1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Tac2dyn open Tac2expr open Proofview.Notations type ('a, _) arity0 = | OneAty : ('a, 'a -> 'a Proofview.tactic) arity0 | AddAty : ('a, 'b) arity0 -> ('a, 'a -> 'b) arity0 type valexpr = | ValInt of int (** Immediate integers *) | ValBlk of tag * valexpr array (** Structured blocks *) | ValStr of Bytes.t (** Strings *) | ValCls of closure (** Closures *) | ValOpn of KerName.t * valexpr array (** Open constructors *) | ValExt : 'a Tac2dyn.Val.tag * 'a -> valexpr (** Arbitrary data *) | ValUint63 of Uint63.t (** Primitive integers *) and closure = MLTactic : (valexpr, 'v) arity0 * 'v -> closure let arity_one = OneAty let arity_suc a = AddAty a type 'a arity = (valexpr, 'a) arity0 let mk_closure arity f = MLTactic (arity, f) module Valexpr = struct type t = valexpr let is_int = function | ValInt _ -> true | ValBlk _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ -> false let tag v = match v with | ValBlk (n, _) -> n | ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ -> CErrors.anomaly (Pp.str "Unexpected value shape") let field v n = match v with | ValBlk (_, v) -> v.(n) | ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ -> CErrors.anomaly (Pp.str "Unexpected value shape") let set_field v n w = match v with | ValBlk (_, v) -> v.(n) <- w | ValInt _ | ValStr _ | ValCls _ | ValOpn _ | ValExt _ | ValUint63 _ -> CErrors.anomaly (Pp.str "Unexpected value shape") let make_block tag v = ValBlk (tag, v) let make_int n = ValInt n end type 'a repr = { r_of : 'a -> valexpr; r_to : valexpr -> 'a; r_id : bool; } let repr_of r x = r.r_of x let repr_to r x = r.r_to x let make_repr r_of r_to = { r_of; r_to; r_id = false; } (** Dynamic tags *) let val_exn = Val.create "exn" let val_constr = Val.create "constr" let val_ident = Val.create "ident" let val_pattern = Val.create "pattern" let val_pp = Val.create "pp" let val_sort = Val.create "sort" let val_cast = Val.create "cast" let val_inductive = Val.create "inductive" let val_constant = Val.create "constant" let val_constructor = Val.create "constructor" let val_projection = Val.create "projection" let val_case = Val.create "case" let val_univ = Val.create "universe" let val_free : Names.Id.Set.t Val.tag = Val.create "free" let val_ltac1 : Geninterp.Val.t Val.tag = Val.create "ltac1" let extract_val (type a) (type b) (tag : a Val.tag) (tag' : b Val.tag) (v : b) : a = match Val.eq tag tag' with | None -> assert false | Some Refl -> v (** Exception *) exception LtacError of KerName.t * valexpr array (** Conversion functions *) let valexpr = { r_of = (fun obj -> obj); r_to = (fun obj -> obj); r_id = true; } let of_unit () = ValInt 0 let to_unit = function | ValInt 0 -> () | _ -> assert false let unit = { r_of = of_unit; r_to = to_unit; r_id = false; } let of_int n = ValInt n let to_int = function | ValInt n -> n | _ -> assert false let int = { r_of = of_int; r_to = to_int; r_id = false; } let of_bool b = if b then ValInt 0 else ValInt 1 let to_bool = function | ValInt 0 -> true | ValInt 1 -> false | _ -> assert false let bool = { r_of = of_bool; r_to = to_bool; r_id = false; } let of_char n = ValInt (Char.code n) let to_char = function | ValInt n -> Char.chr n | _ -> assert false let char = { r_of = of_char; r_to = to_char; r_id = false; } let of_string s = ValStr s let to_string = function | ValStr s -> s | _ -> assert false let string = { r_of = of_string; r_to = to_string; r_id = false; } let rec of_list f = function | [] -> ValInt 0 | x :: l -> ValBlk (0, [| f x; of_list f l |]) let rec to_list f = function | ValInt 0 -> [] | ValBlk (0, [|v; vl|]) -> f v :: to_list f vl | _ -> assert false let list r = { r_of = (fun l -> of_list r.r_of l); r_to = (fun l -> to_list r.r_to l); r_id = false; } let of_closure cls = ValCls cls let to_closure = function | ValCls cls -> cls | ValExt _ | ValInt _ | ValBlk _ | ValStr _ | ValOpn _ | ValUint63 _ -> assert false let closure = { r_of = of_closure; r_to = to_closure; r_id = false; } let of_ext tag c = ValExt (tag, c) let to_ext tag = function | ValExt (tag', e) -> extract_val tag tag' e | _ -> assert false let repr_ext tag = { r_of = (fun e -> of_ext tag e); r_to = (fun e -> to_ext tag e); r_id = false; } let of_constr c = of_ext val_constr c let to_constr c = to_ext val_constr c let constr = repr_ext val_constr let