1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Names open Genredexpr open Tac2expr open Tac2ffi open Tac2types open Tac2extffi open Proofview.Notations module Value = Tac2ffi (** Make a representation with a dummy from function *) let make_to_repr f = Tac2ffi.make_repr (fun _ -> assert false) f let return x = Proofview.tclUNIT x let v_unit = Value.of_unit () let thaw r f = Tac2ffi.app_fun1 f unit r () let uthaw r f = Tac2ffi.app_fun1 (to_fun1 unit r f) unit r () let thunk r = fun1 unit r let to_name c = match Value.to_option Value.to_ident c with | None -> Anonymous | Some id -> Name id let name = make_to_repr to_name let to_occurrences = function | ValInt 0 -> AllOccurrences | ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list Value.to_int vl) | ValInt 1 -> NoOccurrences | ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list Value.to_int vl) | _ -> assert false let occurrences = make_to_repr to_occurrences let to_hyp_location_flag v = match Value.to_int v with | 0 -> InHyp | 1 -> InHypTypeOnly | 2 -> InHypValueOnly | _ -> assert false let to_clause v = match Value.to_tuple v with | [| hyps; concl |] -> let cast v = match Value.to_tuple v with | [| hyp; occ; flag |] -> (Value.to_ident hyp, to_occurrences occ, to_hyp_location_flag flag) | _ -> assert false in let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in { onhyps = hyps; concl_occs = to_occurrences concl; } | _ -> assert false let clause = make_to_repr to_clause let to_red_flag v = match Value.to_tuple v with | [| beta; iota; fix; cofix; zeta; delta; const |] -> { rBeta = Value.to_bool beta; rMatch = Value.to_bool iota; rFix = Value.to_bool fix; rCofix = Value.to_bool cofix; rZeta = Value.to_bool zeta; rDelta = Value.to_bool delta; rConst = Value.to_list Value.to_reference const; } | _ -> assert false let red_flags = make_to_repr to_red_flag let pattern_with_occs = pair pattern occurrences let constr_with_occs = pair constr occurrences let reference_with_occs = pair reference occurrences let rec to_intro_pattern v = match Value.to_block v with | (0, [| b |]) -> IntroForthcoming (Value.to_bool b) | (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat) | (2, [| act |]) -> IntroAction (to_intro_pattern_action act) | _ -> assert false and to_intro_pattern_naming = function | ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id) | ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id) | ValInt 0 -> IntroAnonymous | _ -> assert false and to_intro_pattern_action = function | ValInt 0 -> IntroWildcard | ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op) | ValBlk (1, [| inj |]) -> let map ipat = to_intro_pattern ipat in IntroInjection (Value.to_list map inj) | ValBlk (2, [| c; ipat |]) -> let c = Value.to_fun1 Value.unit Value.constr c in IntroApplyOn (c, to_intro_pattern ipat) | ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b) | _ -> assert false and to_or_and_intro_pattern v = match Value.to_block v with | (0, [| ill |]) -> IntroOrPattern (Value.to_list to_intro_patterns ill) | (1, [| il |]) -> IntroAndPattern (to_intro_patterns il) | _ -> assert false and to_intro_patterns il = Value.to_list to_intro_pattern il let intro_pattern = make_to_repr to_intro_pattern let intro_patterns = make_to_repr to_intro_patterns let to_destruction_arg v = match Value.to_block v with | (0, [| c |]) -> let c = uthaw constr_with_bindings c in ElimOnConstr c | (1, [| id |]) -> ElimOnIdent (Value.to_ident id) | (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n) | _ -> assert false let destruction_arg = make_to_repr to_destruction_arg let to_induction_clause v = match Value.to_tuple v with | [| arg; eqn; as_; in_ |] -> let arg = to_destruction_arg arg in let eqn = Value.to_option to_intro_pattern_naming eqn in let as_ = Value.to_option to_or_and_intro_pattern as_ in let in_ = Value.to_option to_clause in_ in (arg, eqn, as_, in_) | _ -> assert false let induction_clause = make_to_repr to_induction_clause let to_assertion v = match Value.to_block v with | (0, [| ipat; t; tac |]) -> let to_tac t = Value.to_fun1 Value.unit Value.unit t in let ipat = Value.to_option to_intro_pattern ipat in let t = Value.to_constr t in let tac = Value.to_option to_tac tac in AssertType (ipat, t, tac) | (1, [| id; c |]) -> AssertValue (Value.to_ident id, Value.to_constr c) | _ -> assert false let assertion = make_to_repr to_assertion let to_multi = function | ValBlk (0, [| n |]) -> Precisely (Value.to_int n) | ValBlk (1, [| n |]) -> UpTo (Value.to_int n) | ValInt 0 -> RepeatStar | ValInt 1 -> RepeatPlus | _ -> assert false let to_rewriting v = match Value.to_tuple v with | [| orient; repeat; c |] -> let orient = Value.to_option Value.to_bool orient in let repeat = to_multi repeat in let c = uthaw constr_with_bindings c in (orient, repeat, c) | _ -> assert false let rewriting = make_to_repr to_rewriting let to_debug v = match Value.to_int v with | 0 -> Hints.Off | 1 -> Hints.Info | 2 -> Hints.Debug | _ -> assert false let debug = make_to_repr to_debug let to_strategy v = match Value.to_int v with | 0 -> Class_tactics.Bfs | 1 -> Class_tactics.Dfs | _ -> assert false let strategy = make_to_repr to_strategy let to_inversion_kind v = match Value.to_int v with | 0 -> Inv.SimpleInversion | 1 -> Inv.FullInversion | 2 -> Inv.FullInversionClear | _ -> assert false let inversion_kind = make_to_repr to_inversion_kind let to_move_location = function | ValInt 0 -> Logic.MoveFirst | ValInt 1 -> Logic.MoveLast | ValBlk (0, [|id|]) -> Logic.MoveAfter (Value.to_ident id) | ValBlk (1, [|id|]) -> Logic.MoveBefore (Value.to_ident id) | _ -> assert false let move_location = make_to_repr to_move_location let to_generalize_arg v = match Value.to_tuple v with | [| c; occs; na |] -> (Value.to_constr c, to_occurrences occs, to_name na) | _ -> assert false let generalize_arg = make_to_repr to_generalize_arg (** Standard tactics sharing their implementation with Ltac1 *) let pname s = { mltac_plugin = "ltac2"; mltac_tactic = s } let lift tac = tac <*> return v_unit let define_prim0 name tac = let tac _ = lift tac in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_prim1 name r0 f = let tac x = lift (f (Value.repr_to r0 x)) in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_prim2 name r0 r1 f = let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac) let define_prim3 name r0 r1 r2 f = let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac) let define_prim4 name r0 r1 r2 r3 f = let tac x y z u = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc arity_one))) tac) let define_prim5 name r0 r1 r2 r3 r4 f = let tac x y z u v = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z) (Value.repr_to r3 u) (Value.repr_to r4 v)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc (arity_suc (arity_suc arity_one)))) tac) (** Tactics from Tacexpr *) let () = define_prim2 "tac_intros" bool intro_patterns begin fun ev ipat -> Tac2tactics.intros_patterns ev ipat end let () = define_prim4 "tac_apply" bool bool (list (thunk constr_with_bindings)) (option (pair ident (option intro_pattern))) begin fun adv ev cb ipat -> Tac2tactics.apply adv ev cb ipat end let () = define_prim3 "tac_elim" bool constr_with_bindings (option constr_with_bindings) begin fun ev c copt -> Tac2tactics.elim ev c copt end let () = define_prim2 "tac_case" bool constr_with_bindings begin fun ev c -> Tac2tactics.general_case_analysis ev c end let () = define_prim1 "tac_generalize" (list generalize_arg) begin fun cl -> Tac2tactics.generalize cl end let () = define_prim1 "tac_assert" assertion begin fun ast -> Tac2tactics.assert_ ast end let () = define_prim3 "tac_enough" constr (option (option (thunk unit))) (option intro_pattern) begin fun c tac ipat -> let tac = Option.map (fun o -> Option.map (fun f -> thaw unit f) o) tac in Tac2tactics.forward false tac ipat c end let () = define_prim2 "tac_pose" name constr begin fun na c -> Tactics.letin_tac None na c None Locusops.nowhere end let () = define_prim3 "tac_set" bool (thunk (pair name constr)) clause begin fun ev p cl -> Proofview.tclEVARMAP >>= fun sigma -> thaw (pair name constr) p >>= fun (na, c) -> Tac2tactics.letin_pat_tac ev None na (sigma, c) cl end let () = define_prim5 "tac_remember" bool name (thunk constr) (option intro_pattern) clause begin fun ev na c eqpat cl -> let eqpat = Option.default (IntroNaming IntroAnonymous) eqpat in match eqpat with | IntroNaming eqpat -> Proofview.tclEVARMAP >>= fun sigma -> thaw constr c >>= fun c -> Tac2tactics.letin_pat_tac ev (Some (true, eqpat)) na (sigma, c) cl | _ -> Tacticals.New.tclZEROMSG (Pp.str "Invalid pattern for remember") end let () = define_prim3 "tac_destruct" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using -> Tac2tactics.induction_destruct false ev ic using end let () = define_prim3 "tac_induction" bool (list induction_clause) (option constr_with_bindings) begin fun ev ic using -> Tac2tactics.induction_destruct true ev ic using end let () = define_prim1 "tac_red" clause begin fun cl -> Tac2tactics.reduce (Red false) cl end let () = define_prim1 "tac_hnf" clause begin fun cl -> Tac2tactics.reduce Hnf cl end let () = define_prim3 "tac_simpl" red_flags (option pattern_with_occs) clause begin fun flags where cl -> Tac2tactics.simpl flags where cl end let () = define_prim2 "tac_cbv" red_flags clause begin fun flags cl -> Tac2tactics.cbv flags cl end let () = define_prim2 "tac_cbn" red_flags clause begin fun flags cl -> Tac2tactics.cbn flags cl end let () = define_prim2 "tac_lazy" red_flags clause begin fun flags cl -> Tac2tactics.lazy_ flags cl end let () = define_prim2 "tac_unfold" (list reference_with_occs) clause begin fun refs cl -> Tac2tactics.unfold refs cl end let () = define_prim2 "tac_fold" (list constr) clause begin fun args cl -> Tac2tactics.reduce (Fold args) cl end let () = define_prim2 "tac_pattern" (list constr_with_occs) clause begin fun where cl -> Tac2tactics.pattern where cl end let () = define_prim2 "tac_vm" (option pattern_with_occs) clause begin fun where cl -> Tac2tactics.vm where cl end let () = define_prim2 "tac_native" (option pattern_with_occs) clause begin fun where cl -> Tac2tactics.native where cl end (** Reduction functions *) let lift tac = tac >>= fun c -> Proofview.tclUNIT (Value.of_constr c) let define_red1 name r0 f = let tac x = lift (f (Value.repr_to r0 x)) in Tac2env.define_primitive (pname name) (mk_closure arity_one tac) let define_red2 name r0 r1 f = let tac x y = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc arity_one) tac) let define_red3 name r0 r1 r2 f = let tac x y z = lift (f (Value.repr_to r0 x) (Value.repr_to r1 y) (Value.repr_to r2 z)) in Tac2env.define_primitive (pname name) (mk_closure (arity_suc (arity_suc arity_one)) tac) let () = define_red1 "eval_red" constr begin fun c -> Tac2tactics.eval_red c end let () = define_red1 "eval_hnf" constr begin fun c -> Tac2tactics.eval_hnf c end let () = define_red3 "eval_simpl" red_flags (option pattern_with_occs) constr begin fun flags where c -> Tac2tactics.eval_simpl flags where c end let () = define_red2 "eval_cbv" red_flags constr begin fun flags c -> Tac2tactics.eval_cbv flags c end let () = define_red2 "eval_cbn" red_flags constr begin fun flags c -> Tac2tactics.eval_cbn flags c end let () = define_red2 "eval_lazy" red_flags constr begin fun flags c -> Tac2tactics.eval_lazy flags c end let () = define_red2 "eval_unfold" (list reference_with_occs) constr begin fun refs c -> Tac2tactics.eval_unfold refs c end let () = define_red2 "eval_fold" (list constr) constr begin fun args c -> Tac2tactics.eval_fold args c end let () = define_red2 "eval_pattern" (list constr_with_occs) constr begin fun where c -> Tac2tactics.eval_pattern where c end let () = define_red2 "eval_vm" (option pattern_with_occs) constr begin fun where c -> Tac2tactics.eval_vm where c end let () = define_red2 "eval_native" (option pattern_with_occs) constr begin fun where c -> Tac2tactics.eval_native where c end let () = define_prim3 "tac_change" (option pattern) (fun1 (array constr) constr) clause begin fun pat c cl -> Tac2tactics.change pat c cl end let () = define_prim4 "tac_rewrite" bool (list rewriting) clause (option (thunk unit)) begin fun ev rw cl by -> Tac2tactics.rewrite ev rw cl by end let () = define_prim4 "tac_inversion" inversion_kind destruction_arg (option intro_pattern) (option (list ident)) begin fun knd arg pat ids -> Tac2tactics.inversion knd arg pat ids end (** Tactics from coretactics *) let () = define_prim0 "tac_reflexivity" Tactics.intros_reflexivity let () = define_prim2 "tac_move" ident move_location begin fun id mv -> Tactics.move_hyp id mv end let () = define_prim2 "tac_intro" (option ident) (option move_location) begin fun id mv -> let mv = Option.default Logic.MoveLast mv in Tactics.intro_move id mv end (* TACTIC EXTEND exact [ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ] END *) let () = define_prim0 "tac_assumption" Tactics.assumption let () = define_prim1 "tac_transitivity" constr begin fun c -> Tactics.intros_transitivity (Some c) end let () = define_prim0 "tac_etransitivity" (Tactics.intros_transitivity None) let () = define_prim1 "tac_cut" constr begin fun c -> Tactics.cut c end let () = define_prim2 "tac_left" bool bindings begin fun ev bnd -> Tac2tactics.left_with_bindings ev bnd end let () = define_prim2 "tac_right" bool bindings begin fun ev bnd -> Tac2tactics.right_with_bindings ev bnd end let () = define_prim1 "tac_introsuntil" qhyp begin fun h -> Tactics.intros_until h end let () = define_prim1 "tac_exactnocheck" constr begin fun c -> Tactics.exact_no_check c end let () = define_prim1 "tac_vmcastnocheck" constr begin fun c -> Tactics.vm_cast_no_check c end let () = define_prim1 "tac_nativecastnocheck" constr begin fun c -> Tactics.native_cast_no_check c end let () = define_prim1 "tac_constructor" bool begin fun ev -> Tactics.any_constructor ev None end let () = define_prim3 "tac_constructorn" bool int bindings begin fun ev n bnd -> Tac2tactics.constructor_tac ev None n bnd end let () = define_prim2 "tac_specialize" constr_with_bindings (option intro_pattern) begin fun c ipat -> Tac2tactics.specialize c ipat end let () = define_prim1 "tac_symmetry" clause begin fun cl -> Tac2tactics.symmetry cl end let () = define_prim2 "tac_split" bool bindings begin fun ev bnd -> Tac2tactics.split_with_bindings ev bnd end let () = define_prim1 "tac_rename" (list (pair ident ident)) begin fun ids -> Tactics.rename_hyp ids end let () = define_prim1 "tac_revert" (list ident) begin fun ids -> Tactics.revert ids end let () = define_prim0 "tac_admit" Proofview.give_up let () = define_prim2 "tac_fix" ident int begin fun ident n -> Tactics.fix ident n end let () = define_prim1 "tac_cofix" ident begin fun ident -> Tactics.cofix ident end let () = define_prim1 "tac_clear" (list ident) begin fun ids -> Tactics.clear ids end let () = define_prim1 "tac_keep" (list ident) begin fun ids -> Tactics.keep ids end let () = define_prim1 "tac_clearbody" (list ident) begin fun ids -> Tactics.clear_body ids end (** Tactics from extratactics *) let () = define_prim2 "tac_discriminate" bool (option destruction_arg) begin fun ev arg -> Tac2tactics.discriminate ev arg end let () = define_prim3 "tac_injection" bool (option intro_patterns) (option destruction_arg) begin fun ev ipat arg -> Tac2tactics.injection ev ipat arg end let () = define_prim1 "tac_absurd" constr begin fun c -> Contradiction.absurd c end let () = define_prim1 "tac_contradiction" (option constr_with_bindings) begin fun c -> Tac2tactics.contradiction c end let () = define_prim4 "tac_autorewrite" bool (option (thunk unit)) (list ident) clause begin fun all by ids cl -> Tac2tactics.autorewrite ~all by ids cl end let () = define_prim1 "tac_subst" (list ident) begin fun ids -> Equality.subst ids end let () = define_prim0 "tac_substall" (return () >>= fun () -> Equality.subst_all ()) (** Auto *) let () = define_prim3 "tac_trivial" debug (list (thunk constr)) (option (list ident)) begin fun dbg lems dbs -> Tac2tactics.trivial dbg lems dbs end let () = define_prim5 "tac_eauto" debug (option int) (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n p lems dbs -> Tac2tactics.eauto dbg n p lems dbs end let () = define_prim4 "tac_auto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs -> Tac2tactics.auto dbg n lems dbs end let () = define_prim4 "tac_newauto" debug (option int) (list (thunk constr)) (option (list ident)) begin fun dbg n lems dbs -> Tac2tactics.new_auto dbg n lems dbs end let () = define_prim3 "tac_typeclasses_eauto" (option strategy) (option int) (option (list ident)) begin fun str n dbs -> Tac2tactics.typeclasses_eauto str n dbs end