1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* This file is about the automatic generation of schemes about
   decidable equality, created by Vincent Siles, Oct 2007 *)

open CErrors
open Util
open Pp
open Term
open Constr
open Context
open Vars
open Termops
open Declarations
open Names
open Inductiveops
open Tactics
open Ind_tables
open Namegen
open Tactypes
open Proofview.Notations

module RelDecl = Context.Rel.Declaration

(**********************************************************************)
(* Generic synthesis of boolean equality *)

let quick_chop n l =
  let rec kick_last = function
    | t::[] -> []
    | t::q -> t::(kick_last q)
    | [] -> failwith "kick_last"
and aux = function
    | (0,l') -> l'
    | (n,h::t) -> aux (n-1,t)
    | _ -> failwith "quick_chop"
  in
  if n > (List.length l) then failwith "quick_chop args"
  else kick_last (aux (n,l) )

let deconstruct_type t =
  let l,r = decompose_prod t in
  (List.rev_map snd l)@[r]

exception EqNotFound of inductive * inductive
exception EqUnknown of string
exception UndefinedCst of string
exception InductiveWithProduct
exception InductiveWithSort
exception ParameterWithoutEquality of GlobRef.t
exception NonSingletonProp of inductive
exception DecidabilityMutualNotSupported
exception NoDecidabilityCoInductive
exception ConstructorWithNonParametricInductiveType of inductive
exception DecidabilityIndicesNotSupported

(* Some pre declaration of constant we are going to use *)
let andb_prop = fun _ -> UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.andb_prop")

let andb_true_intro = fun _ ->
  UnivGen.constr_of_monomorphic_global
    (Coqlib.lib_ref "core.bool.andb_true_intro")

(* We avoid to use lazy as the binding of constants can change *)
let bb () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.type")
let tt () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.true")
let ff () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.false")
let eq () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.eq.type")

let sumbool () = UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.sumbool.type")
let andb = fun _ -> UnivGen.constr_of_monomorphic_global (Coqlib.lib_ref "core.bool.andb")

let induct_on  c = induction false None c None None
let destruct_on c = destruct false None c None None

let destruct_on_using c id =
  destruct false None c
    (Some (CAst.make @@ IntroOrPattern [[CAst.make @@ IntroNaming IntroAnonymous];
               [CAst.make @@ IntroNaming (IntroIdentifier id)]]))
    None

let destruct_on_as c l =
  destruct false None c (Some (CAst.make l)) None

let inj_flags = Some {
    Equality.keep_proof_equalities = true; (* necessary *)
    injection_in_context = true; (* does not matter here *)
    Equality.injection_pattern_l2r_order = true; (* does not matter here *)
  }

let my_discr_tac = Equality.discr_tac false None
let my_inj_tac x = Equality.inj inj_flags None false None (EConstr.mkVar x,NoBindings)

(* reconstruct the inductive with the correct de Bruijn indexes *)
let mkFullInd (ind,u) n =
  let mib = Global.lookup_mind (fst ind) in
  let nparams = mib.mind_nparams in
  let nparrec = mib.mind_nparams_rec in
  (* params context divided *)
  let lnonparrec,lnamesparrec =
    context_chop (nparams-nparrec) mib.mind_params_ctxt in
  if nparrec > 0
    then mkApp (mkIndU (ind,u),
      Array.of_list(Context.Rel.to_extended_list mkRel (nparrec+n) lnamesparrec))
    else mkIndU (ind,u)

let check_bool_is_defined () =
  try let _ = Typeops.type_of_global_in_context (Global.env ()) Coqlib.(lib_ref "core.bool.type") in ()
  with e when CErrors.noncritical e -> raise (UndefinedCst "bool")

let check_no_indices mib =
  if Array.exists (fun mip -> mip.mind_nrealargs <> 0) mib.mind_packets then
    raise DecidabilityIndicesNotSupported

let beq_scheme_kind_aux = ref (fun _ -> failwith "Undefined")

let build_beq_scheme mode kn =
  check_bool_is_defined ();
  (* fetching global env *)
  let env = Global.env() in
  (* fetching the mutual inductive body *)
  let mib = Global.lookup_mind kn in
  (* number of inductives in the mutual *)
  let nb_ind = Array.length mib.mind_packets in
  (* number of params in the type *)
  let nparams = mib.mind_nparams in
  let nparrec = mib.mind_nparams_rec in
  check_no_indices mib;
  (* params context divided *)
  let lnonparrec,lnamesparrec =
    context_chop (nparams-nparrec) mib.mind_params_ctxt in
  (* predef coq's boolean type *)
  (* rec name *)
  let rec_name i =(Id.to_string (Array.get mib.mind_packets i).mind_typename)^
                    "_eqrec"
  in
  (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *)
  let create_input c =
    let myArrow u v = mkArrow u Sorts.Relevant (lift 1 v)
    and eqName = function
        | Name s -> Id.of_string ("eq_"^(Id.to_string s))
        | Anonymous -> Id.of_string "eq_A"
    in
    let ext_rel_list = Context.Rel.to_extended_list mkRel 0 lnamesparrec in
      let lift_cnt = ref 0 in
      let eqs_typ = List.map (fun aa ->
                                let a = lift !lift_cnt aa in
                                  incr lift_cnt;
                                  myArrow a (myArrow a (bb ()))
                             ) ext_rel_list in

