1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*i*) open Util open Constr open Names open Globnames open Mod_subst open Pp (* debug *) (*i*) (* Representation/approximation of terms to use in the dnet: * * - no meta or evar (use ['a pattern] for that) * * - [Rel]s and [Sort]s are not taken into account (that's why we need * a second pass of linear filterin on the results - it's not a perfect * term indexing structure) * - Foralls and LetIns are represented by a context DCtx (a list of * generalization, similar to rel_context, and coded with DCons and * DNil). This allows for matching under an unfinished context *) module DTerm = struct type 't t = | DRel | DSort | DRef of GlobRef.t | DCtx of 't * 't (* (binding list, subterm) = Prods and LetIns *) | DLambda of 't * 't | DApp of 't * 't (* binary app *) | DCase of case_info * 't * 't * 't array | DFix of int array * int * 't array * 't array | DCoFix of int * 't array * 't array | DInt of Uint63.t (* special constructors only inside the left-hand side of DCtx or DApp. Used to encode lists of foralls/letins/apps as contexts *) | DCons of ('t * 't option) * 't | DNil (* debug *) let _pr_dconstr f : 'a t -> Pp.t = function | DRel -> str "*" | DSort -> str "Sort" | DRef _ -> str "Ref" | DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t | DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2 | DApp (t1,t2) -> f t1 ++ spc() ++ f t2 | DCase (_,t1,t2,ta) -> str "case" | DFix _ -> str "fix" | DCoFix _ -> str "cofix" | DInt _ -> str "INT" | DCons ((t,dopt),tl) -> f t ++ (match dopt with Some t' -> str ":=" ++ f t' | None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl | DNil -> str "[]" (* * Functional iterators for the t datatype * a.k.a boring and error-prone boilerplate code *) let map f = function | (DRel | DSort | DNil | DRef _ | DInt _) as c -> c | DCtx (ctx,c) -> DCtx (f ctx, f c) | DLambda (t,c) -> DLambda (f t, f c) | DApp (t,u) -> DApp (f t,f u) | DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl) | DFix (ia,i,ta,ca) -> DFix (ia,i,Array.map f ta,Array.map f ca) | DCoFix(i,ta,ca) -> DCoFix (i,Array.map f ta,Array.map f ca) | DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u) let compare_ci ci1 ci2 = let c = ind_ord ci1.ci_ind ci2.ci_ind in if c = 0 then let c = Int.compare ci1.ci_npar ci2.ci_npar in if c = 0 then let c = Array.compare Int.compare ci1.ci_cstr_ndecls ci2.ci_cstr_ndecls in if c = 0 then Array.compare Int.compare ci1.ci_cstr_nargs ci2.ci_cstr_nargs else c else c else c let compare cmp t1 t2 = match t1, t2 with | DRel, DRel -> 0 | DRel, _ -> -1 | _, DRel -> 1 | DSort, DSort -> 0 | DSort, _ -> -1 | _, DSort -> 1 | DRef gr1, DRef gr2 -> GlobRef.Ordered.compare gr1 gr2 | DRef _, _ -> -1 | _, DRef _ -> 1 | DCtx (tl1, tr1), DCtx (tl2, tr2) | DLambda (tl1, tr1), DLambda (tl2, tr2) | DApp (tl1, tr1), DApp (tl2, tr2) -> let c = cmp tl1 tl2 in if c = 0 then cmp tr1 tr2 else c | DCtx _, _ -> -1 | _, DCtx _ -> 1 | DLambda _, _ -> -1 | _, DLambda _ -> 1 | DApp _, _ -> -1 | _, DApp _ -> 1 | DCase (ci1, c1, t1, p1), DCase (ci2, c2, t2, p2) -> let c = cmp c1 c2 in if c = 0 then let c = cmp t1 t2 in if c = 0 then let c = Array.compare cmp p1 p2 in if c = 0 then compare_ci ci1 ci2 else c else c else c | DCase _, _ -> -1 | _, DCase _ -> 1 | DFix (i1, j1, tl1, pl1), DFix (i2, j2, tl2, pl2) -> let c = Int.compare j1 j2 in if c = 0 then let c = Array.compare Int.compare i1 i2 in if c = 0 then let c = Array.compare cmp tl1 tl2 in if c = 0 then Array.compare cmp pl1 pl2 else c else c else c | DFix _, _ -> -1 | _, DFix _ -> 1 | DCoFix (i1, tl1, pl1), DCoFix (i2, tl2, pl2) -> let c = Int.compare i1 i2 in if c = 0 then let c = Array.compare cmp tl1 tl2 in if c = 0 then Array.compare cmp pl1 pl2 else c else c | DCoFix _, _ -> -1 | _, DCoFix _ -> 1 | DInt i1, DInt i2 -> Uint63.compare i1 i2 | DInt _, _ -> -1 | _, DInt _ -> 1 | DCons ((t1, ot1), u1), DCons ((t2, ot2), u2) -> let c = cmp t1 t2 in if Int.equal c 0 then let c = Option.compare cmp ot1 ot2 