1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Sorts open Util open Constr open Context open Environ open Names open Libnames open Nameops open Constrexpr open Constrexpr_ops open Constrintern open Reductionops open Type_errors open Pretyping open Context.Rel.Declaration open Entries module RelDecl = Context.Rel.Declaration (* 3b| Mutual inductive definitions *) let warn_auto_template = CWarnings.create ~name:"auto-template" ~category:"vernacular" ~default:CWarnings.Disabled (fun id -> Pp.(strbrk "Automatically declaring " ++ Id.print id ++ strbrk " as template polymorphic. Use attributes or " ++ strbrk "disable Auto Template Polymorphism to avoid this warning.")) let should_auto_template = let open Goptions in let auto = ref true in let () = declare_bool_option { optdepr = false; optname = "Automatically make some inductive types template polymorphic"; optkey = ["Auto";"Template";"Polymorphism"]; optread = (fun () -> !auto); optwrite = (fun b -> auto := b); } in fun id would_auto -> let b = !auto && would_auto in if b then warn_auto_template id; b let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function | CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c) | CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c) | CHole (k, _, _) -> let (has_no_args,name,params) = a in if not has_no_args then user_err ?loc (strbrk"Cannot infer the non constant arguments of the conclusion of " ++ Id.print cs ++ str "."); let args = List.map (fun id -> CAst.(make ?loc @@ CRef(qualid_of_ident ?loc id,None))) params in CAppExpl ((None,qualid_of_ident ?loc name,None),List.rev args) | c -> c ) let push_types env idl rl tl = List.fold_left3 (fun env id r t -> EConstr.push_rel (LocalAssum (make_annot (Name id) r,t)) env) env idl rl tl type structured_one_inductive_expr = { ind_name : Id.t; ind_arity : constr_expr; ind_lc : (Id.t * constr_expr) list } let check_all_names_different indl = let ind_names = List.map (fun ind -> ind.ind_name) indl in let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in let l = List.duplicates Id.equal ind_names in let () = match l with | [] -> () | t :: _ -> raise (InductiveError (SameNamesTypes t)) in let l = List.duplicates Id.equal cstr_names in let () = match l with | [] -> () | c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l))) in let l = List.intersect Id.equal ind_names cstr_names in match l with | [] -> () | _ -> raise (InductiveError (SameNamesOverlap l)) let mk_mltype_data sigma env assums arity indname = let is_ml_type = is_sort env sigma arity in (is_ml_type,indname,assums) (** Make the arity conclusion flexible to avoid generating an upper bound universe now, only if the universe does not appear anywhere else. This is really a hack to stay compatible with the semantics of template polymorphic inductives which are recognized when a "Type" appears at the end of the conlusion in the source syntax. *) let rec check_type_conclusion ind = let open Glob_term in match DAst.get ind with | GSort (UAnonymous {rigid=true}) -> (Some true) | GSort (UNamed _) -> (Some false) | GProd ( _, _, _, e) | GLetIn (_, _, _, e) | GLambda (_, _, _, e) | GApp (e, _) | GCast (e, _) -> check_type_conclusion e | _ -> None let make_anonymous_conclusion_flexible sigma = function | None -> sigma | Some (false, _) -> sigma | Some (true, s) -> (match EConstr.ESorts.kind sigma s with | Type u -> (match Univ.universe_level u with | Some u -> Evd.make_flexible_variable sigma ~algebraic:true u | None -> sigma) | _ -> sigma) let intern_ind_arity env sigma ind = let c = intern_gen IsType env sigma ind.ind_arity in let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in let pseudo_poly = check_type_conclusion c in (constr_loc ind.ind_arity, c, impls, pseudo_poly) let pretype_ind_arity env sigma (loc, c, impls, pseudo_poly) = let sigma,t = understand_tcc env sigma ~expected_type:IsType c in match Reductionops.sort_of_arity env sigma t with | exception Invalid_argument _ -> user_err ?loc (str "Not an arity") | s -> let concl = match pseudo_poly with | Some b -> Some (b, s) | None -> None in sigma, (t, Retyping.relevance_of_sort s, concl, impls) let interp_cstrs env sigma impls mldata arity ind = let cnames,ctyps = List.split ind.ind_lc in (* Complete conclusions of constructor