        let eq_input = List.fold_left2
          ( fun a b decl -> (* mkLambda(n,b,a) ) *)
                (* here I leave the Naming thingy so that the type of
                  the function is more readable for the user *)
                mkNamedLambda (map_annot eqName (RelDecl.get_annot decl)) b a )
                c (List.rev eqs_typ) lnamesparrec
       in
        List.fold_left (fun a decl ->(* mkLambda(n,t,a)) eq_input rel_list *)
           (* Same here , hoping the auto renaming will do something good ;)  *)
           let x = map_annot
               (function Name s -> s | Anonymous -> Id.of_string "A")
               (RelDecl.get_annot decl)
           in
          mkNamedLambda x (RelDecl.get_type decl)  a) eq_input lnamesparrec
 in
 let make_one_eq cur =
  let u = Univ.Instance.empty in
  let ind = (kn,cur),u (* FIXME *) in
  (* current inductive we are working on *)
  let cur_packet = mib.mind_packets.(snd (fst ind)) in
  (* Inductive toto : [rettyp] := *)
  let rettyp = Inductive.type_of_inductive env ((mib,cur_packet),u) in
  (* split rettyp in a list without the non rec params and the last ->
  e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *)
  let rettyp_l = quick_chop nparrec (deconstruct_type rettyp) in
    (* give a type A, this function tries to find the equality on A declared
       previously *)
    (*  nlist = the number of args (A , B , ... )
        eqA   = the de Bruijn index of the first eq param
        ndx   = how much to translate due to the 2nd Case
    *)
    let compute_A_equality rel_list nlist eqA ndx t =
      let lifti = ndx in
      let rec aux c =
        let (c,a) = Reductionops.whd_betaiota_stack Evd.empty EConstr.(of_constr c) in
        let (c,a) = EConstr.Unsafe.(to_constr c, List.map to_constr a) in
        match Constr.kind c with
        | Rel x -> mkRel (x-nlist+ndx), Evd.empty_side_effects
        | Var x ->
          (* Support for working in a context with "eq_x : x -> x -> bool" *)
          let eid = Id.of_string ("eq_"^(Id.to_string x)) in
          let () =
            try ignore (Environ.lookup_named eid env)
            with Not_found -> raise (ParameterWithoutEquality (GlobRef.VarRef x))
          in
          mkVar eid, Evd.empty_side_effects
        | Cast (x,_,_) -> aux (Term.applist (x,a))
        | App _ -> assert false
        | Ind ((kn',i as ind'),u) (*FIXME: universes *) -> 
            if MutInd.equal kn kn' then mkRel(eqA-nlist-i+nb_ind-1), Evd.empty_side_effects
            else begin
              try
                let eq, eff =
                  let c, eff = find_scheme ~mode (!beq_scheme_kind_aux()) (kn',i) in
                  mkConst c, eff in
                let eqa, eff =
                  let eqa, effs = List.split (List.map aux a) in
                  Array.of_list eqa,
                  List.fold_left Evd.concat_side_effects eff (List.rev effs)
                  in
                let args =
                  Array.append
                    (Array.of_list (List.map (fun x -> lift lifti x) a)) eqa in
                if Int.equal (Array.length args) 0 then eq, eff
                else mkApp (eq, args), eff
              with Not_found -> raise(EqNotFound (ind', fst ind))
            end
        | Sort _  -> raise InductiveWithSort
        | Prod _ -> raise InductiveWithProduct
        | Lambda _-> raise (EqUnknown "abstraction")
        | LetIn _ -> raise (EqUnknown "let-in")
        | Const (kn, u) ->
             (match Environ.constant_opt_value_in env (kn, u) with
              | Some c -> aux (Term.applist (c,a))
              | None ->
                 (* Support for working in a context with "eq_x : x -> x -> bool" *)
                 (* Needs Hints, see test suite *)
                 let eq_lbl = Label.make ("eq_" ^ Label.to_string (Constant.label kn)) in
                 let kneq = Constant.change_label kn eq_lbl in
                 try let _ = Environ.constant_opt_value_in env (kneq, u) in
                   Term.applist (mkConst kneq,a),
                   Evd.empty_side_effects
                 with Not_found -> raise (ParameterWithoutEquality (GlobRef.ConstRef kn)))
        | Proj _ -> raise (EqUnknown "projection")
        | Construct _ -> raise (EqUnknown "constructor")
        | Case _ -> raise (EqUnknown "match")
        | CoFix _ -> raise (EqUnknown "cofix")
        | Fix _   -> raise (EqUnknown "fix")
        | Meta _  -> raise (EqUnknown "meta-variable")
        | Evar _  -> raise (EqUnknown "existential variable")
        | Int _ -> raise (EqUnknown "int")
    in
      aux t
  in
  (* construct the predicate for the Case part*)
  let do_predicate rel_list n =
     List.fold_left (fun a b -> mkLambda(make_annot Anonymous Sorts.Relevant,b,a))
      (mkLambda (make_annot Anonymous Sorts.Relevant,
                 mkFullInd ind (n+3+(List.length rettyp_l)+nb_ind-1),
                 (bb ())))
      (List.rev rettyp_l) in
  (* make_one_eq *)
  (* do the [| C1 ... =>  match Y with ... end
               ...
               Cn => match Y with ... end |]  part *)
    let rci = Sorts.Relevant in (* TODO relevance *)
    let ci = make_case_info env (fst ind) rci MatchStyle in
    let constrs n = get_constructors env (make_ind_family (ind,
      Context.Rel.to_extended_list mkRel (n+nb_ind-1) mib.mind_params_ctxt)) in
    let constrsi = constrs (3+nparrec) in
    let n = Array.length constrsi in
    let ar = Array.make n (ff ()) in
    let eff = ref Evd.empty_side_effects in
        for i=0 to n-1 do
          let nb_cstr_args = List.length constrsi.(i).cs_args in
          let ar2 = Array.make n (ff ()) in
          let constrsj = constrs (3+nparrec+nb_cstr_args) in
            for j=0 to n-1 do
              if Int.equal i j then
                ar2.(j) <- let cc = (match nb_cstr_args with
                    | 0 -> tt ()
                    | _ -> let eqs = Array.make nb_cstr_args (tt ()) in
                      for ndx = 0 to nb_cstr_args-1 do
                        let cc = RelDecl.get_type (List.nth constrsi.(i).cs_args ndx) in
                          let eqA, eff' = compute_A_equality rel_list
                                          nparrec
                                          (nparrec+3+2*nb_cstr_args)
                                          (nb_cstr_args+ndx+1)
                                          cc
                          in
                          eff := Evd.concat_side_effects eff' !eff;
                          Array.set eqs ndx
                              (mkApp (eqA,
                                [|mkRel (ndx+1+nb_cstr_args);mkRel (ndx+1)|]
                              ))
                      done;
                      Array.fold_left
                          (fun a b -> mkApp (andb(),[|b;a|]))
                          (eqs.(0))
                          (Array.sub eqs 1 (nb_cstr_args - 1))
                  )
                     in
                    (List.fold_left (fun a decl -> mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a)) cc
                    (constrsj.(j).cs_args)
                )
              else ar2.(j) <- (List.fold_left (fun a decl ->
                        mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a)) (ff ())  (constrsj.(j).cs_args) )
            done;

