1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open Util
open CAst
open CErrors
open Names
open Libnames
open Locus
open Tac2env
open Tac2print
open Tac2expr

(** Hardwired types and constants *)

let coq_type n = KerName.make Tac2env.coq_prefix (Label.make n)
let ltac1_type n = KerName.make Tac2env.ltac1_prefix (Label.make n)

let t_int = coq_type "int"
let t_string = coq_type "string"
let t_constr = coq_type "constr"
let t_ltac1 = ltac1_type "t"

(** Union find *)

module UF :
sig
type elt
type 'a t
val equal : elt -> elt -> bool
val create : unit -> 'a t
val fresh : 'a t -> elt
val find : elt -> 'a t -> (elt * 'a option)
val union : elt -> elt -> 'a t -> unit
val set : elt -> 'a -> 'a t -> unit
module Map :
sig
  type key = elt
  type +'a t
  val empty : 'a t
  val add : key -> 'a -> 'a t -> 'a t
  val mem : key -> 'a t -> bool
  val find : key -> 'a t -> 'a
  val exists : (key -> 'a -> bool) -> 'a t -> bool
end
end
=
struct
type elt = int
let equal = Int.equal
module Map = Int.Map

type 'a node =
| Canon of int * 'a option
| Equiv of elt

type 'a t = {
  mutable uf_data : 'a node array;
  mutable uf_size : int;
}

let resize p =
  if Int.equal (Array.length p.uf_data) p.uf_size then begin
    let nsize = 2 * p.uf_size + 1 in
    let v = Array.make nsize (Equiv 0) in
    Array.blit p.uf_data 0 v 0 (Array.length p.uf_data);
    p.uf_data <- v;
  end

let create () = { uf_data = [||]; uf_size = 0 }

let fresh p =
  resize p;
  let n = p.uf_size in
  p.uf_data.(n) <- (Canon (1, None));
  p.uf_size <- n + 1;
  n

let rec lookup n p =
  let node = Array.get p.uf_data n in
  match node with
  | Canon (size, v) -> n, size, v
  | Equiv y ->
    let ((z, _, _) as res) = lookup y p in
    if not (Int.equal z y) then Array.set p.uf_data n (Equiv z);
    res

let find n p =
  let (x, _, v) = lookup n p in (x, v)

let union x y p =
  let ((x, size1, _) as xcan) = lookup x p in
  let ((y, size2, _) as ycan) = lookup y p in
  let xcan, ycan = if size1 < size2 then xcan, ycan else ycan, xcan in
  let x, _, xnode = xcan in
  let y, _, ynode = ycan in
  assert (Option.is_empty xnode);
  assert (Option.is_empty ynode);
  p.uf_data.(x) <- Equiv y;
  p.uf_data.(y) <- Canon (size1 + size2, None)

let set x v p =
  let (x, s, v') = lookup x p in
  assert (Option.is_empty v');
  p.uf_data.(x) <- Canon (s, Some v)

end

type mix_var =
| GVar of UF.elt
| LVar of int

type mix_type_scheme = int * mix_var glb_typexpr

type environment = {
  env_var : mix_type_scheme Id.Map.t;
  (** Type schemes of bound variables *)
  env_cst : UF.elt glb_typexpr UF.t;
  (** Unification state *)
  env_als : UF.elt Id.Map.t ref;
  (** Map user-facing type variables to unification variables *)
  env_opn : bool;
  (** Accept unbound type variables *)
  env_rec : (KerName.t * int) Id.Map.t;
  (** Recursive type definitions *)
  env_str : bool;
  (** True iff in strict mode *)
}

let empty_env () = {
  env_var = Id.Map.empty;
  env_cst = UF.create ();
  env_als = ref Id.Map.empty;
  env_opn = true;
  env_rec = Id.Map.empty;
  env_str = true;
}

let env_name env =
  (* Generate names according to a provided environment *)
  let mk num =
    let base = num mod 26 in
    let rem = num / 26 in
    let name = String.make 1 (Char.chr (97 + base)) in
    let suff = if Int.equal rem 0 then "" else string_of_int rem in
    let name = name ^ suff in
    name
  in
  let fold id elt acc = UF.Map.add elt (Id.to_string id) acc in
  let vars = Id.Map.fold fold env.env_als.contents UF.Map.empty in
  let vars = ref vars in
  let rec fresh n =
    let name = mk n in
    if UF.Map.exists (fun _ name' -> String.equal name name') !vars then fresh (succ n)
    else name
  in
  fun n ->
    if UF.Map.mem n !vars then UF.Map.find n !vars
    else
      let ans = fresh 0 in
      let () = vars := UF.Map.add n ans !vars in
      ans

let ltac2_env : environment Genintern.Store.field =
  Genintern.Store.field ()

let drop_ltac2_env store =
  Genintern.Store.remove store ltac2_env

let fresh_id env = UF.fresh env.env_cst

let get_alias {loc;v=id} env =
  try Id.Map.find id env.env_als.contents
  with Not_found ->
    if env.env_opn then
      let n = fresh_id env in
      let () = env.env_als := Id.Map.add id n env.env_als.contents in
      n
    else user_err ?loc (str "Unbound type parameter " ++ Id.print id)

let push_name id t env = match id with
| Anonymous -> env
| Name id -> { env with env_var = Id.Map.add id t env.env_var }

let error_nargs_mismatch ?loc kn nargs nfound =
  let cstr = Tac2env.shortest_qualid_of_constructor kn in
  user_err ?loc (str "Constructor " ++ pr_qualid cstr ++ str " expects " ++
    int nargs ++ str " arguments, but is applied to " ++ int nfound ++
    str " arguments")

let error_nparams_mismatch ?loc nargs nfound =
  user_err ?loc (str "Type expects " ++ int nargs ++
    str " arguments, but is applied to " ++ int nfound ++
    str " arguments")

let rec subst_type subst (t : 'a glb_typexpr) = match t with
| GTypVar id -> subst id
| GTypArrow (t1, t2) -> GTypArrow (subst_type subst t1, subst_type subst t2)
| GTypRef (qid, args) ->
  GTypRef (qid, List.map (fun t -> subst_type subst t) args)

let rec intern_type env ({loc;v=t} : raw_typexpr) : UF.elt glb_typexpr = match t with
| CTypVar (Name id) -> GTypVar (get_alias (CAst.make ?loc id) env)
| CTypVar Anonymous -> GTypVar (fresh_id env)
| CTypRef (rel, args) ->
  let (kn, nparams) = match rel with
  | RelId qid ->
    let id = qualid_basename qid in
    if qualid_is_ident qid && Id.Map.mem id env.env_rec then
      let (kn, n) = Id.Map.find id env.env_rec in
      (Other kn, n)
    else
      let kn =
        try Tac2env.locate_type qid
        with Not_found ->
          user_err ?loc (str "Unbound type constructor " ++ pr_qualid qid)
      in
      let (nparams, _) = Tac2env.interp_type kn in
      (Other kn, nparams)
  | AbsKn (Other kn) ->
    let (nparams, _) = Tac2env.interp_type kn in
    (Other kn, nparams)
  | AbsKn (Tuple n) ->
    (Tuple n, n)
  in
  let nargs = List.length args in
  let () =
    if not (Int.equal nparams nargs) then
      let qid = match rel with
      | RelId lid -> lid
      | AbsKn (Other kn) -> shortest_qualid_of_type ?loc kn
      | AbsKn (Tuple _) -> assert false
      in
      user_err ?loc (strbrk "The type constructor " ++ pr_qualid qid ++
        strbrk " expects " ++ int nparams ++ strbrk " argument(s), but is here \
        applied to " ++ int nargs ++ strbrk "argument(s)")
  in
  GTypRef (kn, List.map (fun t -> intern_type env t) args)
| CTypArrow (t1, t2) -> GTypArrow (intern_type env t1, intern_type env t2)