types if given in ML-style syntax *) let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in (* Interpret the constructor types *) let sigma, (ctyps'', cimpls) = on_snd List.split @@ List.fold_left_map (fun sigma l -> interp_type_evars_impls ~program_mode:false env sigma ~impls l) sigma ctyps' in sigma, (cnames, ctyps'', cimpls) let sign_level env evd sign = fst (List.fold_right (fun d (lev,env) -> match d with | LocalDef _ -> lev, push_rel d env | LocalAssum _ -> let s = destSort (Reduction.whd_all env (EConstr.to_constr evd (Retyping.get_type_of env evd (EConstr.of_constr (RelDecl.get_type d))))) in let u = univ_of_sort s in (Univ.sup u lev, push_rel d env)) sign (Univ.Universe.sprop,env)) let sup_list min = List.fold_left Univ.sup min let extract_level env evd min tys = let sorts = List.map (fun ty -> let ctx, concl = Reduction.dest_prod_assum env ty in sign_level env evd (LocalAssum (make_annot Anonymous Sorts.Relevant, concl) :: ctx)) tys in sup_list min sorts let is_flexible_sort evd u = match Univ.Universe.level u with | Some l -> Evd.is_flexible_level evd l | None -> false (**********************************************************************) (* Tools for template polymorphic inductive types *) (* Miscellaneous functions to remove or test local univ assumed to occur only in the le constraints *) (* Solve a system of universe constraint of the form u_s11, ..., u_s1p1, w1 <= u1 ... u_sn1, ..., u_snpn, wn <= un where - the ui (1 <= i <= n) are universe variables, - the sjk select subsets of the ui for each equations, - the wi are arbitrary complex universes that do not mention the ui. *) let is_direct_sort_constraint s v = match s with | Some u -> Univ.univ_level_mem u v | None -> false let solve_constraints_system levels level_bounds = let open Univ in let levels = Array.mapi (fun i o -> match o with | Some u -> (match Universe.level u with | Some u -> Some u | _ -> level_bounds.(i) <- Universe.sup level_bounds.(i) u; None) | None -> None) levels in let v = Array.copy level_bounds in let nind = Array.length v in let clos = Array.map (fun _ -> Int.Set.empty) levels in (* First compute the transitive closure of the levels dependencies *) for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && is_direct_sort_constraint levels.(j) v.(i) then clos.(i) <- Int.Set.add j clos.(i); done; done; let rec closure () = let continue = ref false in Array.iteri (fun i deps -> let deps' = Int.Set.fold (fun j acc -> Int.Set.union acc clos.(j)) deps deps in if Int.Set.equal deps deps' then () else (clos.(i) <- deps'; continue := true)) clos; if !continue then closure () else () in closure (); for i=0 to nind-1 do for j=0 to nind-1 do if not (Int.equal i j) && Int.Set.mem j clos.(i) then (v.(i) <- Universe.sup v.(i) level_bounds.(j)); done; done; v let inductive_levels env evd arities inds = let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in let levels = List.map (fun (x,(ctx,a)) -> if Sorts.is_prop a || Sorts.is_sprop a then None else Some (univ_of_sort a)) destarities in let cstrs_levels, min_levels, sizes = CList.split3 (List.map2 (fun (_,tys,_) (arity,(ctx,du)) -> let len = List.length tys in let minlev = Sorts.univ_of_sort du in let minlev = if len > 1 && not (is_impredicative_sort env du) then Univ.sup minlev Univ.type0_univ else minlev in let minlev = (* Indices contribute. *) if indices_matter env && List.length ctx > 0 then ( let ilev = sign_level env evd ctx in Univ.sup ilev minlev) else minlev in let clev = extract_level env evd minlev tys in (clev, minlev, len)) inds destarities) in (* Take the transitive closure of the system of constructors *) (* level constraints and remove the recursive dependencies *) let levels' = solve_constraints_system (Array.of_list levels) (Array.of_list cstrs_levels) in let evd, arities = CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len -> if is_impredicative_sort env du then (* Any product is allowed here. *) evd, (false, arity) :: arities else (* If in a predicative sort, or asked to infer the type, we take the max of: - indices (if in indices-matter mode) - constructors - Type(1) if there is more than 1 constructor *) (* Constructors contribute. *) let evd = if Sorts.is_set du then if not (Evd.check_leq evd cu Univ.type0_univ) then