          ar.(i) <- (List.fold_left (fun a decl -> mkLambda (RelDecl.get_annot decl, RelDecl.get_type decl, a))
                        (mkCase (ci,do_predicate rel_list nb_cstr_args,
                                  mkVar (Id.of_string "Y") ,ar2))
                         (constrsi.(i).cs_args))
        done;
        mkNamedLambda (make_annot (Id.of_string "X") Sorts.Relevant) (mkFullInd ind (nb_ind-1+1))  (
          mkNamedLambda (make_annot (Id.of_string "Y") Sorts.Relevant) (mkFullInd ind (nb_ind-1+2))  (
             mkCase (ci, do_predicate rel_list 0,mkVar (Id.of_string "X"),ar))),
        !eff
    in (* build_beq_scheme *)
    let names = Array.make nb_ind (make_annot Anonymous Sorts.Relevant) and
        types = Array.make nb_ind mkSet and
        cores = Array.make nb_ind mkSet in
    let eff = ref Evd.empty_side_effects in
    let u = Univ.Instance.empty in
    for i=0 to (nb_ind-1) do
        names.(i) <- make_annot (Name (Id.of_string (rec_name i))) Sorts.Relevant;
        types.(i) <- mkArrow (mkFullInd ((kn,i),u) 0) Sorts.Relevant
                     (mkArrow (mkFullInd ((kn,i),u) 1) Sorts.Relevant (bb ()));
        let c, eff' = make_one_eq i in
        cores.(i) <- c;
        eff := Evd.concat_side_effects eff' !eff
    done;
      (Array.init nb_ind (fun i ->
      let kelim = Inductive.elim_sort (mib,mib.mind_packets.(i)) in
        if not (Sorts.family_leq InSet kelim) then
          raise (NonSingletonProp (kn,i));
        let fix = match mib.mind_finite with
        | CoFinite ->
          raise NoDecidabilityCoInductive;
        | Finite ->
          mkFix (((Array.make nb_ind 0),i),(names,types,cores))
        | BiFinite ->
          (* If the inductive type is not recursive, the fixpoint is
             not used, so let's replace it with garbage *)
          let subst = List.init nb_ind (fun _ -> mkProp) in
          Vars.substl subst cores.(i)
        in
        create_input fix),
       UState.make ~lbound:(Global.universes_lbound ()) (Global.universes ())),
      !eff

let beq_scheme_kind = declare_mutual_scheme_object "_beq" build_beq_scheme

let _ = beq_scheme_kind_aux := fun () -> beq_scheme_kind

(* This function tryies to get the [inductive] between a constr
  the constr should be Ind i or App(Ind i,[|args|])
*)
let destruct_ind env sigma c =
  let open EConstr in
  let (c,v) = Reductionops.whd_all_stack env sigma c in
  destInd sigma c, Array.of_list v

(*
  In the following, avoid is the list of names to avoid.
  If the args of the Inductive type are A1 ... An
  then avoid should be
 [| lb_An ... lb _A1  (resp. bl_An ... bl_A1)
    eq_An .... eq_A1 An ... A1 |]
so from Ai we can find the correct eq_Ai bl_ai or lb_ai
*)
(* used in the leib -> bool side*)
let do_replace_lb mode lb_scheme_key aavoid narg p q =
  let open EConstr in
  let avoid = Array.of_list aavoid in
  let do_arg sigma hd v offset =
    match kind sigma v with
    | Var s ->
    let x = narg*offset in
    let n = Array.length avoid in
    let rec find i =
      if Id.equal avoid.(n-i) s then avoid.(n-i-x)
      else (if i<n then find (i+1)
            else user_err ~hdr:"AutoIndDecl.do_replace_lb"
                   (str "Var " ++ Id.print s ++ str " seems unknown.")
      )
    in mkVar (find 1)
    | Const (cst,_) ->
      (* Works in specific situations where the args have to be already declared as a
         Parameter (see example "J" in test file SchemeEquality.v) *)
        let lbl = Label.to_string (Constant.label cst) in
        let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_lb") in
        mkConst (Constant.change_label cst (Label.make newlbl))
    | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd))