let fresh_type_scheme env (t : type_scheme) : UF.elt glb_typexpr =
  let (n, t) = t in
  let subst = Array.init n (fun _ -> fresh_id env) in
  let substf i = GTypVar subst.(i) in
  subst_type substf t

let fresh_mix_type_scheme env (t : mix_type_scheme) : UF.elt glb_typexpr =
  let (n, t) = t in
  let subst = Array.init n (fun _ -> fresh_id env) in
  let substf = function
  | LVar i -> GTypVar subst.(i)
  | GVar n -> GTypVar n
  in
  subst_type substf t

let fresh_reftype env (kn : KerName.t or_tuple) =
  let n = match kn with
  | Other kn -> fst (Tac2env.interp_type kn)
  | Tuple n -> n
  in
  let subst = Array.init n (fun _ -> fresh_id env) in
  let t = GTypRef (kn, Array.map_to_list (fun i -> GTypVar i) subst) in
  (subst, t)

(** First-order unification algorithm *)
let is_unfoldable kn = match snd (Tac2env.interp_type kn) with
| GTydDef (Some _) -> true
| GTydDef None | GTydAlg _ | GTydRec _ | GTydOpn -> false

let unfold env kn args =
  let (nparams, def) = Tac2env.interp_type kn in
  let def = match def with
  | GTydDef (Some t) -> t
  | _ -> assert false
  in
  let args = Array.of_list args in
  let subst n = args.(n) in
  subst_type subst def

(** View function, allows to ensure head normal forms *)
let rec kind env t = match t with
| GTypVar id ->
  let (id, v) = UF.find id env.env_cst in
  begin match v with
  | None -> GTypVar id
  | Some t -> kind env t
  end
| GTypRef (Other kn, tl) ->
  if is_unfoldable kn then kind env (unfold env kn tl) else t
| GTypArrow _ | GTypRef (Tuple _, _) -> t

(** Normalize unification variables without unfolding type aliases *)
let rec nf env t = match t with
| GTypVar id ->
  let (id, v) = UF.find id env.env_cst in
  begin match v with
  | None -> GTypVar id
  | Some t -> nf env t
  end
| GTypRef (kn, tl) ->
  let tl = List.map (fun t -> nf env t) tl in
  GTypRef (kn, tl)
| GTypArrow (t, u) ->
  let t = nf env t in
  let u = nf env u in
  GTypArrow (t, u)

let pr_glbtype env t =
  let t = nf env t in
  let name = env_name env in
  pr_glbtype name t

exception Occur

let rec occur_check env id t = match kind env t with
| GTypVar id' -> if UF.equal id id' then raise Occur
| GTypArrow (t1, t2) ->
  let () = occur_check env id t1 in
  occur_check env id t2
| GTypRef (kn, tl) ->
  List.iter (fun t -> occur_check env id t) tl

exception CannotUnify of UF.elt glb_typexpr * UF.elt glb_typexpr

let unify_var env id t = match kind env t with
| GTypVar id' ->
  if not (UF.equal id id') then UF.union id id' env.env_cst
| GTypArrow _ | GTypRef _ ->
  try
    let () = occur_check env id t in
    UF.set id t env.env_cst
  with Occur -> raise (CannotUnify (GTypVar id, t))

let eq_or_tuple eq t1 t2 = match t1, t2 with
| Tuple n1, Tuple n2 -> Int.equal n1 n2
| Other o1, Other o2 -> eq o1 o2
| _ -> false

let rec unify0 env t1 t2 = match kind env t1, kind env t2 with
| GTypVar id, t | t, GTypVar id ->
  unify_var env id t
| GTypArrow (t1, u1), GTypArrow (t2, u2) ->
  let () = unify0 env t1 t2 in
  unify0 env u1 u2
| GTypRef (kn1, tl1), GTypRef (kn2, tl2) ->
  if eq_or_tuple KerName.equal kn1 kn2 then
    List.iter2 (fun t1 t2 -> unify0 env t1 t2) tl1 tl2
  else raise (CannotUnify (t1, t2))
| _ -> raise (CannotUnify (t1, t2))

let unify ?loc env t1 t2 =
  try unify0 env t1 t2
  with CannotUnify (u1, u2) ->
    user_err ?loc (str "This expression has type" ++ spc () ++ pr_glbtype env t1 ++
      spc () ++ str "but an expression was expected of type" ++ spc () ++ pr_glbtype env t2)

let unify_arrow ?loc env ft args =
  let ft0 = ft in
  let rec iter ft args is_fun = match kind env ft, args with
  | t, [] -> t
  | GTypArrow (t1, ft), (loc, t2) :: args ->
    let () = unify ?loc env t2 t1 in
    iter ft args true
  | GTypVar id, (_, t) :: args ->
    let ft = GTypVar (fresh_id env) in
    let () = unify ?loc env (GTypVar id) (GTypArrow (t, ft)) in
    iter ft args true
  | GTypRef _, _ :: _ ->
    if is_fun then
      user_err ?loc (str "This function has type" ++ spc () ++ pr_glbtype env ft0 ++
        spc () ++ str "and is applied to too many arguments")
    else
      user_err ?loc (str "This expression has type" ++ spc () ++ pr_glbtype env ft0 ++
        spc () ++ str "and is not a function")
  in
  iter ft args false

(** Term typing *)

let is_pure_constructor kn =
  match snd (Tac2env.interp_type kn) with
  | GTydAlg _ | GTydOpn -> true
  | GTydRec fields ->
    let is_pure (_, mut, _) = not mut in
    List.for_all is_pure fields
  | GTydDef _ -> assert false (** Type definitions have no constructors *)

let rec is_value = function
| GTacAtm (AtmInt _) | GTacVar _ | GTacRef _ | GTacFun _ -> true
| GTacAtm (AtmStr _) | GTacApp _ | GTacLet _ -> false
| GTacCst (Tuple _, _, el) -> List.for_all is_value el
| GTacCst (_, _, []) -> true
| GTacOpn (_, el) -> List.for_all is_value el
| GTacCst (Other kn, _, el) -> is_pure_constructor kn && List.for_all is_value el
| GTacCse _ | GTacPrj _ | GTacSet _ | GTacExt _ | GTacPrm _
| GTacWth _ -> false

let is_rec_rhs = function
| GTacFun _ -> true
| GTacAtm _ | GTacVar _ | GTacRef _ | GTacApp _ | GTacLet _ | GTacPrj _
| GTacSet _ | GTacExt _ | GTacPrm _ | GTacCst _
| GTacCse _ | GTacOpn _ | GTacWth _ -> false

let rec fv_type f t accu = match t with
| GTypVar id -> f id accu
| GTypArrow (t1, t2) -> fv_type f t1 (fv_type f t2 accu)
| GTypRef (kn, tl) -> List.fold_left (fun accu t -> fv_type f t accu) accu tl

let fv_env env =
  let rec f id accu = match UF.find id env.env_cst with
  | id, None -> UF.Map.add id () accu
  | _, Some t -> fv_type f t accu
  in
  let fold_var id (_, t) accu =
    let fmix id accu = match id with
    | LVar _ -> accu
    | GVar id -> f id accu
    in
    fv_type fmix t accu
  in
  let fv_var = Id.Map.fold fold_var env.env_var UF.Map.empty in
  let fold_als _ id accu = f id accu in
  Id.Map.fold fold_als !(env.env_als) fv_var

let abstract_var env (t : UF.elt glb_typexpr) : mix_type_scheme =
  let fv = fv_env env in
  let count = ref 0 in
  let vars = ref UF.Map.empty in
  let rec subst id =
    let (id, t) = UF.find id env.env_cst in
    match t with
    | None ->
      if UF.Map.mem id fv then GTypVar (GVar id)
      else
        begin try UF.Map.find id !vars
        with Not_found ->
          let n = !count in
          let var = GTypVar (LVar n) in
          let () = incr count in
          let () = vars := UF.Map.add id var !vars in
          var
        end
    | Some t -> subst_type subst t
  in
  let t = subst_type subst t in
  (!count, t)

let monomorphic (t : UF.elt glb_typexpr) : mix_type_scheme =
  let subst id = GTypVar (GVar id) in
  (0, subst_type subst t)

let warn_not_unit =
  CWarnings.create ~name:"not-unit" ~category:"ltac"
    (fun () -> strbrk "The following expression should have type unit.")