of_ident c = of_ext val_ident c let to_ident c = to_ext val_ident c let ident = repr_ext val_ident let of_pattern c = of_ext val_pattern c let to_pattern c = to_ext val_pattern c let pattern = repr_ext val_pattern let internal_err = let open Names in let coq_prefix = MPfile (DirPath.make (List.map Id.of_string ["Init"; "Ltac2"])) in KerName.make coq_prefix (Label.of_id (Id.of_string "Internal")) (** FIXME: handle backtrace in Ltac2 exceptions *) let of_exn c = match fst c with | LtacError (kn, c) -> ValOpn (kn, c) | _ -> ValOpn (internal_err, [|of_ext val_exn c|]) let to_exn c = match c with | ValOpn (kn, c) -> if Names.KerName.equal kn internal_err then to_ext val_exn c.(0) else (LtacError (kn, c), Exninfo.null) | _ -> assert false let exn = { r_of = of_exn; r_to = to_exn; r_id = false; } let of_option f = function | None -> ValInt 0 | Some c -> ValBlk (0, [|f c|]) let to_option f = function | ValInt 0 -> None | ValBlk (0, [|c|]) -> Some (f c) | _ -> assert false let option r = { r_of = (fun l -> of_option r.r_of l); r_to = (fun l -> to_option r.r_to l); r_id = false; } let of_pp c = of_ext val_pp c let to_pp c = to_ext val_pp c let pp = repr_ext val_pp let of_tuple cl = ValBlk (0, cl) let to_tuple = function | ValBlk (0, cl) -> cl | _ -> assert false let of_pair f g (x, y) = ValBlk (0, [|f x; g y|]) let to_pair f g = function | ValBlk (0, [|x; y|]) -> (f x, g y) | _ -> assert false let pair r0 r1 = { r_of = (fun p -> of_pair r0.r_of r1.r_of p); r_to = (fun p -> to_pair r0.r_to r1.r_to p); r_id = false; } let of_array f vl = ValBlk (0, Array.map f vl) let to_array f = function | ValBlk (0, vl) -> Array.map f vl | _ -> assert false let array r = { r_of = (fun l -> of_array r.r_of l); r_to = (fun l -> to_array r.r_to l); r_id = false; } let of_block (n, args) = ValBlk (n, args) let to_block = function | ValBlk (n, args) -> (n, args) | _ -> assert false let block = { r_of = of_block; r_to = to_block; r_id = false; } let of_open (kn, args) = ValOpn (kn, args) let to_open = function | ValOpn (kn, args) -> (kn, args) | _ -> assert false let open_ = { r_of = of_open; r_to = to_open; r_id = false; } let of_uint63 n = ValUint63 n let to_uint63 = function | ValUint63 n -> n | _ -> assert false let uint63 = { r_of = of_uint63; r_to = to_uint63; r_id = false; } let of_constant c = of_ext val_constant c let to_constant c = to_ext val_constant c let constant = repr_ext val_constant let of_reference = let open GlobRef in function | VarRef id -> ValBlk (0, [| of_ident id |]) | ConstRef cst -> ValBlk (1, [| of_constant cst |]) | IndRef ind -> ValBlk (2, [| of_ext val_inductive ind |]) | ConstructRef cstr -> ValBlk (3, [| of_ext val_constructor cstr |]) let to_reference = let open GlobRef in function | ValBlk (0, [| id |]) -> VarRef (to_ident id) | ValBlk (1, [| cst |]) -> ConstRef (to_constant cst) | ValBlk (2, [| ind |]) -> IndRef (to_ext val_inductive ind) | ValBlk (3, [| cstr |]) -> ConstructRef (to_ext val_constructor cstr) | _ -> assert false let reference = { r_of = of_reference; r_to = to_reference; r_id = false; } type ('a, 'b) fun1 = closure let fun1 (r0 : 'a repr) (r1 : 'b repr) : ('a, 'b) fun1 repr = closure let to_fun1 r0 r1 f = to_closure f let rec apply : type a. a arity -> a -> valexpr list -> valexpr Proofview.tactic = fun arity f args -> match args, arity with | [], arity -> Proofview.tclUNIT (ValCls (MLTactic (arity, f))) (* A few hardcoded cases for efficiency *) | [a0], OneAty -> f a0 | [a0; a1], AddAty OneAty -> f a0 a1 | [a0; a1; a2], AddAty (AddAty OneAty) -> f a0 a1 a2 | [a0; a1; a2; a3], AddAty (AddAty (AddAty OneAty)) -> f a0 a1 a2 a3 (* Generic cases *) | a :: args, OneAty -> f a >>= fun f -> let MLTactic (arity, f) = to_closure f in apply arity f args | a :: args, AddAty arity -> apply arity (f a) args let apply (MLTactic (arity, f)) args = apply arity f args type n_closure = | NClosure : 'a arity * (valexpr list -> 'a) -> n_closure let rec abstract n f = if Int.equal n 1 then NClosure (OneAty, fun accu v -> f (List.rev (v :: accu))) else let NClosure (arity, fe) = abstract (n - 1) f in NClosure (AddAty arity, fun accu v -> fe (v :: accu)) let abstract n f = let () = assert (n > 0) in let NClosure (arity, f) = abstract n f in MLTactic (arity, f []) let app_fun1 cls r0 r1 x = apply cls [r0.r_of x] >>= fun v -> Proofview.tclUNIT (r1.r_to v)