  in
  Proofview.Goal.enter begin fun gl ->
    let type_of_pq = Tacmach.New.pf_unsafe_type_of gl p in
    let sigma = Tacmach.New.project gl in
    let env = Tacmach.New.pf_env gl in
    let u,v = destruct_ind env sigma type_of_pq
    in let lb_type_of_p =
        try
          let c, eff = find_scheme ~mode lb_scheme_key (fst u) (*FIXME*) in
          Proofview.tclUNIT (mkConst c, eff)
        with Not_found ->
          (* spiwack: the format of this error message should probably
                      be improved. *)
          let err_msg =
            (str "Leibniz->boolean:" ++
             str "You have to declare the" ++
             str "decidability over " ++
             Printer.pr_econstr_env env sigma type_of_pq ++
             str " first.")
          in
          Tacticals.New.tclZEROMSG err_msg
       in
       lb_type_of_p >>= fun (lb_type_of_p,eff) ->
       Proofview.tclEVARMAP >>= fun sigma ->
       let lb_args = Array.append (Array.append
                          v
                          (Array.Smart.map (fun x -> do_arg sigma u x 1) v))
                          (Array.Smart.map (fun x -> do_arg sigma u x 2) v)
        in let app =  if Array.is_empty lb_args
                       then lb_type_of_p else mkApp (lb_type_of_p,lb_args)
           in
           Tacticals.New.tclTHENLIST [
             Proofview.tclEFFECTS eff;
             Equality.replace p q ; apply app ; Auto.default_auto]
  end

(* used in the bool -> leb side *)
let do_replace_bl mode bl_scheme_key (ind,u as indu) aavoid narg lft rgt =
  let open EConstr in
  let avoid = Array.of_list aavoid in
  let do_arg sigma hd v offset =
    match kind sigma v with
    | Var s ->
    let x = narg*offset in
    let n = Array.length avoid in
    let rec find i =
      if Id.equal avoid.(n-i) s then avoid.(n-i-x)
      else (if i<n then find (i+1)
            else user_err ~hdr:"AutoIndDecl.do_replace_bl"
                   (str "Var " ++ Id.print s ++ str " seems unknown.")
      )
    in mkVar (find 1)
    | Const (cst,_) ->
      (* Works in specific situations where the args have to be already declared as a
         Parameter (see example "J" in test file SchemeEquality.v) *)
        let lbl = Label.to_string (Constant.label cst) in
        let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_bl") in
        mkConst (Constant.change_label cst (Label.make newlbl))
    | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd))
  in

  let rec aux l1 l2 =
    match (l1,l2) with
    | (t1::q1,t2::q2) ->
        Proofview.Goal.enter begin fun gl ->
        let tt1 = Tacmach.New.pf_unsafe_type_of gl t1 in
        let sigma = Tacmach.New.project gl in
        let env = Tacmach.New.pf_env gl in
        if EConstr.eq_constr sigma t1 t2 then aux q1 q2
        else (
          let u,v = try destruct_ind env sigma tt1
          (* trick so that the good sequence is returned*)
                with e when CErrors.noncritical e -> indu,[||]
          in if eq_ind (fst u) ind
             then Tacticals.New.tclTHENLIST [Equality.replace t1 t2; Auto.default_auto ; aux q1 q2 ]
             else (
               let bl_t1, eff =
               try 
                 let c, eff = find_scheme bl_scheme_key (fst u) (*FIXME*) in
                 mkConst c, eff
               with Not_found ->
                 (* spiwack: the format of this error message should probably
                             be improved. *)
                 let err_msg =
                                        (str "boolean->Leibniz:" ++
                                         str "You have to declare the" ++
                                            str "decidability over " ++
                                         Printer.pr_econstr_env env sigma tt1 ++
                                         str " first.")
                 in
                 user_err err_msg
               in let bl_args =
                        Array.append (Array.append
                          v
                          (Array.Smart.map (fun x -> do_arg sigma u x 1) v))
                          (Array.Smart.map (fun x -> do_arg sigma u x 2) v )
                in
                let app =  if Array.is_empty bl_args
                           then bl_t1 else mkApp (bl_t1,bl_args)
                in
                Tacticals.New.tclTHENLIST [
                  Proofview.tclEFFECTS eff;
                  Equality.replace_by t1 t2
                    (Tacticals.New.tclTHEN (apply app) (Auto.default_auto)) ;
                  aux q1 q2 ]
              )
        )
        end
    | ([],[]) -> Proofview.tclUNIT ()
    | _ -> Tacticals.New.tclZEROMSG (str "Both side of the equality must have the same arity.")
  in
  Proofview.tclEVARMAP >>= fun sigma ->
  begin try Proofview.tclUNIT (destApp sigma lft)
    with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.")
  end >>= fun (ind1,ca1) ->
  begin try Proofview.tclUNIT (destApp sigma rgt)
    with DestKO -> Tacticals.New.tclZEROMSG (str "replace failed.")
  end >>= fun (ind2,ca2) ->
  begin try Proofview.tclUNIT (fst (destInd sigma ind1))
    with DestKO ->
      begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind1)))
        with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.")
      end
  end >>= fun (sp1,i1) ->
  begin try Proofview.tclUNIT (fst (destInd sigma ind2))
    with DestKO ->
      begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind2)))
        with DestKO -> Tacticals.New.tclZEROMSG (str "The expected type is an inductive one.")
      end
  end >>= fun (sp2,i2) ->
  if not (MutInd.equal sp1 sp2) || not (Int.equal i1 i2)
  then Tacticals.New.tclZEROMSG (str "Eq should be on the same type")
  else aux (Array.to_list ca1) (Array.to_list ca2)