let warn_redundant_clause =
  CWarnings.create ~name:"redundant-clause" ~category:"ltac"
    (fun () -> strbrk "The following clause is redundant.")

let check_elt_unit loc env t =
  let maybe_unit = match kind env t with
  | GTypVar _ -> true
  | GTypArrow _ -> false
  | GTypRef (Tuple 0, []) -> true
  | GTypRef _ -> false
  in
  if not maybe_unit then warn_not_unit ?loc ()

let check_elt_empty loc env t = match kind env t with
| GTypVar _ ->
  user_err ?loc (str "Cannot infer an empty type for this expression")
| GTypArrow _ | GTypRef (Tuple _, _) ->
  user_err ?loc (str "Type" ++ spc () ++ pr_glbtype env t ++ spc () ++ str "is not an empty type")
| GTypRef (Other kn, _) ->
  let def = Tac2env.interp_type kn in
  match def with
  | _, GTydAlg { galg_constructors = [] } -> kn
  | _ ->
    user_err ?loc (str "Type" ++ spc () ++ pr_glbtype env t ++ spc () ++ str "is not an empty type")

let check_unit ?loc t =
  let env = empty_env () in
  (* Should not matter, t should be closed. *)
  let t = fresh_type_scheme env t in
  let maybe_unit = match kind env t with
  | GTypVar _ -> true
  | GTypArrow _ -> false
  | GTypRef (Tuple 0, []) -> true
  | GTypRef _ -> false
  in
  if not maybe_unit then warn_not_unit ?loc ()

let check_redundant_clause = function
| [] -> ()
| (p, _) :: _ -> warn_redundant_clause ?loc:p.loc ()

let get_variable0 mem var = match var with
| RelId qid ->
  let id = qualid_basename qid in
  if qualid_is_ident qid && mem id then ArgVar CAst.(make ?loc:qid.CAst.loc id)
  else
    let kn =
      try Tac2env.locate_ltac qid
      with Not_found ->
        CErrors.user_err ?loc:qid.CAst.loc (str "Unbound value " ++ pr_qualid qid)
    in
    ArgArg kn
| AbsKn kn -> ArgArg kn

let get_variable env var =
  let mem id = Id.Map.mem id env.env_var in
  get_variable0 mem var

let get_constructor env var = match var with
| RelId qid ->
  let c = try Some (Tac2env.locate_constructor qid) with Not_found -> None in
  begin match c with
  | Some knc -> Other knc
  | None ->
    CErrors.user_err ?loc:qid.CAst.loc (str "Unbound constructor " ++ pr_qualid qid)
  end
| AbsKn knc -> knc

let get_projection var = match var with
| RelId qid ->
  let kn = try Tac2env.locate_projection qid with Not_found ->
    user_err ?loc:qid.CAst.loc (pr_qualid qid ++ str " is not a projection")
  in
  Tac2env.interp_projection kn
| AbsKn kn ->
  Tac2env.interp_projection kn

let intern_atm env = function
| AtmInt n -> (GTacAtm (AtmInt n), GTypRef (Other t_int, []))
| AtmStr s -> (GTacAtm (AtmStr s), GTypRef (Other t_string, []))

let invalid_pattern ?loc kn kn' =
  let pr t = match t with
  | Other kn' -> str "type " ++  pr_typref kn'
  | Tuple n -> str "tuple of size " ++ int n
  in
  user_err ?loc (str "Invalid pattern, expected a pattern for " ++
    pr kn ++ str ", found a pattern for " ++ pr kn') (** FIXME *)

(** Pattern view *)

type glb_patexpr =
| GPatVar of Name.t
| GPatRef of ltac_constructor or_tuple * glb_patexpr list

let rec intern_patexpr env {loc;v=pat} = match pat with
| CPatVar na -> GPatVar na
| CPatRef (qid, pl) ->
  let kn = get_constructor env qid in
  GPatRef (kn, List.map (fun p -> intern_patexpr env p) pl)
| CPatCnv (pat, ty) ->
  user_err ?loc (str "Pattern not handled yet")

type pattern_kind =
| PKind_empty
| PKind_variant of type_constant or_tuple
| PKind_open of type_constant
| PKind_any

let get_pattern_kind env pl = match pl with
| [] -> PKind_empty
| p :: pl ->
  let rec get_kind (p, _) pl = match intern_patexpr env p with
  | GPatVar _ ->
    begin match pl with
    | [] -> PKind_any
    | p :: pl -> get_kind p pl
    end
  | GPatRef (Other kn, pl) ->
    let data = Tac2env.interp_constructor kn in
    if Option.is_empty data.cdata_indx then PKind_open data.cdata_type
    else PKind_variant (Other data.cdata_type)
  | GPatRef (Tuple _, tp) -> PKind_variant (Tuple (List.length tp))
  in
  get_kind p pl

(** Internalization *)

(** Used to generate a fresh tactic variable for pattern-expansion *)
let fresh_var avoid =
  let bad id =
    Id.Set.mem id avoid ||
    (try ignore (locate_ltac (qualid_of_ident id)); true with Not_found -> false)
  in
  Namegen.next_ident_away_from (Id.of_string "p") bad

let add_name accu = function
| Name id -> Id.Set.add id accu
| Anonymous -> accu

let rec ids_of_pattern accu {v=pat} = match pat with
| CPatVar Anonymous -> accu
| CPatVar (Name id) -> Id.Set.add id accu
| CPatRef (_, pl) ->
  List.fold_left ids_of_pattern accu pl
| CPatCnv (pat, _) -> ids_of_pattern accu pat

let loc_of_relid = function
| RelId {loc} -> loc
| AbsKn _ -> None

let extract_pattern_type ({loc;v=p} as pat) = match p with
| CPatCnv (pat, ty) -> pat, Some ty
| CPatVar _ | CPatRef _ -> pat, None

