1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Nameops open Constr open Context open Termops open Environ open EConstr open Vars open Find_subterm open Namegen open Declarations open Inductiveops open Reductionops open Evd open Tacred open Genredexpr open Tacmach.New open Logic open Clenv open Refiner open Tacticals open Hipattern open Coqlib open Evarutil open Indrec open Pretype_errors open Unification open Locus open Locusops open Tactypes open Proofview.Notations open Context.Named.Declaration module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let inj_with_occurrences e = (AllOccurrences,e) let typ_of env sigma c = let open Retyping in try get_type_of ~lax:true env sigma c with RetypeError e -> user_err (print_retype_error e) open Goptions let clear_hyp_by_default = ref false let use_clear_hyp_by_default () = !clear_hyp_by_default let () = declare_bool_option { optdepr = false; optname = "default clearing of hypotheses after use"; optkey = ["Default";"Clearing";"Used";"Hypotheses"]; optread = (fun () -> !clear_hyp_by_default) ; optwrite = (fun b -> clear_hyp_by_default := b) } (* Compatibility option useful in developments using apply intensively in ltac code *) let universal_lemma_under_conjunctions = ref false let accept_universal_lemma_under_conjunctions () = !universal_lemma_under_conjunctions let () = declare_bool_option { optdepr = false; optname = "trivial unification in tactics applying under conjunctions"; optkey = ["Universal";"Lemma";"Under";"Conjunction"]; optread = (fun () -> !universal_lemma_under_conjunctions) ; optwrite = (fun b -> universal_lemma_under_conjunctions := b) } (* The following boolean governs what "intros []" do on examples such as "forall x:nat*nat, x=x"; if true, it behaves as "intros [? ?]"; if false, it behaves as "intro H; case H; clear H" for fresh H. Kept as false for compatibility. *) let bracketing_last_or_and_intro_pattern = ref true let use_bracketing_last_or_and_intro_pattern () = !bracketing_last_or_and_intro_pattern let () = declare_bool_option { optdepr = true; optname = "bracketing last or-and introduction pattern"; optkey = ["Bracketing";"Last";"Introduction";"Pattern"]; optread = (fun () -> !bracketing_last_or_and_intro_pattern); optwrite = (fun b -> bracketing_last_or_and_intro_pattern := b) } (*********************************************) (* Tactics *) (*********************************************) (******************************************) (* Primitive tactics *) (******************************************) (** This tactic creates a partial proof realizing the introduction rule, but does not check anything. *) let unsafe_intro env decl b = Refine.refine ~typecheck:false begin fun sigma -> let ctx = named_context_val env in let nctx = push_named_context_val decl ctx in let inst = List.map (NamedDecl.get_id %> mkVar) (named_context env) in let ninst = mkRel 1 :: inst in let nb = subst1 (mkVar (NamedDecl.get_id decl)) b in let (sigma, ev) = new_evar_instance nctx sigma nb ~principal:true ninst in (sigma, mkLambda_or_LetIn (NamedDecl.to_rel_decl decl) ev) end let introduction id = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let hyps = named_context_val (Proofview.Goal.env gl) in let env = Proofview.Goal.env gl in let () = if mem_named_context_val id hyps then user_err ~hdr:"Tactics.introduction" (str "Variable " ++ Id.print id ++ str " is already declared.") in let open Context.Named.Declaration in match EConstr.kind sigma concl with | Prod (id0, t, b) -> unsafe_intro env (LocalAssum ({id0 with binder_name=id}, t)) b | LetIn (id0, c, t, b) -> unsafe_intro env (LocalDef ({id0 with binder_name=id}, c, t)) b | _ -> raise (RefinerError (env, sigma, IntroNeedsProduct)) end let error msg = CErrors.user_err Pp.(str msg) let convert_concl ~check ty k = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let conclty = Proofview.Goal.concl gl in Refine.refine ~typecheck:false begin fun sigma -> let sigma = if check then begin ignore (Typing.unsafe_type_of env sigma ty); match Reductionops.infer_conv env sigma ty conclty with | None -> error "Not convertible." | Some sigma -> sigma end else sigma in let (sigma, x) = Evarutil.new_evar env sigma ~principal:true ty in let ans = if k == DEFAULTcast then x else mkCast(x,k,conclty) in (sigma, ans) end end let convert_hyp ~check ~reorder d = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let sign = convert_hyp ~check ~reorder env sigma d in let env = reset_with_named_context sign env in Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end let convert_concl_no_check = convert_concl ~check:false let convert_hyp_no_check = convert_hyp ~check:false ~reorder:false let convert_gen pb x y = Proofview.Goal.enter begin fun gl -> match Tacmach.New.pf_apply (Reductionops.infer_conv ~pb) gl x y with | Some sigma -> Proofview.Unsafe.tclEVARS sigma | None -> Tacticals.New.tclFAIL 0 (str "Not convertible") | exception _ -> (* FIXME: Sometimes an anomaly is raised from conversion *) Tacticals.New.tclFAIL 0 (str "Not convertible") end let convert x y = convert_gen Reduction.CONV x y let convert_leq x y = convert_gen Reduction.CUMUL x y let clear_in_global_msg = function | None -> mt () | Some ref -> str " implicitly in " ++ Printer.pr_global ref let clear_dependency_msg env sigma id err inglobal = let pp = clear_in_global_msg inglobal in match err with | Evarutil.OccurHypInSimpleClause None -> Id.print id ++ str " is used" ++ pp ++ str " in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> Id.print id ++ strbrk " is used" ++ pp ++ str " in hypothesis " ++ Id.print id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot remove " ++ Id.print id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." | Evarutil.NoCandidatesLeft ev -> str "Cannot remove " ++ Id.print id ++ str " as it would leave the existential " ++ Printer.pr_existential_key sigma ev ++ str" without candidates." let error_clear_dependency env sigma id err inglobal = user_err (clear_dependency_msg env sigma id err inglobal) let replacing_dependency_msg env sigma id err inglobal = let pp = clear_in_global_msg inglobal in match err with | Evarutil.OccurHypInSimpleClause None -> str "Cannot change " ++ Id.print id ++ str ", it is used" ++ pp ++ str " in conclusion." | Evarutil.OccurHypInSimpleClause (Some id') -> str "Cannot change " ++ Id.print id ++ strbrk ", it is used" ++ pp ++ str " in hypothesis " ++ Id.print id' ++ str"." | Evarutil.EvarTypingBreak ev -> str "Cannot change " ++ Id.print id ++ strbrk " without breaking the typing of " ++ Printer.pr_existential env sigma ev ++ str"." | Evarutil.NoCandidatesLeft ev -> str "Cannot change " ++ Id.print id ++ str " as it would leave the existential " ++ Printer.pr_existential_key sigma ev ++ str" without candidates." let error_replacing_dependency env sigma id err inglobal = user_err (replacing_dependency_msg env sigma id err inglobal) (* This tactic enables the user to remove hypotheses from the signature. * Some care is taken to prevent him from removing variables that are * subsequently used in other hypotheses or in the conclusion of the * goal. *) let clear_gen fail = function | [] -> Proofview.tclUNIT () | ids -> Proofview.Goal.enter begin fun gl -> let ids = List.fold_right Id.Set.add ids Id.Set.empty in (* clear_hyps_in_evi does not require nf terms *) let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let (sigma, hyps, concl) = try clear_hyps_in_evi env sigma (named_context_val env) concl ids with Evarutil.ClearDependencyError (id,err,inglobal) -> fail env sigma id err inglobal in let env = reset_with_named_context hyps env in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true concl end) end let clear ids = clear_gen error_clear_dependency ids let clear_for_replacing ids = clear_gen error_replacing_dependency ids let apply_clear_request clear_flag dft c = Proofview.tclEVARMAP >>= fun sigma -> let check_isvar c = if not (isVar sigma c) then error "keep/clear modifiers apply only to hypothesis names." in let doclear = match clear_flag with | None -> dft && isVar sigma c | Some true -> check_isvar c; true | Some false -> false in if doclear then clear [destVar sigma c] else Tacticals.New.tclIDTAC (* Moving hypotheses *) let move_hyp id dest = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = Proofview.Goal.concl gl in let sign = named_context_val env in let sign' = move_hyp_in_named_context env sigma id dest sign in let env = reset_with_named_context sign' env in Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end (* Renaming hypotheses *) let rename_hyp repl = let fold accu (src, dst) = match accu with | None -> None | Some (srcs, dsts) -> if Id.Set.mem src srcs then None else if Id.Set.mem dst dsts then None else let srcs = Id.Set.add src srcs in let dsts = Id.Set.add dst dsts in Some (srcs, dsts) in let init = Some (Id.Set.empty, Id.Set.empty) in let dom = List.fold_left fold init repl in match dom with | None -> Tacticals.New.tclZEROMSG (str "Not a one-to-one name mapping") | Some (src, dst) -> Proofview.Goal.enter begin fun gl -> let hyps = Proofview.Goal.hyps gl in let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in (* Check that we do not mess variables *) let fold accu decl = Id.Set.add (NamedDecl.get_id decl) accu in let vars = List.fold_left fold Id.Set.empty hyps in let () = if not (Id.Set.subset src vars) then let hyp = Id.Set.choose (Id.Set.diff src vars) in raise (RefinerError (env, sigma, NoSuchHyp hyp)) in let mods = Id.Set.diff vars src in let () = try let elt = Id.Set.choose (Id.Set.inter dst mods) in CErrors.user_err (Id.print elt ++ str " is already used") with Not_found -> () in (* All is well *) let make_subst (src, dst) = (src, mkVar dst) in let subst = List.map make_subst repl in let subst c = Vars.replace_vars subst c in let map decl = decl |> NamedDecl.map_id (fun id -> try