(*
  create, from a list of ids [i1,i2,...,in] the list
  [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al  )]
*)
let list_id l = List.fold_left ( fun a decl -> let s' =
      match RelDecl.get_name decl with
        Name s -> Id.to_string s
      | Anonymous -> "A" in
          (Id.of_string s',Id.of_string ("eq_"^s'),
              Id.of_string (s'^"_bl"),
              Id.of_string (s'^"_lb"))
            ::a
    ) [] l
(*
  build the right eq_I A B.. N eq_A .. eq_N
*)
let eqI ind l =
  let list_id = list_id l in
  let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@
                           (List.map (fun (_,seq,_,_)-> mkVar seq) list_id ))
  and e, eff = 
    try let c, eff = find_scheme beq_scheme_kind ind in mkConst c, eff 
    with Not_found -> user_err ~hdr:"AutoIndDecl.eqI"
      (str "The boolean equality on " ++ Printer.pr_inductive (Global.env ()) ind ++ str " is needed.");
  in (if Array.equal Constr.equal eA [||] then e else mkApp(e,eA)), eff

(**********************************************************************)
(* Boolean->Leibniz *)

open Namegen

let compute_bl_goal ind lnamesparrec nparrec =
  let eqI, eff = eqI ind lnamesparrec in
  let list_id = list_id lnamesparrec in
  let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in
  let create_input c =
    let x = next_ident_away (Id.of_string "x") avoid and
        y = next_ident_away (Id.of_string "y") avoid in
      let bl_typ = List.map (fun (s,seq,_,_) ->
        mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) (
            mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) (
              mkArrow
               ( mkApp(eq (),[|bb (); mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt () |]))
               Sorts.Relevant
               ( mkApp(eq (),[|mkVar s;mkVar x;mkVar y|]))
          ))
        ) list_id in
      let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b ->
        mkNamedProd (make_annot sbl Sorts.Relevant) b a
      ) c (List.rev list_id) (List.rev bl_typ) in
      let eqs_typ = List.map (fun (s,_,_,_) ->
          mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,(bb ())))
          ) list_id in
      let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b ->
        mkNamedProd (make_annot seq Sorts.Relevant) b a
      ) bl_input (List.rev list_id) (List.rev eqs_typ) in
    List.fold_left (fun a decl ->
        let x = map_annot
            (function Name s -> s | Anonymous -> next_ident_away (Id.of_string "A") avoid)
            (RelDecl.get_annot decl)
        in
        mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec
    in
      let n = next_ident_away (Id.of_string "x") avoid and
          m = next_ident_away (Id.of_string "y") avoid in
      let u = Univ.Instance.empty in
     create_input (
        mkNamedProd (make_annot n Sorts.Relevant) (mkFullInd (ind,u) nparrec) (
          mkNamedProd (make_annot m Sorts.Relevant) (mkFullInd (ind,u) (nparrec+1)) (
            mkArrow
              (mkApp(eq (),[|bb ();mkApp(eqI,[|mkVar n;mkVar m|]);tt ()|]))
              Sorts.Relevant
              (mkApp(eq (),[|mkFullInd (ind,u) (nparrec+3);mkVar n;mkVar m|]))
        ))), eff

let compute_bl_tact mode bl_scheme_key ind lnamesparrec nparrec =
  let list_id = list_id lnamesparrec in
  let avoid = ref [] in
      let first_intros =
        ( List.map (fun (s,_,_,_) -> s ) list_id ) @
        ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @
        ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id )
      in
      let fresh_id s gl =
          let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in
          avoid := fresh::(!avoid); fresh
      in
      Proofview.Goal.enter begin fun gl ->
      let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in
      let freshn = fresh_id (Id.of_string "x") gl in
      let freshm = fresh_id (Id.of_string "y") gl in
      let freshz = fresh_id (Id.of_string "Z") gl in
  (* try with *)
      Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros;
                     intro_using freshn ;
                     induct_on (EConstr.mkVar freshn);
                     intro_using freshm;
                     destruct_on (EConstr.mkVar freshm);
                     intro_using freshz;
                     intros;
                     Tacticals.New.tclTRY (
                      Tacticals.New.tclORELSE reflexivity my_discr_tac
                     );
                     simpl_in_hyp (freshz,Locus.InHyp);
(*
repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]).
*)
                    Tacticals.New.tclREPEAT (
                      Tacticals.New.tclTHENLIST [
                         Simple.apply_in freshz (EConstr.of_constr (andb_prop()));
                         Proofview.Goal.enter begin fun gl ->
                           let fresht = fresh_id (Id.of_string "Z") gl in
                            destruct_on_as (EConstr.mkVar freshz)
                                  (IntroOrPattern [[CAst.make @@ IntroNaming (IntroIdentifier fresht);
                                    CAst.make @@ IntroNaming (IntroIdentifier freshz)]])
                         end
                        ]);
(*
  Ci a1 ... an = Ci b1 ... bn
 replace bi with ai; auto || replace bi with ai by  apply typeofbi_prod ; auto
*)
                      Proofview.Goal.enter begin fun gl ->
                        let concl = Proofview.Goal.concl gl in
                        let sigma = Tacmach.New.project gl in
                        match EConstr.kind sigma concl with
                        | App (c,ca) -> (
                          match EConstr.kind sigma c with
                          | Ind (indeq, u) ->
                              if GlobRef.equal (GlobRef.IndRef indeq) Coqlib.(lib_ref "core.eq.type")
                              then
                                Tacticals.New.tclTHEN
                                  (do_replace_bl mode bl_scheme_key ind
                                     (!avoid)
                                     nparrec (ca.(2))
                                     (ca.(1)))
                                  Auto.default_auto
                              else
                                Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.")
                          | _ -> Tacticals.New.tclZEROMSG (str" Failure while solving Boolean->Leibniz.")
                        )
                        | _ -> Tacticals.New.tclZEROMSG (str "Failure while solving Boolean->Leibniz.")
                      end