raise (InductiveError LargeNonPropInductiveNotInType) else evd else evd in let evd = if len >= 2 && Univ.is_type0m_univ cu then (* "Polymorphic" type constraint and more than one constructor, should not land in Prop. Add constraint only if it would land in Prop directly (no informative arguments as well). *) Evd.set_leq_sort env evd Sorts.set du else evd in let duu = Sorts.univ_of_sort du in let template_prop, evd = if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then true, Evd.set_eq_sort env evd Sorts.prop du else false, evd else false, Evd.set_eq_sort env evd (sort_of_univ cu) du in (evd, (template_prop, arity) :: arities)) (evd,[]) (Array.to_list levels') destarities sizes in evd, List.rev arities let check_named {CAst.loc;v=na} = match na with | Name _ -> () | Anonymous -> let msg = str "Parameters must be named." in user_err ?loc msg let template_polymorphism_candidate env uctx params concl = match uctx with | Entries.Monomorphic_entry uctx -> let concltemplate = Option.cata (fun s -> not (Sorts.is_small s)) false concl in if not concltemplate then false else let template_check = Environ.check_template env in let conclu = Option.cata Sorts.univ_of_sort Univ.type0m_univ concl in let params, conclunivs = IndTyping.template_polymorphic_univs ~template_check uctx params conclu in not (template_check && Univ.LSet.is_empty conclunivs) | Entries.Polymorphic_entry _ -> false let check_param = function | CLocalDef (na, _, _) -> check_named na | CLocalAssum (nas, Default _, _) -> List.iter check_named nas | CLocalAssum (nas, Generalized _, _) -> () | CLocalPattern {CAst.loc} -> Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") let restrict_inductive_universes sigma ctx_params arities constructors = let merge_universes_of_constr c = Univ.LSet.union (EConstr.universes_of_constr sigma (EConstr.of_constr c)) in let uvars = Univ.LSet.empty in let uvars = Context.Rel.(fold_outside (Declaration.fold_constr merge_universes_of_constr) ctx_params ~init:uvars) in let uvars = List.fold_right merge_universes_of_constr arities uvars in let uvars = List.fold_right (fun (_,ctypes,_) -> List.fold_right merge_universes_of_constr ctypes) constructors uvars in Evd.restrict_universe_context sigma uvars let interp_params env udecl uparamsl paramsl = let sigma, udecl = interp_univ_decl_opt env udecl in let sigma, (uimpls, ((env_uparams, ctx_uparams), useruimpls)) = interp_context_evars ~program_mode:false env sigma uparamsl in let sigma, (impls, ((env_params, ctx_params), userimpls)) = interp_context_evars ~program_mode:false ~impl_env:uimpls env_uparams sigma paramsl in (* Names of parameters as arguments of the inductive type (defs removed) *) let assums = List.filter is_local_assum ctx_params in sigma, env_params, (ctx_params, env_uparams, ctx_uparams, List.map (RelDecl.get_name %> Name.get_id) assums, userimpls, useruimpls, impls, udecl) let interp_mutual_inductive_gen env0 ~template udecl (uparamsl,paramsl,indl) notations ~cumulative ~poly ~private_ind finite = check_all_names_different indl; List.iter check_param paramsl; if not (List.is_empty uparamsl) && not (List.is_empty notations) then user_err (str "Inductives with uniform parameters may not have attached notations."); let indnames = List.map (fun ind -> ind.ind_name) indl in let sigma, env_params, infos = interp_params env0 udecl uparamsl paramsl in (* Interpret the arities *) let arities = List.map (intern_ind_arity env_params sigma) indl in let sigma, env_params, (ctx_params, env_uparams, ctx_uparams, params, userimpls, useruimpls, impls, udecl), arities, is_template = let is_template = List.exists (fun (_,_,_,pseudo_poly) -> not (Option.is_empty pseudo_poly)) arities in if not poly && is_template then (* In case of template polymorphism, we need to compute more constraints *) let env0 = Environ.set_universes_lbound env0 Univ.Level.prop in let sigma, env_params, infos = interp_params env0 udecl uparamsl paramsl in let arities = List.map (intern_ind_arity env_params sigma) indl in sigma, env_params, infos, arities, is_template else sigma, env_params, infos, arities, is_template in let sigma, arities = List.fold_left_map (pretype_ind_arity env_params) sigma arities in let arities, relevances, arityconcl, indimpls = List.split4 arities in