(** Expand pattern: [p => t] becomes [x => match x with p => t end] *)
let expand_pattern avoid bnd =
  let fold (avoid, bnd) (pat, t) =
    let na, expand = match pat.v with
    | CPatVar na ->
      (* Don't expand variable patterns *)
      na, None
    | _ ->
      let id = fresh_var avoid in
      let qid = RelId (qualid_of_ident ?loc:pat.loc id) in
      Name id, Some qid
    in
    let avoid = ids_of_pattern avoid pat in
    let avoid = add_name avoid na in
    (avoid, (na, pat, expand) :: bnd)
  in
  let (_, bnd) = List.fold_left fold (avoid, []) bnd in
  let fold e (na, pat, expand) = match expand with
  | None -> e
  | Some qid ->
    let loc = loc_of_relid qid in
    CAst.make ?loc @@ CTacCse (CAst.make ?loc @@ CTacRef qid, [pat, e])
  in
  let expand e = List.fold_left fold e bnd in
  let nas = List.rev_map (fun (na, _, _) -> na) bnd in
  (nas, expand)

let is_alias env qid = match get_variable env qid with
| ArgArg (TacAlias _) -> true
| ArgVar _ | (ArgArg (TacConstant _)) -> false

let rec intern_rec env {loc;v=e} = match e with
| CTacAtm atm -> intern_atm env atm
| CTacRef qid ->
  begin match get_variable env qid with
  | ArgVar {CAst.v=id} ->
    let sch = Id.Map.find id env.env_var in
    (GTacVar id, fresh_mix_type_scheme env sch)
  | ArgArg (TacConstant kn) ->
    let { Tac2env.gdata_type = sch } =
      try Tac2env.interp_global kn
      with Not_found ->
        CErrors.anomaly (str "Missing hardwired primitive " ++ KerName.print kn)
    in
    (GTacRef kn, fresh_type_scheme env sch)
  | ArgArg (TacAlias kn) ->
    let e =
      try Tac2env.interp_alias kn
      with Not_found ->
        CErrors.anomaly (str "Missing hardwired alias " ++ KerName.print kn)
    in
    intern_rec env e
  end
| CTacCst qid ->
  let kn = get_constructor env qid in
  intern_constructor env loc kn []
| CTacFun (bnd, e) ->
  let bnd = List.map extract_pattern_type bnd in
  let map (_, t) = match t with
  | None -> GTypVar (fresh_id env)
  | Some t -> intern_type env t
  in
  let tl = List.map map bnd in
  let (nas, exp) = expand_pattern (Id.Map.domain env.env_var) bnd in
  let env = List.fold_left2 (fun env na t -> push_name na (monomorphic t) env) env nas tl in
  let (e, t) = intern_rec env (exp e) in
  let t = List.fold_right (fun t accu -> GTypArrow (t, accu)) tl t in
  (GTacFun (nas, e), t)
| CTacApp ({loc;v=CTacCst qid}, args) ->
  let kn = get_constructor env qid in
  intern_constructor env loc kn args
| CTacApp ({v=CTacRef qid}, args) when is_alias env qid ->
  let kn = match get_variable env qid with
  | ArgArg (TacAlias kn) -> kn
  | ArgVar _ | (ArgArg (TacConstant _)) -> assert false
  in
  let e = Tac2env.interp_alias kn in
  let map arg =
    (* Thunk alias arguments *)
    let loc = arg.loc in
    let t_unit = CAst.make ?loc @@ CTypRef (AbsKn (Tuple 0), []) in
    let var = CAst.make ?loc @@ CPatCnv (CAst.make ?loc @@ CPatVar Anonymous, t_unit) in
    CAst.make ?loc @@ CTacFun ([var], arg)
  in
  let args = List.map map args in
  intern_rec env (CAst.make ?loc @@ CTacApp (e, args))
| CTacApp (f, args) ->
  let loc = f.loc in
  let (f, ft) = intern_rec env f in
  let fold arg (args, t) =
    let loc = arg.loc in
    let (arg, argt) = intern_rec env arg in
    (arg :: args, (loc, argt) :: t)
  in
  let (args, t) = List.fold_right fold args ([], []) in
  let ret = unify_arrow ?loc env ft t in
  (GTacApp (f, args), ret)
| CTacLet (is_rec, el, e) ->
  let map (pat, e) =
    let (pat, ty) = extract_pattern_type pat in
    (pat, ty, e)
  in
  let el = List.map map el in
  let fold accu (pat, _, e) =
    let ids = ids_of_pattern Id.Set.empty pat in
    let common = Id.Set.inter ids accu in
    if Id.Set.is_empty common then Id.Set.union ids accu
    else
      let id = Id.Set.choose common in
      user_err ?loc:pat.loc (str "Variable " ++ Id.print id ++ str " is bound several \
        times in this matching")
  in
  let ids = List.fold_left fold Id.Set.empty el in
  if is_rec then intern_let_rec env loc ids el e
  else intern_let env loc ids el e
| CTacCnv (e, tc) ->
  let (e, t) = intern_rec env e in
  let tc = intern_type env tc in
  let () = unify ?loc env t tc in
  (e, tc)
| CTacSeq (e1, e2) ->
  let loc1 = e1.loc in
  let (e1, t1) = intern_rec env e1 in
  let (e2, t2) = intern_rec env e2 in
  let () = check_elt_unit loc1 env t1 in
  (GTacLet (false, [Anonymous, e1], e2), t2)
| CTacCse (e, pl) ->
  intern_case env loc e pl
| CTacRec fs ->
  intern_record env loc fs
| CTacPrj (e, proj) ->
  let pinfo = get_projection proj in
  let loc = e.loc in
  let (e, t) = intern_rec env e in
  let subst = Array.init pinfo.pdata_prms (fun _ -> fresh_id env) in
  let params = Array.map_to_list (fun i -> GTypVar i) subst in
  let exp = GTypRef (Other pinfo.pdata_type, params) in
  let () = unify ?loc env t exp in
  let substf i = GTypVar subst.(i) in
  let ret = subst_type substf pinfo.pdata_ptyp in
  (GTacPrj (pinfo.pdata_type, e, pinfo.pdata_indx), ret)
| CTacSet (e, proj, r) ->
  let pinfo = get_projection proj in
  let () =
    if not pinfo.pdata_mutb then
      let loc = match proj with
      | RelId {CAst.loc} -> loc
      | AbsKn _ -> None
      in
      user_err ?loc (str "Field is not mutable")
  in
  let subst = Array.init pinfo.pdata_prms (fun _ -> fresh_id env) in
  let params = Array.map_to_list (fun i -> GTypVar i) subst in
  let exp = GTypRef (Other pinfo.pdata_type, params) in
  let e = intern_rec_with_constraint env e exp in
  let substf i = GTypVar subst.(i) in
  let ret = subst_type substf pinfo.pdata_ptyp in
  let r = intern_rec_with_constraint env r ret in
  (GTacSet (pinfo.pdata_type, e, pinfo.pdata_indx, r), GTypRef (Tuple 0, []))
| CTacExt (tag, arg) ->
  let open Genintern in
  let self ist e =
    let env = match Store.get ist.extra ltac2_env with
    | None -> empty_env ()
    | Some env -> env
    in
    intern_rec env e
  in
  let obj = interp_ml_object tag in
  (* External objects do not have access to the named context because this is
     not stable by dynamic semantics. *)
  let genv = Global.env_of_context Environ.empty_named_context_val in
  let ist = empty_glob_sign genv in
  let ist = { ist with extra = Store.set ist.extra ltac2_env env } in
  let arg, tpe =
    if env.env_str then
      let arg () = obj.ml_intern self ist arg in
      Flags.with_option Ltac_plugin.Tacintern.strict_check arg ()
    else
      obj.ml_intern self ist arg
  in
  let e = match arg with
  | GlbVal arg -> GTacExt (tag, arg)
  | GlbTacexpr e -> e
  in
  (e, tpe)

and intern_rec_with_constraint env e exp =
  let (er, t) = intern_rec env e in
  let () = unify ?loc:e.loc env t exp in
  er