in if Int.equal c 0 then cmp u1 u2 else c else c | DCons _, _ -> -1 | _, DCons _ -> 1 | DNil, DNil -> 0 let fold f acc = function | (DRel | DNil | DSort | DRef _ | DInt _) -> acc | DCtx (ctx,c) -> f (f acc ctx) c | DLambda (t,c) -> f (f acc t) c | DApp (t,u) -> f (f acc t) u | DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl | DFix (ia,i,ta,ca) -> Array.fold_left f (Array.fold_left f acc ta) ca | DCoFix(i,ta,ca) -> Array.fold_left f (Array.fold_left f acc ta) ca | DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u let choose f = function | (DRel | DSort | DNil | DRef _ | DInt _) -> invalid_arg "choose" | DCtx (ctx,c) -> f ctx | DLambda (t,c) -> f t | DApp (t,u) -> f u | DCase (ci,p,c,bl) -> f c | DFix (ia,i,ta,ca) -> f ta.(0) | DCoFix (i,ta,ca) -> f ta.(0) | DCons ((t,topt),u) -> f u let dummy_cmp () () = 0 let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a = let head w = map (fun _ -> ()) w in if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0) then invalid_arg "fold2:compare" else match c1,c2 with | (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _ | DInt _, DInt _) -> acc | (DCtx (c1,t1), DCtx (c2,t2) | DApp (c1,t1), DApp (c2,t2) | DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2 | DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) -> Array.fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2 | DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) -> Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2 | DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) -> Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2 | DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) -> f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2 | (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _ | DFix _ | DCoFix _ | DCons _ | DInt _), _ -> assert false let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t = let head w = map (fun _ -> ()) w in if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0) then invalid_arg "map2_t:compare" else match c1,c2 with | (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _ | DInt _, DInt _) as cc -> let (c,_) = cc in c | DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2) | DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2) | DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2) | DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) -> DCase (ci, f p1 p2, f c1 c2, Array.map2 f bl1 bl2) | DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) -> DFix (ia,i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2) | DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) -> DCoFix (i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2) | DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) -> DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2) | (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _ | DFix _ | DCoFix _ | DCons _ | DInt _), _ -> assert false let terminal = function | (DRel | DSort | DNil | DRef _ | DInt _) -> true | DLambda _ | DApp _ | DCase _ | DFix _ | DCoFix _ | DCtx _ | DCons _ -> false let compare t1 t2 = compare dummy_cmp t1 t2 end (* * Terms discrimination nets * Uses the general dnet datatype on DTerm.t * (here you can restart reading) *) (* * Construction of the module *) module type IDENT = sig type t val compare : t -> t -> int val subst : substitution -> t -> t val constr_of : t -> constr end module type OPT = sig val reduce : constr -> constr val direction : bool end module Make = functor (Ident : IDENT) -> functor (Opt : OPT) -> struct module TDnet : Dnet.S with type ident=Ident.t and type 'a structure = 'a DTerm.t and type meta = int = Dnet.Make(DTerm)(Ident)(Int) type t = TDnet.t type ident = TDnet.ident (** We will freshen metas on the fly, to cope with the implementation defect of Term_dnet which requires metas to be all distinct. *) let fresh_meta = let index = ref 0 in fun () -> let ans = !index in let () = index := succ ans in ans open DTerm open TDnet let pat_of_constr