (x,y,z) -> names "_case" "_case" x y z | InductionScheme (x,y,z) -> names "_ind" "_rec" x y z | EqualityScheme x -> l1,((None,smart_global_inductive x)::l2) let do_mutual_induction_scheme ?(force_mutual=false) lnamedepindsort = let lrecnames = List.map (fun ({CAst.v},_,_,_) -> v) lnamedepindsort and env0 = Global.env() in let sigma, lrecspec, _ = List.fold_right (fun (_,dep,ind,sort) (evd, l, inst) -> let evd, indu, inst = match inst with | None -> let _, ctx = Typeops.type_of_global_in_context env0 (GlobRef.IndRef ind) in let u, ctx = UnivGen.fresh_instance_from ctx None in let evd = Evd.from_ctx (UState.of_context_set ctx) in evd, (ind,u), Some u | Some ui -> evd, (ind, ui), inst in (evd, (indu,dep,sort) :: l, inst)) lnamedepindsort (Evd.from_env env0,[],None) in let sigma, listdecl = Indrec.build_mutual_induction_scheme env0 sigma ~force_mutual lrecspec in let poly = (* NB: build_mutual_induction_scheme forces nonempty list of mutual inductives (force_mutual is about the generated schemes) *) let _,_,ind,_ = List.hd lnamedepindsort in Global.is_polymorphic (GlobRef.IndRef ind) in let declare decl fi lrecref = let decltype = Retyping.get_type_of env0 sigma (EConstr.of_constr decl) in let decltype = EConstr.to_constr sigma decltype in let cst = define ~poly fi sigma decl (Some decltype) in GlobRef.ConstRef cst :: lrecref in let _ = List.fold_right2 declare listdecl lrecnames [] in fixpoint_message None lrecnames let get_common_underlying_mutual_inductive env = function | [] -> assert false | (id,(mind,i as ind))::l as all -> match List.filter (fun (_,(mind',_)) -> not (MutInd.equal mind mind')) l with | (_,ind')::_ -> raise (RecursionSchemeError (env, NotMutualInScheme (ind,ind'))) | [] -> if not (List.distinct_f Int.compare (List.map snd (List.map snd all))) then user_err Pp.(str "A type occurs twice"); mind, List.map_filter (function (Some id,(_,i)) -> Some (i,id.CAst.v) | (None,_) -> None) all let do_scheme l = let env = Global.env() in let ischeme,escheme = split_scheme env l in (* we want 1 kind of scheme at a time so we check if the user tried to declare different schemes at once *) if not (List.is_empty ischeme) && not (List.is_empty escheme) then user_err Pp.(str "Do not declare equality and induction scheme at the same time.") else ( if not (List.is_empty ischeme) then do_mutual_induction_scheme ischeme else let mind,l = get_common_underlying_mutual_inductive env escheme in declare_beq_scheme_with l mind; declare_eq_decidability_scheme_with l mind ) (**********************************************************************) (* Combined scheme *) (* Matthieu Sozeau, Dec 2006 *) let list_split_rev_at index l = let rec aux i acc = function hd :: tl when Int.equal i index -> acc, tl | hd :: tl -> aux (succ i) (hd :: acc) tl | [] -> failwith "List.split_when: Invalid argument" in aux 0 [] l let fold_left' f = function [] -> invalid_arg "fold_left'" | hd :: tl -> List.fold_left f hd tl let mk_coq_and sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.and.type") let mk_coq_conj sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.and.conj") let mk_coq_prod sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.prod.type") let mk_coq_pair sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.prod.intro") let build_combined_scheme env schemes = let sigma = Evd.from_env env in let sigma, defs = List.fold_left_map (fun sigma cst -> let sigma, c = Evd.fresh_constant_instance env sigma cst in sigma, (c, Typeops.type_of_constant_in env c)) sigma schemes in let find_inductive ty = let (ctx, arity) = decompose_prod ty in let (_, last) = List.hd ctx in match Constr.kind last with | App (ind, args) -> let ind = destInd ind in let (_,spec) = Inductive.lookup_mind_specif env (fst ind) in ctx, ind, spec.mind_nrealargs | _ -> ctx, destInd last, 0 in let (c, t) = List.hd defs in let ctx, ind, nargs = find_inductive t in (* We check if ALL the predicates are in Prop, if so we use propositional conjunction '/\', otherwise we use the simple product '*'. *) let inprop = let inprop (_,t) = Retyping.get_sort_family_of env sigma (EConstr.of_constr t) == Sorts.InProp in List.for_all inprop defs in let mk_and, mk_conj = if inprop then (mk_coq_and, mk_coq_conj) else (mk_coq_prod, mk_coq_pair) in (* Number of clauses, including the predicates quantification *) let prods = nb_prod sigma (EConstr.of_constr t) - (nargs + 1) in let sigma, coqand = mk_and sigma in let sigma, coqconj = mk_conj sigma in let relargs = rel_vect 0 prods in let concls = List.rev_map (fun (cst, t) -> mkApp(mkConstU cst, relargs), snd (decompose_prod_n prods t)) defs in let concl_bod, concl_typ = fold_left' (fun (accb, acct) (cst, x) -> mkApp (EConstr.to_constr sigma coqconj, [| x; acct; cst; accb |]), mkApp (EConstr.to_constr sigma coqand, [| x; acct |])) concls in let ctx, _ = list_split_rev_at prods (List.rev_map (fun (x, y) -> LocalAssum (x, y)) ctx) in let typ = List.fold_left (fun d c -> Term.mkProd_wo_LetIn c d) concl_typ ctx in let body = it_mkLambda_or_LetIn concl_bod ctx in let sigma = Typing.check env sigma (EConstr.of_constr body) (EConstr.of_constr typ) in (sigma, body, typ) let do_combined_scheme name schemes = let open CAst in let csts = List.map (fun {CAst.loc;v} -> let qualid = qualid_of_ident v in try Nametab.locate_constant qualid with Not_found -> user_err ?loc Pp.(pr_qualid qualid ++ str " is not declared.")) schemes in let sigma,body,typ = build_combined_scheme (Global.env ()) csts in (* It is possible for the constants to have different universe polymorphism from each other, however that is only when the user manually defined at least one of them (as Scheme would pick the polymorphism of the inductive block). In that case if they want some other polymorphism they can also manually define the combined scheme. *) let poly = Global.is_polymorphic (GlobRef.ConstRef (List.hd csts)) in ignore (define ~poly name.v sigma body (Some typ)); fixpoint_message None [name.v] (**********************************************************************) let map_inductive_block f kn n = for i=0 to n-1 do f (kn,i) done let declare_default_schemes kn = let mib = Global.lookup_mind kn in let n = Array.length mib.mind_packets in if !elim_flag && (mib.mind_finite <> Declarations.BiFinite || !bifinite_elim_flag) && mib.mind_typing_flags.check_positive then declare_induction_schemes kn; if !case_flag then map_inductive_block declare_one_case_analysis_scheme kn n; if is_eq_flag() then try_declare_beq_scheme kn; if !eq_dec_flag then try_declare_eq_decidability kn; if !rewriting_flag then map_inductive_block declare_congr_scheme kn n; if !rewriting_flag then map_inductive_block declare_sym_scheme kn n; if !rewriting_flag then map_inductive_block declare_rewriting_schemes kn n