and intern_let env loc ids el e =
  let avoid = Id.Set.union ids (Id.Map.domain env.env_var) in
  let fold (pat, t, e) (avoid, accu) =
    let nas, exp = expand_pattern avoid [pat, t] in
    let na = match nas with [x] -> x | _ -> assert false in
    let avoid = List.fold_left add_name avoid nas in
    (avoid, (na, exp, t, e) :: accu)
  in
  let (_, el) = List.fold_right fold el (avoid, []) in
  let fold (na, exp, tc, e) (body, el, p) =
    let (e, t) = match tc with
    | None -> intern_rec env e
    | Some tc ->
      let tc = intern_type env tc in
      (intern_rec_with_constraint env e tc, tc)
    in
    let t = if is_value e then abstract_var env t else monomorphic t in
    (exp body, (na, e) :: el, (na, t) :: p)
  in
  let (e, el, p) = List.fold_right fold el (e, [], []) in
  let env = List.fold_left (fun accu (na, t) -> push_name na t accu) env p in
  let (e, t) = intern_rec env e in
  (GTacLet (false, el, e), t)

and intern_let_rec env loc ids el e =
  let map env (pat, t, e) =
    let na = match pat.v with
    | CPatVar na -> na
    | CPatRef _ | CPatCnv _ ->
      user_err ?loc:pat.loc (str "This kind of pattern is forbidden in let-rec bindings")
    in
    let id = fresh_id env in
    let env = push_name na (monomorphic (GTypVar id)) env in
    (env, (loc, na, t, e, id))
  in
  let (env, el) = List.fold_left_map map env el in
  let fold (loc, na, tc, e, id) (el, tl) =
    let loc_e = e.loc in
    let (e, t) = intern_rec env e in
    let () =
      if not (is_rec_rhs e) then
        user_err ?loc:loc_e (str "This kind of expression is not allowed as \
          right-hand side of a recursive binding")
    in
    let () = unify ?loc env t (GTypVar id) in
    let () = match tc with
    | None -> ()
    | Some tc ->
      let tc = intern_type env tc in
      unify ?loc env t tc
    in
    ((na, e) :: el, t :: tl)
  in
  let (el, tl) = List.fold_right fold el ([], []) in
  let (e, t) = intern_rec env e in
  (GTacLet (true, el, e), t)

(** For now, patterns recognized by the pattern-matching compiling are limited
    to depth-one where leaves are either variables or catch-all *)
and intern_case env loc e pl =
  let (e', t) = intern_rec env e in
  let todo ?loc () = user_err ?loc (str "Pattern not handled yet") in
  match get_pattern_kind env pl with
  | PKind_any ->
    let (pat, b) = List.hd pl in
    let na = match intern_patexpr env pat with
    | GPatVar na -> na
    | _ -> assert false
    in
    let () = check_redundant_clause (List.tl pl) in
    let env = push_name na (monomorphic t) env in
    let (b, tb) = intern_rec env b in
    (GTacLet (false, [na, e'], b), tb)
  | PKind_empty ->
    let kn = check_elt_empty loc env t in
    let r = fresh_id env in
    (GTacCse (e', Other kn, [||], [||]), GTypVar r)
  | PKind_variant kn ->
    let subst, tc = fresh_reftype env kn in
    let () = unify ?loc:e.loc env t tc in
    let (nconst, nnonconst, arities) = match kn with
    | Tuple 0 -> 1, 0, [0]
    | Tuple n -> 0, 1, [n]
    | Other kn ->
      let (_, def) = Tac2env.interp_type kn in
      let galg = match def with | GTydAlg c -> c | _ -> assert false in
      let arities = List.map (fun (_, args) -> List.length args) galg.galg_constructors in
      galg.galg_nconst, galg.galg_nnonconst, arities
    in
    let const = Array.make nconst None in
    let nonconst = Array.make nnonconst None in
    let ret = GTypVar (fresh_id env) in
    let rec intern_branch = function
    | [] -> ()
    | (pat, br) :: rem ->
      let tbr = match pat.v with
      | CPatVar (Name _) ->
        let loc = pat.loc in
        todo ?loc ()
      | CPatVar Anonymous ->
        let () = check_redundant_clause rem in
        let (br', brT) = intern_rec env br in
        (* Fill all remaining branches *)
        let fill (ncst, narg) arity =
          if Int.equal arity 0 then
            let () =
              if Option.is_empty const.(ncst) then const.(ncst) <- Some br'
            in
            (succ ncst, narg)
          else
            let () =
              if Option.is_empty nonconst.(narg) then
                let ids = Array.make arity Anonymous in
                nonconst.(narg) <- Some (ids, br')
            in
            (ncst, succ narg)
        in
        let _ = List.fold_left fill (0, 0) arities in
        brT
      | CPatRef (qid, args) ->
        let loc = pat.loc in
        let knc = get_constructor env qid in
        let kn', index, arity = match knc with
        | Tuple n -> Tuple n, 0, List.init n (fun i -> GTypVar i)
        | Other knc ->
          let data = Tac2env.interp_constructor knc in
          let index = Option.get data.cdata_indx in
          Other data.cdata_type, index, data.cdata_args
        in
        let () =
          if not (eq_or_tuple KerName.equal kn kn') then
            invalid_pattern ?loc kn kn'
        in
        let get_id pat = match pat with
        | {v=CPatVar na} -> na
        | {loc} -> todo ?loc ()
        in
        let ids = List.map get_id args in
        let nids = List.length ids in
        let nargs = List.length arity in
        let () = match knc with
        | Tuple n -> assert (n == nids)
        | Other knc ->
          if not (Int.equal nids nargs) then error_nargs_mismatch ?loc knc nargs nids
        in
        let fold env id tpe =
          (* Instantiate all arguments *)
          let subst n = GTypVar subst.(n) in
          let tpe = subst_type subst tpe in
          push_name id (monomorphic tpe) env
        in
        let nenv = List.fold_left2 fold env ids arity in
        let (br', brT) = intern_rec nenv br in
        let () =
          if List.is_empty args then
            if Option.is_empty const.(index) then const.(index) <- Some br'
            else warn_redundant_clause ?loc ()
          else
            let ids = Array.of_list ids in
            if Option.is_empty nonconst.(index) then nonconst.(index) <- Some (ids, br')
            else warn_redundant_clause ?loc ()
        in
        brT
      | CPatCnv _ ->
        user_err ?loc (str "Pattern not handled yet")
      in
      let () = unify ?loc:br.loc env tbr ret in
      intern_branch rem
    in
    let () = intern_branch pl in
    let map n is_const = function
    | None ->
      let kn = match kn with Other kn -> kn | _ -> assert false in
      let cstr = pr_internal_constructor kn n is_const in
      user_err ?loc (str "Unhandled match case for constructor " ++ cstr)
    | Some x -> x
    in
    let const = Array.mapi (fun i o -> map i true o) const in
    let nonconst = Array.mapi (fun i o -> map i false o) nonconst in
    let ce = GTacCse (e', kn, const, nonconst) in
    (ce, ret)
  | PKind_open kn ->
    let subst, tc = fresh_reftype env (Other kn) in
    let () = unify ?loc:e.loc env t tc in
    let ret = GTypVar (fresh_id env) in
    let rec intern_branch map = function
    | [] ->
      user_err ?loc (str "Missing default case")
    | (pat, br) :: rem ->
      match intern_patexpr env pat with
      | GPatVar na ->
        let () = check_redundant_clause rem in
        let nenv = push_name na (monomorphic tc) env in
        let br' = intern_rec_with_constraint nenv br ret in
        let def = (na, br') in
        (map, def)
      | GPatRef (knc, args) ->
        let get = function
        | GPatVar na -> na
        | GPatRef _ ->
          user_err ?loc (str "TODO: Unhandled match case") (* FIXME *)
        in
        let loc = pat.loc in
        let knc = match knc with
        | Other knc -> knc
        | Tuple n -> invalid_pattern ?loc (Other kn) (Tuple n)
        in
        let ids = List.map get args in
        let data = Tac2env.interp_constructor knc in
        let () =
          if not (KerName.equal kn data.cdata_type) then
            invalid_pattern ?loc (Other kn) (Other data.cdata_type)
        in
        let nids = List.length ids in
        let nargs = List.length data.cdata_args in
        let () =
          if not (Int.equal nids nargs) then error_nargs_mismatch ?loc knc nargs nids
        in
        let fold env id tpe =
          (* Instantiate all arguments *)
          let subst n = GTypVar subst.(n) in
          let tpe = subst_type subst tpe in
          push_name id (monomorphic tpe) env
        in
        let nenv = List.fold_left2 fold env ids data.cdata_args in
        let br' = intern_rec_with_constraint nenv br ret in
        let map =
          if KNmap.mem knc map then
            let () = warn_redundant_clause ?loc () in
            map
          else
            KNmap.add knc (Anonymous, Array.of_list ids, br') map
        in
        intern_branch map rem
    in
    let (map, def) = intern_branch KNmap.empty pl in
    (GTacWth { opn_match = e'; opn_branch = map; opn_default = def }, ret)