c : term_pattern = let open GlobRef in (* To each evar we associate a unique identifier. *) let metas = ref Evar.Map.empty in let rec pat_of_constr c = match Constr.kind c with | Rel _ -> Term DRel | Sort _ -> Term DSort | Var i -> Term (DRef (VarRef i)) | Const (c,u) -> Term (DRef (ConstRef c)) | Ind (i,u) -> Term (DRef (IndRef i)) | Construct (c,u)-> Term (DRef (ConstructRef c)) | Meta _ -> assert false | Evar (i,_) -> let meta = try Evar.Map.find i !metas with Not_found -> let meta = fresh_meta () in let () = metas := Evar.Map.add i meta !metas in meta in Meta meta | Case (ci,c1,c2,ca) -> Term(DCase(ci,pat_of_constr c1,pat_of_constr c2,Array.map pat_of_constr ca)) | Fix ((ia,i),(_,ta,ca)) -> Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca)) | CoFix (i,(_,ta,ca)) -> Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca)) | Cast (c,_,_) -> pat_of_constr c | Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c)) | (Prod _ | LetIn _) -> let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c)) | App (f,ca) -> Array.fold_left (fun c a -> Term (DApp (c,a))) (pat_of_constr f) (Array.map pat_of_constr ca) | Proj (p,c) -> Term (DApp (Term (DRef (ConstRef (Projection.constant p))), pat_of_constr c)) | Int i -> Term (DInt i) and ctx_of_constr ctx c = match Constr.kind c with | Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c | LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c | _ -> ctx,pat_of_constr c in pat_of_constr c let empty_ctx : term_pattern -> term_pattern = function | Meta _ as c -> c | Term (DCtx(_,_)) as c -> c | c -> Term (DCtx (Term DNil, c)) (* * Basic primitives *) let empty = TDnet.empty let subst s t = let sleaf id = Ident.subst s id in let snode = function | DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr)) | n -> n in TDnet.map sleaf snode t let union = TDnet.union let add (c:constr) (id:Ident.t) (dn:t) = let c = Opt.reduce c in let c = empty_ctx (pat_of_constr c) in TDnet.add dn c id let new_meta () = Meta (fresh_meta ()) let rec remove_cap : term_pattern -> term_pattern = function | Term (DCons (t,u)) -> Term (DCons (t,remove_cap u)) | Term DNil -> new_meta() | Meta _ as m -> m | _ -> assert false let under_prod : term_pattern -> term_pattern = function | Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u)) | Meta m -> Term (DCtx(new_meta(), Meta m)) | _ -> assert false (* debug *) (* let rec pr_term_pattern p = (fun pr_t -> function | Term t -> pr_t t | Meta m -> str"["++Pp.int (Obj.magic m)++str"]" ) (pr_dconstr pr_term_pattern) p*) let search_pat cpat dpat dn = let whole_c = EConstr.of_constr cpat in (* if we are at the root, add an empty context *) let dpat = under_prod (empty_ctx dpat) in TDnet.Idset.fold (fun id acc -> let c_id = Opt.reduce (Ident.constr_of id) in let c_id = EConstr.of_constr c_id in let (ctx,wc) = try Termops.align_prod_letin Evd.empty whole_c c_id (* FIXME *) with Invalid_argument _ -> [],c_id in let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in try let _ = Termops.filtering Evd.empty ctx Reduction.CUMUL wc whole_c in id :: acc with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc ) (TDnet.find_match dpat dn) [] (* * High-level primitives describing specific search problems *) let search_pattern dn pat = let pat = Opt.reduce pat in search_pat pat (empty_ctx (pat_of_constr pat)) dn let find_all dn = Idset.elements (TDnet.find_all dn) let map f dn = TDnet.map f (fun x -> x) dn let refresh_metas dn = let new_metas = ref Int.Map.empty in let refresh_one_meta i = try Int.Map.find i !new_metas with Not_found -> let new_meta = fresh_meta () in let () = new_metas := Int.Map.add i new_meta !new_metas in new_meta in TDnet.map_metas refresh_one_meta dn end module type S = sig type t type ident val empty : t val add : constr -> ident -> t -> t val union : t -> t -> t val subst : substitution -> t -> t val search_pattern : t -> constr -> ident list val find_all : t -> ident list val map : (ident -> ident) -> t -> t val refresh_metas : t -> t end