                    ]
      end

let bl_scheme_kind_aux = ref (fun _ -> failwith "Undefined")

let side_effect_of_mode = function
  | UserAutomaticRequest -> false
  | InternalTacticRequest -> true
  | UserIndividualRequest -> false

let make_bl_scheme mode mind =
  let mib = Global.lookup_mind mind in
  if not (Int.equal (Array.length mib.mind_packets) 1) then
    user_err 
      (str "Automatic building of boolean->Leibniz lemmas not supported");
  let ind = (mind,0) in
  let nparams = mib.mind_nparams in
  let nparrec = mib.mind_nparams_rec in
  let lnonparrec,lnamesparrec = (* TODO subst *)
    context_chop (nparams-nparrec) mib.mind_params_ctxt in
  let bl_goal, eff = compute_bl_goal ind lnamesparrec nparrec in
  let ctx = UState.make ~lbound:(Global.universes_lbound ()) (Global.universes ()) in
  let side_eff = side_effect_of_mode mode in
  let bl_goal = EConstr.of_constr bl_goal in
  let (ans, _, ctx) = Pfedit.build_by_tactic ~poly:false ~side_eff (Global.env()) ctx bl_goal
    (compute_bl_tact mode (!bl_scheme_kind_aux()) (ind, EConstr.EInstance.empty) lnamesparrec nparrec)
  in
  ([|ans|], ctx), eff

let bl_scheme_kind = declare_mutual_scheme_object "_dec_bl" make_bl_scheme

let _ = bl_scheme_kind_aux := fun () -> bl_scheme_kind

(**********************************************************************)
(* Leibniz->Boolean *)

let compute_lb_goal ind lnamesparrec nparrec =
  let list_id = list_id lnamesparrec in
  let eq = eq () and tt = tt () and bb = bb () in
  let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in
  let eqI, eff = eqI ind lnamesparrec in
    let create_input c =
      let x = next_ident_away (Id.of_string "x") avoid and
          y = next_ident_away (Id.of_string "y") avoid in
      let lb_typ = List.map (fun (s,seq,_,_) ->
        mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) (
            mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) (
              mkArrow
                ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|]))
                Sorts.Relevant
                ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|]))
          ))
        ) list_id in
      let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b ->
        mkNamedProd (make_annot slb Sorts.Relevant) b a
      ) c (List.rev list_id) (List.rev lb_typ) in
      let eqs_typ = List.map (fun (s,_,_,_) ->
          mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,
                 mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb))
          ) list_id in
      let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b ->
        mkNamedProd (make_annot seq Sorts.Relevant) b a
      ) lb_input (List.rev list_id) (List.rev eqs_typ) in
      List.fold_left (fun a decl ->
          let x = map_annot
              (function Name s -> s | Anonymous -> Id.of_string "A")
              (RelDecl.get_annot decl)
          in
          mkNamedProd x (RelDecl.get_type decl)  a) eq_input lnamesparrec
    in
      let n = next_ident_away (Id.of_string "x") avoid and
          m = next_ident_away (Id.of_string "y") avoid in
      let u = Univ.Instance.empty in
      create_input (
        mkNamedProd (make_annot n Sorts.Relevant) (mkFullInd (ind,u) nparrec) (
          mkNamedProd (make_annot m Sorts.Relevant) (mkFullInd (ind,u) (nparrec+1)) (
            mkArrow
              (mkApp(eq,[|mkFullInd (ind,u) (nparrec+2);mkVar n;mkVar m|]))
              Sorts.Relevant
              (mkApp(eq,[|bb;mkApp(eqI,[|mkVar n;mkVar m|]);tt|]))
        ))), eff