let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_params) arities in let env_ar = push_types env_uparams indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params env_ar in (* Compute interpretation metadatas *) let indimpls = List.map (fun impls -> userimpls @ impls) indimpls in let impls = compute_internalization_env env_uparams sigma ~impls (Inductive (params,true)) indnames fullarities indimpls in let ntn_impls = compute_internalization_env env_uparams sigma (Inductive (params,true)) indnames fullarities indimpls in let mldatas = List.map2 (mk_mltype_data sigma env_params params) arities indnames in let sigma, constructors = Metasyntax.with_syntax_protection (fun () -> (* Temporary declaration of notations and scopes *) List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations; (* Interpret the constructor types *) List.fold_left3_map (fun sigma -> interp_cstrs env_ar_params sigma impls) sigma mldatas arities indl) () in (* generalize over the uniform parameters *) let nparams = Context.Rel.length ctx_params in let nuparams = Context.Rel.length ctx_uparams in let uargs = Context.Rel.to_extended_vect EConstr.mkRel 0 ctx_uparams in let uparam_subst = List.init (List.length indl) EConstr.(fun i -> mkApp (mkRel (i + 1 + nuparams), uargs)) @ List.init nuparams EConstr.(fun i -> mkRel (i + 1)) in let generalize_constructor c = EConstr.Unsafe.to_constr (EConstr.Vars.substnl uparam_subst nparams c) in let constructors = List.map (fun (cnames,ctypes,cimpls) -> (cnames,List.map generalize_constructor ctypes,cimpls)) constructors in let ctx_params = ctx_params @ ctx_uparams in let userimpls = useruimpls @ userimpls in let indimpls = List.map (fun iimpl -> useruimpls @ iimpl) indimpls in let fullarities = List.map (fun c -> EConstr.it_mkProd_or_LetIn c ctx_uparams) fullarities in let env_ar = push_types env0 indnames relevances fullarities in let env_ar_params = EConstr.push_rel_context ctx_params env_ar in (* Try further to solve evars, and instantiate them *) let sigma = solve_remaining_evars all_and_fail_flags env_params sigma in (* Compute renewed arities *) let sigma = Evd.minimize_universes sigma in let nf = Evarutil.nf_evars_universes sigma in let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in let arities = List.map EConstr.(to_constr sigma) arities in let sigma = List.fold_left make_anonymous_conclusion_flexible sigma arityconcl in let sigma, arities = inductive_levels env_ar_params sigma arities constructors in let sigma = Evd.minimize_universes sigma in let nf = Evarutil.nf_evars_universes sigma in let arities = List.map (fun (template, arity) -> template, nf arity) arities in let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in let ctx_params = List.map Termops.(map_rel_decl (EConstr.to_constr sigma)) ctx_params in let arityconcl = List.map (Option.map (fun (anon, s) -> EConstr.ESorts.kind sigma s)) arityconcl in let sigma = restrict_inductive_universes sigma ctx_params (List.map snd arities) constructors in let uctx = Evd.check_univ_decl ~poly sigma udecl in List.iter (fun c -> check_evars env_params (Evd.from_env env_params) sigma (EConstr.of_constr (snd c))) arities; Context.Rel.iter (fun c -> check_evars env0 (Evd.from_env env0) sigma (EConstr.of_constr c)) ctx_params; List.iter (fun (_,ctyps,_) -> List.iter (fun c -> check_evars env_ar_params (Evd.from_env env_ar_params) sigma (EConstr.of_constr c)) ctyps) constructors; (* Build the inductive entries *) let entries = List.map4 (fun ind (templatearity, arity) concl (cnames,ctypes,cimpls) -> let template_candidate () = templatearity || template_polymorphism_candidate env0 uctx ctx_params concl in let template = match template with | Some template -> if poly && template then user_err Pp.(strbrk "Template-polymorphism and universe polymorphism are not compatible."); if template && not (template_candidate ()) then user_err Pp.