1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Tac2dyn
open Tac2expr
open Proofview.Notations

type ('a, _) arity0 =
| OneAty : ('a, 'a -> 'a Proofview.tactic) arity0
| AddAty : ('a, 'b) arity0 -> ('a, 'a -> 'b) arity0

type valexpr =
| ValInt of int
  (** Immediate integers *)
| ValBlk of tag * valexpr array
  (** Structured blocks *)
| ValStr of Bytes.t
  (** Strings *)
| ValCls of closure
  (** Closures *)
| ValOpn of KerName.t * valexpr array
  (** Open constructors *)
| ValExt : 'a Tac2dyn.Val.tag * 'a -> valexpr
  (** Arbitrary data *)
| ValUint63 of Uint63.t
  (** Primitive integers *)

and closure = MLTactic : (valexpr, 'v) arity0 * 'v -> closure

let arity_one = OneAty
let arity_suc a = AddAty a

type 'a arity = (valexpr, 'a) arity0

let mk_closure arity f = MLTactic (arity, f)

module Valexpr =
struct

type t = valexpr

let is_int = function
| ValInt _ -> true
| ValBlk _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ -> false

let tag v = match v with
| ValBlk (n, _) -> n
| ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ ->
  CErrors.anomaly (Pp.str "Unexpected value shape")

let field v n = match v with
| ValBlk (_, v) -> v.(n)
| ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ ->
  CErrors.anomaly (Pp.str "Unexpected value shape")

let set_field v n w = match v with
| ValBlk (_, v) -> v.(n) <- w
| ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ ->
  CErrors.anomaly (Pp.str "Unexpected value shape")

let make_block tag v = ValBlk (tag, v)
let make_int n = ValInt n

end

type 'a repr = {
  r_of : 'a -> valexpr;
  r_to : valexpr -> 'a;
  r_id : bool;
}

let repr_of r x = r.r_of x
let repr_to r x = r.r_to x

let make_repr r_of r_to = { r_of; r_to; r_id = false; }

(** Dynamic tags *)

let val_exn = Val.create "exn"
let val_constr = Val.create "constr"
let val_ident = Val.create "ident"
let val_pattern = Val.create "pattern"
let val_pp = Val.create "pp"
let val_sort = Val.create "sort"
let val_cast = Val.create "cast"
let val_inductive = Val.create "inductive"
let val_constant = Val.create "constant"
let val_constructor = Val.create "constructor"
let val_projection = Val.create "projection"
let val_case = Val.create "case"
let val_univ = Val.create "universe"
let val_free : Names.Id.Set.t Val.tag = Val.create "free"
let val_ltac1 : Geninterp.Val.t Val.tag = Val.create "ltac1"

let extract_val (type a) (type b) (tag : a Val.tag) (tag' : b Val.tag) (v : b) : a =
match Val.eq tag tag' with
| None -> assert false
| Some Refl -> v

(** Exception *)

exception LtacError of KerName.t * valexpr array

(** Conversion functions *)

let valexpr = {
  r_of = (fun obj -> obj);
  r_to = (fun obj -> obj);
  r_id = true;
}

let of_unit () = ValInt 0

let to_unit = function
| ValInt 0 -> ()
| _ -> assert false

let unit = {
  r_of = of_unit;
  r_to = to_unit;
  r_id = false;
}

let of_int n = ValInt n
let to_int = function
| ValInt n -> n
| _ -> assert false

let int = {
  r_of = of_int;
  r_to = to_int;
  r_id = false;
}

let of_bool b = if b then ValInt 0 else ValInt 1

let to_bool = function
| ValInt 0 -> true
| ValInt 1 -> false
| _ -> assert false

let bool = {
  r_of = of_bool;
  r_to = to_bool;
  r_id = false;
}

let of_char n = ValInt (Char.code n)
let to_char = function
| ValInt n -> Char.chr n
| _ -> assert false

let char = {
  r_of = of_char;
  r_to = to_char;
  r_id = false;
}

let of_string s = ValStr s
let to_string = function
| ValStr s -> s
| _ -> assert false

let string = {
  r_of = of_string;
  r_to = to_string;
  r_id = false;
}

let rec of_list f = function
| [] -> ValInt 0
| x :: l -> ValBlk (0, [| f x; of_list f l |])

let rec to_list f = function
| ValInt 0 -> []
| ValBlk (0, [|v; vl|]) -> f v :: to_list f vl
| _ -> assert false

let list r = {
  r_of = (fun l -> of_list r.r_of l);
  r_to = (fun l -> to_list r.r_to l);
  r_id = false;
}

let of_closure cls = ValCls cls

let to_closure = function
| ValCls cls -> cls
| ValExt _ | ValInt _ | ValBlk _ | ValStr _ | ValOpn _ | ValUint63 _ -> assert false

let closure = {
  r_of = of_closure;
  r_to = to_closure;
  r_id = false;
}

let of_ext tag c =
  ValExt (tag, c)

let to_ext tag = function
| ValExt (tag', e) -> extract_val tag tag' e
| _ -> assert false

let repr_ext tag = {
  r_of = (fun e -> of_ext tag e);
  r_to = (fun e -> to_ext tag e);
  r_id = false;
}

let of_constr c = of_ext val_constr c
let to_constr c = to_ext val_constr c
let constr = repr_ext val_constr

let of_ident c = of_ext val_ident c
let to_ident c = to_ext val_ident c
let ident = repr_ext val_ident

let of_pattern c = of_ext val_pattern c
let to_pattern c = to_ext val_pattern c
let pattern = repr_ext val_pattern

let internal_err =
  let open Names in
  let coq_prefix =
    MPfile (DirPath.make (List.map Id.of_string ["Init"; "Ltac2"]))
  in
  KerName.make coq_prefix (Label.of_id (Id.of_string "Internal"))