and intern_constructor env loc kn args = match kn with
| Other kn ->
  let cstr = interp_constructor kn in
  let nargs = List.length cstr.cdata_args in
  if Int.equal nargs (List.length args) then
    let subst = Array.init cstr.cdata_prms (fun _ -> fresh_id env) in
    let substf i = GTypVar subst.(i) in
    let types = List.map (fun t -> subst_type substf t) cstr.cdata_args in
    let targs = List.init cstr.cdata_prms (fun i -> GTypVar subst.(i)) in
    let ans = GTypRef (Other cstr.cdata_type, targs) in
    let map arg tpe = intern_rec_with_constraint env arg tpe in
    let args = List.map2 map args types in
    match cstr.cdata_indx with
    | Some idx ->
      (GTacCst (Other cstr.cdata_type, idx, args), ans)
    | None ->
      (GTacOpn (kn, args), ans)
  else
    error_nargs_mismatch ?loc kn nargs (List.length args)
| Tuple n ->
  assert (Int.equal n (List.length args));
  let types = List.init n (fun i -> GTypVar (fresh_id env)) in
  let map arg tpe = intern_rec_with_constraint env arg tpe in
  let args = List.map2 map args types in
  let ans = GTypRef (Tuple n, types) in
  GTacCst (Tuple n, 0, args), ans

and intern_record env loc fs =
  let map (proj, e) =
    let loc = match proj with
    | RelId {CAst.loc} -> loc
    | AbsKn _ -> None
    in
    let proj = get_projection proj in
    (loc, proj, e)
  in
  let fs = List.map map fs in
  let kn = match fs with
  | [] -> user_err ?loc (str "Cannot infer the corresponding record type")
  | (_, proj, _) :: _ -> proj.pdata_type
  in
  let params, typdef = match Tac2env.interp_type kn with
  | n, GTydRec def -> n, def
  | _ -> assert false
  in
  let subst = Array.init params (fun _ -> fresh_id env) in
  (* Set the answer [args] imperatively *)
  let args = Array.make (List.length typdef) None in
  let iter (loc, pinfo, e) =
    if KerName.equal kn pinfo.pdata_type then
      let index = pinfo.pdata_indx in
      match args.(index) with
      | None ->
        let exp = subst_type (fun i -> GTypVar subst.(i)) pinfo.pdata_ptyp in
        let e = intern_rec_with_constraint env e exp in
        args.(index) <- Some e
      | Some _ ->
        let (name, _, _) = List.nth typdef pinfo.pdata_indx in
        user_err ?loc (str "Field " ++ Id.print name ++ str " is defined \
          several times")
    else
      user_err ?loc (str "Field " ++ (*KerName.print knp ++*) str " does not \
        pertain to record definition " ++ pr_typref pinfo.pdata_type)
  in
  let () = List.iter iter fs in
  let () = match Array.findi (fun _ o -> Option.is_empty o) args with
  | None -> ()
  | Some i ->
    let (field, _, _) = List.nth typdef i in
    user_err ?loc (str "Field " ++ Id.print field ++ str " is undefined")
  in
  let args = Array.map_to_list Option.get args in
  let tparam = List.init params (fun i -> GTypVar subst.(i)) in
  (GTacCst (Other kn, 0, args), GTypRef (Other kn, tparam))

let normalize env (count, vars) (t : UF.elt glb_typexpr) =
  let get_var id =
    try UF.Map.find id !vars
    with Not_found ->
      let () = assert env.env_opn in
      let n = GTypVar !count in
      let () = incr count in
      let () = vars := UF.Map.add id n !vars in
      n
  in
  let rec subst id = match UF.find id env.env_cst with
  | id, None -> get_var id
  | _, Some t -> subst_type subst t
  in
  subst_type subst t

let intern ~strict e =
  let env = empty_env () in
  let env = if strict then env else { env with env_str = false } in
  let (e, t) = intern_rec env e in
  let count = ref 0 in
  let vars = ref UF.Map.empty in
  let t = normalize env (count, vars) t in
  (e, (!count, t))

let intern_typedef self (ids, t) : glb_quant_typedef =
  let env = { (empty_env ()) with env_rec = self } in
  (* Initialize type parameters *)
  let map id = get_alias id env in
  let ids = List.map map ids in
  let count = ref (List.length ids) in
  let vars = ref UF.Map.empty in
  let iter n id = vars := UF.Map.add id (GTypVar n) !vars in
  let () = List.iteri iter ids in
  (* Do not accept unbound type variables *)
  let env = { env with env_opn = false } in
  let intern t =
    let t = intern_type env t in
    normalize env (count, vars) t
  in
  let count = !count in
  match t with
  | CTydDef None -> (count, GTydDef None)
  | CTydDef (Some t) -> (count, GTydDef (Some (intern t)))
  | CTydAlg constrs ->
    let map (c, t) = (c, List.map intern t) in
    let constrs = List.map map constrs in
    let getn (const, nonconst) (c, args) = match args with
    | [] -> (succ const, nonconst)
    | _ :: _ -> (const, succ nonconst)
    in
    let nconst, nnonconst = List.fold_left getn (0, 0) constrs in
    let galg = {
      galg_constructors = constrs;
      galg_nconst = nconst;
      galg_nnonconst = nnonconst;
    } in
    (count, GTydAlg galg)
  | CTydRec fields ->
    let map (c, mut, t) = (c, mut, intern t) in
    let fields = List.map map fields in
    (count, GTydRec fields)
  | CTydOpn -> (count, GTydOpn)

let intern_open_type t =
  let env = empty_env () in
  let t = intern_type env t in
  let count = ref 0 in
  let vars = ref UF.Map.empty in
  let t = normalize env (count, vars) t in
  (!count, t)

(** Subtyping *)

let check_subtype t1 t2 =
  let env = empty_env () in
  let t1 = fresh_type_scheme env t1 in
  (* We build a substitution mimicking rigid variable by using dummy tuples *)
  let rigid i = GTypRef (Tuple (i + 1), []) in
  let (n, t2) = t2 in
  let subst = Array.init n rigid in
  let substf i = subst.(i) in
  let t2 = subst_type substf t2 in
  try unify0 env t1 t2; true with CannotUnify _ -> false