(strbrk "Inductive " ++ Id.print ind.ind_name ++ str" cannot be made template polymorphic."); template | None -> should_auto_template ind.ind_name (template_candidate ()) in { mind_entry_typename = ind.ind_name; mind_entry_arity = arity; mind_entry_template = template; mind_entry_consnames = cnames; mind_entry_lc = ctypes }) indl arities arityconcl constructors in let impls = List.map2 (fun indimpls (_,_,cimpls) -> indimpls, List.map (fun impls -> userimpls @ impls) cimpls) indimpls constructors in let variance = if poly && cumulative then Some (InferCumulativity.dummy_variance uctx) else None in (* Build the mutual inductive entry *) let mind_ent = { mind_entry_params = ctx_params; mind_entry_record = None; mind_entry_finite = finite; mind_entry_inds = entries; mind_entry_private = if private_ind then Some false else None; mind_entry_universes = uctx; mind_entry_variance = variance; } in (if poly && cumulative then InferCumulativity.infer_inductive env_ar mind_ent else mind_ent), Evd.universe_binders sigma, impls (* Very syntactical equality *) let eq_local_binders bl1 bl2 = List.equal local_binder_eq bl1 bl2 let extract_coercions indl = let mkqid (_,({CAst.v=id},_)) = qualid_of_ident id in let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl)) let extract_params indl = let paramsl = List.map (fun (_,params,_,_) -> params) indl in match paramsl with | [] -> anomaly (Pp.str "empty list of inductive types.") | params::paramsl -> if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str "Parameters should be syntactically the same for each inductive type."); params let extract_inductive indl = List.map (fun ({CAst.v=indname},_,ar,lc) -> { ind_name = indname; ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (Glob_term.UAnonymous {rigid=true})) ar; ind_lc = List.map (fun (_,({CAst.v=id},t)) -> (id,t)) lc }) indl let extract_mutual_inductive_declaration_components indl = let indl,ntnl = List.split indl in let params = extract_params indl in let coes = extract_coercions indl in let indl = extract_inductive indl in (params,indl), coes, List.flatten ntnl type uniform_inductive_flag = | UniformParameters | NonUniformParameters let do_mutual_inductive ~template udecl indl ~cumulative ~poly ~private_ind ~uniform finite = let (params,indl),coes,ntns = extract_mutual_inductive_declaration_components indl in (* Interpret the types *) let indl = match uniform with UniformParameters -> (params, [], indl) | NonUniformParameters -> ([], params, indl) in let mie,pl,impls = interp_mutual_inductive_gen (Global.env()) ~template udecl indl ntns ~cumulative ~poly ~private_ind finite in (* Declare the mutual inductive block with its associated schemes *) ignore (DeclareInd.declare_mutual_inductive_with_eliminations mie pl impls); (* Declare the possible notations of inductive types *) List.iter (Metasyntax.add_notation_interpretation (Global.env ())) ntns; (* Declare the coercions *) List.iter (fun qid -> Class.try_add_new_coercion (Nametab.locate qid) ~local:false ~poly) coes (** Prepare a "match" template for a given inductive type. For each branch of the match, we list the constructor name followed by enough pattern variables. [Not_found] is raised if the given string isn't the qualid of a known inductive type. *) (* HH notes in PR #679: The Show Match could also be made more robust, for instance in the presence of let in the branch of a constructor. A decompose_prod_assum would probably suffice for that, but then, it is a Context.Rel.Declaration.t which needs to be matched and not just a pair (name,type). Otherwise, this is OK. After all, the API on inductive types is not so canonical in general, and in this simple case, working at the low-level of mind_nf_lc seems reasonable (compared to working at the higher-level of Inductiveops). *) let make_cases ind = let open Declarations in let mib, mip = Global.lookup_inductive ind in Util.Array.fold_right_i (fun i (ctx, _) l -> let al = Util.List.skipn (List.length mib.mind_params_ctxt) (List.rev ctx) in let rec rename avoid = function | [] -> [] | RelDecl.LocalDef _ :: l -> "_" :: rename avoid l | RelDecl.LocalAssum (n, _)::l -> let n' = Namegen.next_name_away_with_default (Id.to_string Namegen.default_dependent_ident) n.Context.binder_name avoid in Id.to_string n' :: rename (Id.Set.add n' avoid) l in let al' = rename Id.Set.empty al in let consref = GlobRef.ConstructRef (ith_constructor_of_inductive ind (i + 1)) in (Libnames.string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty consref) :: al') :: l) mip.mind_nf_lc [] let declare_mutual_inductive_with_eliminations = DeclareInd.declare_mutual_inductive_with_eliminations