let compute_lb_tact mode lb_scheme_key ind lnamesparrec nparrec =
  let list_id = list_id lnamesparrec in
    let avoid = ref [] in
      let first_intros =
        ( List.map (fun (s,_,_,_) -> s ) list_id ) @
        ( List.map (fun (_,seq,_,_) -> seq) list_id ) @
        ( List.map (fun (_,_,_,slb) -> slb) list_id )
      in
      let fresh_id s gl =
          let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in
          avoid := fresh::(!avoid); fresh
      in
      Proofview.Goal.enter begin fun gl ->
      let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in
      let freshn = fresh_id (Id.of_string "x") gl in
      let freshm = fresh_id (Id.of_string "y") gl in
      let freshz = fresh_id (Id.of_string "Z") gl in
  (* try with *)
      Tacticals.New.tclTHENLIST [ intros_using fresh_first_intros;
                     intro_using freshn ;
                     induct_on (EConstr.mkVar freshn);
                     intro_using freshm;
                     destruct_on (EConstr.mkVar freshm);
                     intro_using freshz;
                     intros;
                     Tacticals.New.tclTRY (
                      Tacticals.New.tclORELSE reflexivity my_discr_tac
                     );
                     my_inj_tac freshz;
                     intros; simpl_in_concl;
                     Auto.default_auto;
                     Tacticals.New.tclREPEAT (
                      Tacticals.New.tclTHENLIST [apply (EConstr.of_constr (andb_true_intro()));
                                  simplest_split ;Auto.default_auto ]
                      );
                      Proofview.Goal.enter begin fun gls ->
                        let concl = Proofview.Goal.concl gls in
                        let sigma = Tacmach.New.project gl in
                        (* assume the goal to be eq (eq_type ...) = true *)
                        match EConstr.kind sigma concl with
                        | App(c,ca) -> (match (EConstr.kind sigma ca.(1)) with
                          | App(c',ca') ->
                              let n = Array.length ca' in
                              do_replace_lb mode lb_scheme_key
                                (!avoid)
                                nparrec
                                ca'.(n-2) ca'.(n-1)
                          | _ ->
                              Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.")
                        )
                        | _ ->
                            Tacticals.New.tclZEROMSG (str "Failure while solving Leibniz->Boolean.")
                      end
                    ]
      end

let lb_scheme_kind_aux = ref (fun () -> failwith "Undefined")

let make_lb_scheme mode mind =
  let mib = Global.lookup_mind mind in
  if not (Int.equal (Array.length mib.mind_packets) 1) then
    user_err 
      (str "Automatic building of Leibniz->boolean lemmas not supported");
  let ind = (mind,0) in
  let nparams = mib.mind_nparams in
  let nparrec = mib.mind_nparams_rec in
  let lnonparrec,lnamesparrec =
    context_chop (nparams-nparrec) mib.mind_params_ctxt in
  let lb_goal, eff = compute_lb_goal ind lnamesparrec nparrec in
  let ctx = UState.make ~lbound:(Global.universes_lbound ()) (Global.universes ()) in
  let side_eff = side_effect_of_mode mode in
  let lb_goal = EConstr.of_constr lb_goal in
  let (ans, _, ctx) = Pfedit.build_by_tactic ~poly:false ~side_eff (Global.env()) ctx lb_goal
    (compute_lb_tact mode (!lb_scheme_kind_aux()) ind lnamesparrec nparrec)
  in
  ([|ans|], ctx), eff

let lb_scheme_kind = declare_mutual_scheme_object "_dec_lb" make_lb_scheme

let _ = lb_scheme_kind_aux := fun () -> lb_scheme_kind

(**********************************************************************)
(* Decidable equality *)

let check_not_is_defined () =
  try ignore (Coqlib.lib_ref "core.not.type")
  with Not_found -> raise (UndefinedCst "not")

(* {n=m}+{n<>m}  part  *)
let compute_dec_goal ind lnamesparrec nparrec =
  check_not_is_defined ();
  let eq = eq () and tt = tt () and bb = bb () in
  let list_id = list_id lnamesparrec in
  let avoid = List.fold_right (Nameops.Name.fold_right (fun id l -> Id.Set.add id l)) (List.map RelDecl.get_name lnamesparrec) Id.Set.empty in
    let create_input c =
      let x = next_ident_away (Id.of_string "x") avoid and
          y = next_ident_away (Id.of_string "y") avoid in
      let lb_typ = List.map (fun (s,seq,_,_) ->
        mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) (
            mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) (
              mkArrow
                ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|]))
                Sorts.Relevant
                ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|]))
          ))
        ) list_id in
      let bl_typ = List.map (fun (s,seq,_,_) ->
        mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) (
            mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) (
              mkArrow
                ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|]))
                Sorts.Relevant
                ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|]))
          ))
        ) list_id in

      let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b ->
        mkNamedProd (make_annot slb Sorts.Relevant) b a
      ) c (List.rev list_id) (List.rev lb_typ) in
      let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b ->
        mkNamedProd (make_annot sbl Sorts.Relevant) b a
      ) lb_input (List.rev list_id) (List.rev bl_typ) in

      let eqs_typ = List.map (fun (s,_,_,_) ->
          mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,
                 mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb))
          ) list_id in
      let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b ->
        mkNamedProd (make_annot seq Sorts.Relevant) b a
      ) bl_input (List.rev list_id) (List.rev eqs_typ) in
      List.fold_left (fun a decl ->
          let x = map_annot
              (function Name s -> s | Anonymous -> Id.of_string "A")
              (RelDecl.get_annot decl)
          in
          mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec
    in
      let n = next_ident_away (Id.of_string "x") avoid and
          m = next_ident_away (Id.of_string "y") avoid in
        let eqnm = mkApp(eq,[|mkFullInd ind (2*nparrec+2);mkVar n;mkVar m|]) in
        create_input (
          mkNamedProd (make_annot n Sorts.Relevant) (mkFullInd ind (2*nparrec)) (
            mkNamedProd (make_annot m Sorts.Relevant) (mkFullInd ind (2*nparrec+1)) (
              mkApp(sumbool(),[|eqnm;mkApp (UnivGen.constr_of_monomorphic_global @@ Coqlib.lib_ref "core.not.type",[|eqnm|])|])
          )
        )
      )