(** Globalization *)

let get_projection0 var = match var with
| RelId qid ->
  let kn = try Tac2env.locate_projection qid with Not_found ->
    user_err ?loc:qid.CAst.loc (pr_qualid qid ++ str " is not a projection")
  in
  kn
| AbsKn kn -> kn

let rec globalize ids ({loc;v=er} as e) = match er with
| CTacAtm _ -> e
| CTacRef ref ->
  let mem id = Id.Set.mem id ids in
  begin match get_variable0 mem ref with
  | ArgVar _ -> e
  | ArgArg kn -> CAst.make ?loc @@ CTacRef (AbsKn kn)
  end
| CTacCst qid ->
  let knc = get_constructor () qid in
  CAst.make ?loc @@ CTacCst (AbsKn knc)
| CTacFun (bnd, e) ->
  let fold (pats, accu) pat =
    let accu = ids_of_pattern accu pat in
    let pat = globalize_pattern ids pat in
    (pat :: pats, accu)
  in
  let bnd, ids = List.fold_left fold ([], ids) bnd in
  let bnd = List.rev bnd in
  let e = globalize ids e in
  CAst.make ?loc @@ CTacFun (bnd, e)
| CTacApp (e, el) ->
  let e = globalize ids e in
  let el = List.map (fun e -> globalize ids e) el in
  CAst.make ?loc @@ CTacApp (e, el)
| CTacLet (isrec, bnd, e) ->
  let fold accu (pat, _) = ids_of_pattern accu pat in
  let ext = List.fold_left fold Id.Set.empty bnd in
  let eids = Id.Set.union ext ids in
  let e = globalize eids e in
  let map (qid, e) =
    let ids = if isrec then eids else ids in
    let qid = globalize_pattern ids qid in
    (qid, globalize ids e)
  in
  let bnd = List.map map bnd in
  CAst.make ?loc @@ CTacLet (isrec, bnd, e)
| CTacCnv (e, t) ->
  let e = globalize ids e in
  CAst.make ?loc @@ CTacCnv (e, t)
| CTacSeq (e1, e2) ->
  let e1 = globalize ids e1 in
  let e2 = globalize ids e2 in
  CAst.make ?loc @@ CTacSeq (e1, e2)
| CTacCse (e, bl) ->
  let e = globalize ids e in
  let bl = List.map (fun b -> globalize_case ids b) bl in
  CAst.make ?loc @@ CTacCse (e, bl)
| CTacRec r ->
  let map (p, e) =
    let p = get_projection0 p in
    let e = globalize ids e in
    (AbsKn p, e)
  in
  CAst.make ?loc @@ CTacRec (List.map map r)
| CTacPrj (e, p) ->
  let e = globalize ids e in
  let p = get_projection0 p in
  CAst.make ?loc @@ CTacPrj (e, AbsKn p)
| CTacSet (e, p, e') ->
  let e = globalize ids e in
  let p = get_projection0 p in
  let e' = globalize ids e' in
  CAst.make ?loc @@ CTacSet (e, AbsKn p, e')
| CTacExt (tag, arg) ->
  let arg = str (Tac2dyn.Arg.repr tag) in
  CErrors.user_err ?loc (str "Cannot globalize generic arguments of type" ++ spc () ++ arg)

and globalize_case ids (p, e) =
  (globalize_pattern ids p, globalize ids e)

and globalize_pattern ids ({loc;v=pr} as p) = match pr with
| CPatVar _ -> p
| CPatRef (cst, pl) ->
  let knc = get_constructor () cst in
  let cst = AbsKn knc in
  let pl = List.map (fun p -> globalize_pattern ids p) pl in
  CAst.make ?loc @@ CPatRef (cst, pl)
| CPatCnv (pat, ty) ->
  let pat = globalize_pattern ids pat in
  CAst.make ?loc @@ CPatCnv (pat, ty)

(** Kernel substitution *)

open Mod_subst

let subst_or_tuple f subst o = match o with
| Tuple _ -> o
| Other v ->
  let v' = f subst v in
  if v' == v then o else Other v'

let rec subst_type subst t = match t with
| GTypVar _ -> t
| GTypArrow (t1, t2) ->
  let t1' = subst_type subst t1 in
  let t2' = subst_type subst t2 in
  if t1' == t1 && t2' == t2 then t
  else GTypArrow (t1', t2')
| GTypRef (kn, tl) ->
  let kn' = subst_or_tuple subst_kn subst kn in
  let tl' = List.Smart.map (fun t -> subst_type subst t) tl in
  if kn' == kn && tl' == tl then t else GTypRef (kn', tl')

let rec subst_expr subst e = match e with
| GTacAtm _ | GTacVar _ | GTacPrm _ -> e
| GTacRef kn -> GTacRef (subst_kn subst kn)
| GTacFun (ids, e) -> GTacFun (ids, subst_expr subst e)
| GTacApp (f, args) ->
  GTacApp (subst_expr subst f, List.map (fun e -> subst_expr subst e) args)
| GTacLet (r, bs, e) ->
  let bs = List.map (fun (na, e) -> (na, subst_expr subst e)) bs in
  GTacLet (r, bs, subst_expr subst e)
| GTacCst (t, n, el) as e0 ->
  let t' = subst_or_tuple subst_kn subst t in
  let el' = List.Smart.map (fun e -> subst_expr subst e) el in
  if t' == t && el' == el then e0 else GTacCst (t', n, el')
| GTacCse (e, ci, cse0, cse1) ->
  let cse0' = Array.map (fun e -> subst_expr subst e) cse0 in
  let cse1' = Array.map (fun (ids, e) -> (ids, subst_expr subst e)) cse1 in
  let ci' = subst_or_tuple subst_kn subst ci in
  GTacCse (subst_expr subst e, ci', cse0', cse1')
| GTacWth { opn_match = e; opn_branch = br; opn_default = (na, def) } as e0 ->
  let e' = subst_expr subst e in
  let def' = subst_expr subst def in
  let fold kn (self, vars, p) accu =
    let kn' = subst_kn subst kn in
    let p' = subst_expr subst p in
    if kn' == kn && p' == p then accu
    else KNmap.add kn' (self, vars, p') (KNmap.remove kn accu)
  in
  let br' = KNmap.fold fold br br in
  if e' == e && br' == br && def' == def then e0
  else GTacWth { opn_match = e'; opn_default = (na, def'); opn_branch = br' }
| GTacPrj (kn, e, p) as e0 ->
  let kn' = subst_kn subst kn in
  let e' = subst_expr subst e in
  if kn' == kn && e' == e then e0 else GTacPrj (kn', e', p)
| GTacSet (kn, e, p, r) as e0 ->
  let kn' = subst_kn subst kn in
  let e' = subst_expr subst e in
  let r' = subst_expr subst r in
  if kn' == kn && e' == e && r' == r then e0 else GTacSet (kn', e', p, r')
| GTacExt (tag, arg) ->
  let tpe = interp_ml_object tag in
  let arg' = tpe.ml_subst subst arg in
  if arg' == arg then e else GTacExt (tag, arg')
| GTacOpn (kn, el) as e0 ->
  let kn' = subst_kn subst kn in
  let el' = List.Smart.map (fun e -> subst_expr subst e) el in
  if kn' == kn && el' == el then e0 else GTacOpn (kn', el')

let subst_typedef subst e = match e with
| GTydDef t ->
  let t' = Option.Smart.map (fun t -> subst_type subst t) t in
  if t' == t then e else GTydDef t'
| GTydAlg galg ->
  let map (c, tl as p) =
    let tl' = List.Smart.map (fun t -> subst_type subst t) tl in
    if tl' == tl then p else (c, tl')
  in
  let constrs' = List.Smart.map map galg.galg_constructors in
  if constrs' == galg.galg_constructors then e
  else GTydAlg { galg with galg_constructors = constrs' }
| GTydRec fields ->
  let map (c, mut, t as p) =
    let t' = subst_type subst t in
    if t' == t then p else (c, mut, t')
  in
  let fields' = List.Smart.map map fields in
  if fields' == fields then e else GTydRec fields'
| GTydOpn -> GTydOpn