(** FIXME: handle backtrace in Ltac2 exceptions *)
let of_exn c = match fst c with
| LtacError (kn, c) -> ValOpn (kn, c)
| _ -> ValOpn (internal_err, [|of_ext val_exn c|])

let to_exn c = match c with
| ValOpn (kn, c) ->
  if Names.KerName.equal kn internal_err then
    to_ext val_exn c.(0)
  else
    (LtacError (kn, c), Exninfo.null)
| _ -> assert false

let exn = {
  r_of = of_exn;
  r_to = to_exn;
  r_id = false;
}

let of_option f = function
| None -> ValInt 0
| Some c -> ValBlk (0, [|f c|])

let to_option f = function
| ValInt 0 -> None
| ValBlk (0, [|c|]) -> Some (f c)
| _ -> assert false

let option r = {
  r_of = (fun l -> of_option r.r_of l);
  r_to = (fun l -> to_option r.r_to l);
  r_id = false;
}

let of_pp c = of_ext val_pp c
let to_pp c = to_ext val_pp c
let pp = repr_ext val_pp

let of_tuple cl = ValBlk (0, cl)
let to_tuple = function
| ValBlk (0, cl) -> cl
| _ -> assert false

let of_pair f g (x, y) = ValBlk (0, [|f x; g y|])
let to_pair f g = function
| ValBlk (0, [|x; y|]) -> (f x, g y)
| _ -> assert false
let pair r0 r1 = {
  r_of = (fun p -> of_pair r0.r_of r1.r_of p);
  r_to = (fun p -> to_pair r0.r_to r1.r_to p);
  r_id = false;
}

let of_array f vl = ValBlk (0, Array.map f vl)
let to_array f = function
| ValBlk (0, vl) -> Array.map f vl
| _ -> assert false
let array r = {
  r_of = (fun l -> of_array r.r_of l);
  r_to = (fun l -> to_array r.r_to l);
  r_id = false;
}

let of_block (n, args) = ValBlk (n, args)
let to_block = function
| ValBlk (n, args) -> (n, args)
| _ -> assert false

let block = {
  r_of = of_block;
  r_to = to_block;
  r_id = false;
}

let of_open (kn, args) = ValOpn (kn, args)

let to_open = function
| ValOpn (kn, args) -> (kn, args)
| _ -> assert false

let open_ = {
  r_of = of_open;
  r_to = to_open;
  r_id = false;
}

let of_uint63 n = ValUint63 n
let to_uint63 = function
| ValUint63 n -> n
| _ -> assert false

let uint63 = {
  r_of = of_uint63;
  r_to = to_uint63;
  r_id = false;
}

let of_constant c = of_ext val_constant c
let to_constant c = to_ext val_constant c
let constant = repr_ext val_constant

let of_reference = let open GlobRef in function
| VarRef id -> ValBlk (0, [| of_ident id |])
| ConstRef cst -> ValBlk (1, [| of_constant cst |])
| IndRef ind -> ValBlk (2, [| of_ext val_inductive ind |])
| ConstructRef cstr -> ValBlk (3, [| of_ext val_constructor cstr |])

let to_reference = let open GlobRef in function
| ValBlk (0, [| id |]) -> VarRef (to_ident id)
| ValBlk (1, [| cst |]) -> ConstRef (to_constant cst)
| ValBlk (2, [| ind |]) -> IndRef (to_ext val_inductive ind)
| ValBlk (3, [| cstr |]) -> ConstructRef (to_ext val_constructor cstr)
| _ -> assert false

let reference = {
  r_of = of_reference;
  r_to = to_reference;
  r_id = false;
}

type ('a, 'b) fun1 = closure

let fun1 (r0 : 'a repr) (r1 : 'b repr) : ('a, 'b) fun1 repr = closure
let to_fun1 r0 r1 f = to_closure f

let rec apply : type a. a arity -> a -> valexpr list -> valexpr Proofview.tactic =
  fun arity f args -> match args, arity with
  | [], arity -> Proofview.tclUNIT (ValCls (MLTactic (arity, f)))
  (* A few hardcoded cases for efficiency *)
  | [a0], OneAty -> f a0
  | [a0; a1], AddAty OneAty -> f a0 a1
  | [a0; a1; a2], AddAty (AddAty OneAty) -> f a0 a1 a2
  | [a0; a1; a2; a3], AddAty (AddAty (AddAty OneAty)) -> f a0 a1 a2 a3
  (* Generic cases *)
  | a :: args, OneAty ->
    f a >>= fun f ->
    let MLTactic (arity, f) = to_closure f in
    apply arity f args
  | a :: args, AddAty arity ->
    apply arity (f a) args

let apply (MLTactic (arity, f)) args = apply arity f args

type n_closure =
| NClosure : 'a arity * (valexpr list -> 'a) -> n_closure

let rec abstract n f =
  if Int.equal n 1 then NClosure (OneAty, fun accu v -> f (List.rev (v :: accu)))
  else
    let NClosure (arity, fe) = abstract (n - 1) f in
    NClosure (AddAty arity, fun accu v -> fe (v :: accu))

let abstract n f =
  let () = assert (n > 0) in
  let NClosure (arity, f) = abstract n f in
  MLTactic (arity, f [])

let app_fun1 cls r0 r1 x =
  apply cls [r0.r_of x] >>= fun v -> Proofview.tclUNIT (r1.r_to v)