let compute_dec_tact ind lnamesparrec nparrec =
  let eq = eq () and tt = tt ()
  and ff = ff () and bb = bb () in
  let list_id = list_id lnamesparrec in
  let eqI, eff = eqI ind lnamesparrec in
  let avoid = ref [] in
  let eqtrue x = mkApp(eq,[|bb;x;tt|]) in
  let eqfalse x = mkApp(eq,[|bb;x;ff|]) in
  let first_intros =
      ( List.map (fun (s,_,_,_) -> s ) list_id ) @
      ( List.map (fun (_,seq,_,_) -> seq) list_id ) @
      ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @
      ( List.map (fun (_,_,_,slb) -> slb) list_id )
  in
  let fresh_id s gl =
      let fresh = fresh_id_in_env (Id.Set.of_list !avoid) s (Proofview.Goal.env gl) in
      avoid := fresh::(!avoid); fresh
  in
  Proofview.Goal.enter begin fun gl ->
  let fresh_first_intros = List.map (fun id -> fresh_id id gl) first_intros in
  let freshn = fresh_id (Id.of_string "x") gl in
  let freshm = fresh_id (Id.of_string "y") gl in
  let freshH = fresh_id (Id.of_string "H") gl in
  let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in
  let arfresh = Array.of_list fresh_first_intros in
  let xargs = Array.sub arfresh 0 (2*nparrec) in
  begin try
          let c, eff = find_scheme bl_scheme_kind ind in
          Proofview.tclUNIT (mkConst c,eff) with
    Not_found ->
      Tacticals.New.tclZEROMSG (str "Error during the decidability part, boolean to leibniz equality is required.")
  end >>= fun (blI,eff') ->
  begin try
          let c, eff = find_scheme lb_scheme_kind ind in
          Proofview.tclUNIT (mkConst c,eff) with
    Not_found ->
      Tacticals.New.tclZEROMSG (str "Error during the decidability part, leibniz to boolean equality is required.")
  end >>= fun (lbI,eff'') ->
  let eff = (Evd.concat_side_effects eff'' (Evd.concat_side_effects eff' eff)) in
  Tacticals.New.tclTHENLIST [
        Proofview.tclEFFECTS eff;
        intros_using fresh_first_intros;
        intros_using [freshn;freshm];
        (*we do this so we don't have to prove the same goal twice *)
        assert_by (Name freshH) (EConstr.of_constr (
          mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|])
        ))
          (Tacticals.New.tclTHEN (destruct_on (EConstr.of_constr eqbnm)) Auto.default_auto);

        Proofview.Goal.enter begin fun gl ->
          let freshH2 = fresh_id (Id.of_string "H") gl in
          Tacticals.New.tclTHENS (destruct_on_using (EConstr.mkVar freshH) freshH2) [
            (* left *)
            Tacticals.New.tclTHENLIST [
              simplest_left;
              apply (EConstr.of_constr (mkApp(blI,Array.map mkVar xargs)));
              Auto.default_auto
            ]
            ;

            (*right *)
            Proofview.Goal.enter begin fun gl ->
            let freshH3 = fresh_id (Id.of_string "H") gl in
            Tacticals.New.tclTHENLIST [
              simplest_right ;
              unfold_constr (Coqlib.lib_ref "core.not.type");
              intro;
              Equality.subst_all ();
              assert_by (Name freshH3)
                (EConstr.of_constr (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|])))
                (Tacticals.New.tclTHENLIST [
                  apply (EConstr.of_constr (mkApp(lbI,Array.map mkVar xargs)));
                  Auto.default_auto
                ]);
              Equality.general_rewrite_bindings_in true
                              Locus.AllOccurrences true false
                              (List.hd !avoid)
                              ((EConstr.mkVar (List.hd (List.tl !avoid))),
                                NoBindings
                              )
                              true;
              my_discr_tac
            ]
            end
          ]
        end
  ]
  end

let make_eq_decidability mode mind =
  let mib = Global.lookup_mind mind in
  if not (Int.equal (Array.length mib.mind_packets) 1) then
    raise DecidabilityMutualNotSupported;
  let ind = (mind,0) in
  let nparams = mib.mind_nparams in
  let nparrec = mib.mind_nparams_rec in
  let u = Univ.Instance.empty in
  let ctx = UState.make ~lbound:(Global.universes_lbound ()) (Global.universes ()) in
  let lnonparrec,lnamesparrec =
    context_chop (nparams-nparrec) mib.mind_params_ctxt in
  let side_eff = side_effect_of_mode mode in
  let (ans, _, ctx) = Pfedit.build_by_tactic ~poly:false ~side_eff (Global.env()) ctx
    (EConstr.of_constr (compute_dec_goal (ind,u) lnamesparrec nparrec))
    (compute_dec_tact ind lnamesparrec nparrec)
  in
  ([|ans|], ctx), Evd.empty_side_effects

let eq_dec_scheme_kind =
  declare_mutual_scheme_object "_eq_dec" make_eq_decidability

(* The eq_dec_scheme proofs depend on the equality and discr tactics
   but the inj tactics, that comes with discr, depends on the
   eq_dec_scheme... *)

let _ = Equality.set_eq_dec_scheme_kind eq_dec_scheme_kind