let subst_quant_typedef subst (prm, def as qdef) =
  let def' = subst_typedef subst def in
  if def' == def then qdef else (prm, def')

let subst_type_scheme subst (prm, t as sch) =
  let t' = subst_type subst t in
  if t' == t then sch else (prm, t')

let subst_or_relid subst ref = match ref with
| RelId _ -> ref
| AbsKn kn ->
  let kn' = subst_or_tuple subst_kn subst kn in
  if kn' == kn then ref else AbsKn kn'

let rec subst_rawtype subst ({loc;v=tr} as t) = match tr with
| CTypVar _ -> t
| CTypArrow (t1, t2) ->
  let t1' = subst_rawtype subst t1 in
  let t2' = subst_rawtype subst t2 in
  if t1' == t1 && t2' == t2 then t else CAst.make ?loc @@ CTypArrow (t1', t2')
| CTypRef (ref, tl) ->
  let ref' = subst_or_relid subst ref in
  let tl' = List.Smart.map (fun t -> subst_rawtype subst t) tl in
  if ref' == ref && tl' == tl then t else CAst.make ?loc @@ CTypRef (ref', tl')

let subst_tacref subst ref = match ref with
| RelId _ -> ref
| AbsKn (TacConstant kn) ->
  let kn' = subst_kn subst kn in
  if kn' == kn then ref else AbsKn (TacConstant kn')
| AbsKn (TacAlias kn) ->
  let kn' = subst_kn subst kn in
  if kn' == kn then ref else AbsKn (TacAlias kn')

let subst_projection subst prj = match prj with
| RelId _ -> prj
| AbsKn kn ->
  let kn' = subst_kn subst kn in
  if kn' == kn then prj else AbsKn kn'

let rec subst_rawpattern subst ({loc;v=pr} as p) = match pr with
| CPatVar _ -> p
| CPatRef (c, pl) ->
  let pl' = List.Smart.map (fun p -> subst_rawpattern subst p) pl in
  let c' = subst_or_relid subst c in
  if pl' == pl && c' == c then p else CAst.make ?loc @@ CPatRef (c', pl')
| CPatCnv (pat, ty) ->
  let pat' = subst_rawpattern subst pat in
  let ty' = subst_rawtype subst ty in
  if pat' == pat && ty' == ty then p else CAst.make ?loc @@ CPatCnv (pat', ty')

(** Used for notations *)
let rec subst_rawexpr subst ({loc;v=tr} as t) = match tr with
| CTacAtm _ -> t
| CTacRef ref ->
  let ref' = subst_tacref subst ref in
  if ref' == ref then t else CAst.make ?loc @@ CTacRef ref'
| CTacCst ref ->
  let ref' = subst_or_relid subst ref in
  if ref' == ref then t else CAst.make ?loc @@ CTacCst ref'
| CTacFun (bnd, e) ->
  let map pat = subst_rawpattern subst pat in
  let bnd' = List.Smart.map map bnd in
  let e' = subst_rawexpr subst e in
  if bnd' == bnd && e' == e then t else CAst.make ?loc @@ CTacFun (bnd', e')
| CTacApp (e, el) ->
  let e' = subst_rawexpr subst e in
  let el' = List.Smart.map (fun e -> subst_rawexpr subst e) el in
  if e' == e && el' == el then t else CAst.make ?loc @@ CTacApp (e', el')
| CTacLet (isrec, bnd, e) ->
  let map (na, e as p) =
    let na' = subst_rawpattern subst na in
    let e' = subst_rawexpr subst e in
    if na' == na && e' == e then p else (na', e')
  in
  let bnd' = List.Smart.map map bnd in
  let e' = subst_rawexpr subst e in
  if bnd' == bnd && e' == e then t else CAst.make ?loc @@ CTacLet (isrec, bnd', e')
| CTacCnv (e, c) ->
  let e' = subst_rawexpr subst e in
  let c' = subst_rawtype subst c in
  if c' == c && e' == e then t else CAst.make ?loc @@ CTacCnv (e', c')
| CTacSeq (e1, e2) ->
  let e1' = subst_rawexpr subst e1 in
  let e2' = subst_rawexpr subst e2 in
  if e1' == e1 && e2' == e2 then t else CAst.make ?loc @@ CTacSeq (e1', e2')
| CTacCse (e, bl) ->
  let map (p, e as x) =
    let p' = subst_rawpattern subst p in
    let e' = subst_rawexpr subst e in
    if p' == p && e' == e then x else (p', e')
  in
  let e' = subst_rawexpr subst e in
  let bl' = List.Smart.map map bl in
  if e' == e && bl' == bl then t else CAst.make ?loc @@ CTacCse (e', bl')
| CTacRec el ->
  let map (prj, e as p) =
    let prj' = subst_projection subst prj in
    let e' = subst_rawexpr subst e in
    if prj' == prj && e' == e then p else (prj', e')
  in
  let el' = List.Smart.map map el in
  if el' == el then t else CAst.make ?loc @@ CTacRec el'
| CTacPrj (e, prj) ->
    let prj' = subst_projection subst prj in
    let e' = subst_rawexpr subst e in
    if prj' == prj && e' == e then t else CAst.make ?loc @@ CTacPrj (e', prj')
| CTacSet (e, prj, r) ->
    let prj' = subst_projection subst prj in
    let e' = subst_rawexpr subst e in
    let r' = subst_rawexpr subst r in
    if prj' == prj && e' == e && r' == r then t else CAst.make ?loc @@ CTacSet (e', prj', r')
| CTacExt _ -> assert false (** Should not be generated by globalization *)

(** Registering *)

let () =
  let open Genintern in
  let intern ist (ids, tac) =
    let ids = List.map (fun { CAst.v = id } -> id) ids in
    let env = match Genintern.Store.get ist.extra ltac2_env with
    | None ->
      (* Only happens when Ltac2 is called from a constr or ltac1 quotation *)
      let env = empty_env () in
      if !Ltac_plugin.Tacintern.strict_check then env
      else { env with env_str = false }
    | Some env -> env
    in
    let fold env id =
      push_name (Name id) (monomorphic (GTypRef (Other t_ltac1, []))) env
    in
    let env = List.fold_left fold env ids in
    let loc = tac.loc in
    let (tac, t) = intern_rec env tac in
    let () = check_elt_unit loc env t in
    (ist, (ids, tac))
  in
  Genintern.register_intern0 wit_ltac2 intern
let () = Genintern.register_subst0 wit_ltac2 (fun s (ids, e) -> ids, subst_expr s e)

let () =
  let open Genintern in
  let intern ist (loc, id) =
    let env = match Genintern.Store.get ist.extra ltac2_env with
    | None ->
      (* Only happens when Ltac2 is called from a constr or ltac1 quotation *)
      let env = empty_env () in
      if !Ltac_plugin.Tacintern.strict_check then env
      else { env with env_str = false }
    | Some env -> env
    in
    let t =
      try Id.Map.find id env.env_var
      with Not_found ->
        CErrors.user_err ?loc (str "Unbound value " ++ Id.print id)
    in
    let t = fresh_mix_type_scheme env t in
    let () = unify ?loc env t (GTypRef (Other t_constr, [])) in
    (ist, id)
  in
  Genintern.register_intern0 wit_ltac2_quotation intern

let () = Genintern.register_subst0 wit_ltac2_quotation (fun _ id -> id)