List.assoc_f Id.equal id repl with Not_found -> id) |> NamedDecl.map_constr subst in let nhyps = List.map map hyps in let nconcl = subst concl in let nctx = val_of_named_context nhyps in let instance = List.map (NamedDecl.get_id %> mkVar) hyps in Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar_instance nctx sigma nconcl ~principal:true instance end end (**************************************************************) (* Fresh names *) (**************************************************************) let fresh_id_in_env avoid id env = let avoid' = ids_of_named_context_val (named_context_val env) in let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in next_ident_away_in_goal id avoid let fresh_id avoid id gl = fresh_id_in_env avoid id (pf_env gl) let new_fresh_id avoid id gl = fresh_id_in_env avoid id (Proofview.Goal.env gl) let id_of_name_with_default id = function | Anonymous -> id | Name id -> id let default_id_of_sort s = if Sorts.is_small s then default_small_ident else default_type_ident let default_id env sigma decl = let open Context.Rel.Declaration in match decl with | LocalAssum (name,t) -> let dft = default_id_of_sort (Retyping.get_sort_of env sigma t) in id_of_name_with_default dft name.binder_name | LocalDef (name,b,_) -> id_of_name_using_hdchar env sigma b name.binder_name (* Non primitive introduction tactics are treated by intro_then_gen There is possibly renaming, with possibly names to avoid and possibly a move to do after the introduction *) type name_flag = | NamingAvoid of Id.Set.t | NamingBasedOn of Id.t * Id.Set.t | NamingMustBe of lident let naming_of_name = function | Anonymous -> NamingAvoid Id.Set.empty | Name id -> NamingMustBe (CAst.make id) let find_name mayrepl decl naming gl = match naming with | NamingAvoid idl -> (* this case must be compatible with [find_intro_names] below. *) let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in new_fresh_id idl (default_id env sigma decl) gl | NamingBasedOn (id,idl) -> new_fresh_id idl id gl | NamingMustBe {CAst.loc;v=id} -> (* When name is given, we allow to hide a global name *) let ids_of_hyps = Tacmach.New.pf_ids_set_of_hyps gl in if not mayrepl && Id.Set.mem id ids_of_hyps then user_err ?loc (Id.print id ++ str" is already used."); id (**************************************************************) (* Computing position of hypotheses for replacing *) (**************************************************************) let get_next_hyp_position env sigma id = let rec aux = function | [] -> error_no_such_hypothesis env sigma id | decl :: right -> if Id.equal (NamedDecl.get_id decl) id then match right with decl::_ -> MoveBefore (NamedDecl.get_id decl) | [] -> MoveFirst else aux right in aux let get_previous_hyp_position env sigma id = let rec aux dest = function | [] -> error_no_such_hypothesis env sigma id | decl :: right -> let hyp = NamedDecl.get_id decl in if Id.equal hyp id then dest else aux (MoveAfter hyp) right in aux MoveLast (**************************************************************) (* Cut rule *) (**************************************************************) let clear_hyps2 env sigma ids sign t cl = try let sigma = Evd.clear_metas sigma in Evarutil.clear_hyps2_in_evi env sigma sign t cl ids with Evarutil.ClearDependencyError (id,err,inglobal) -> error_replacing_dependency env sigma id err inglobal let internal_cut_gen ?(check=true) dir replace id t = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let sign = named_context_val env in let r = Retyping.relevance_of_type env sigma t in let sign',t,concl,sigma = if replace then let nexthyp = get_next_hyp_position env sigma id (named_context_of_val sign) in let sigma,sign',t,concl = clear_hyps2 env sigma (Id.Set.singleton id) sign t concl in let sign' = insert_decl_in_named_context env sigma (LocalAssum (make_annot id r,t)) nexthyp sign' in sign',t,concl,sigma else (if check && mem_named_context_val id sign then user_err (str "Variable " ++ Id.print id ++ str " is already declared."); push_named_context_val (LocalAssum (make_annot id r,t)) sign,t,concl,sigma) in let nf_t = nf_betaiota env sigma t in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let (sigma,ev,ev') = if dir then let (sigma, ev) = Evarutil.new_evar_from_context sign sigma nf_t in let (sigma, ev') = Evarutil.new_evar_from_context sign' sigma ~principal:true concl in (sigma,ev,ev') else let (sigma, ev') = Evarutil.new_evar_from_context sign' sigma ~principal:true concl in let (sigma, ev) = Evarutil.new_evar_from_context sign sigma nf_t in (sigma,ev,ev') in let term = mkLetIn (make_annot (Name id) r, ev, t, EConstr.Vars.subst_var id ev') in (sigma, term) end) end let internal_cut ?(check=true) = internal_cut_gen ~check true let internal_cut_rev ?(check=true) = internal_cut_gen ~check false let assert_before_then_gen b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let id = find_name b (LocalAssum (make_annot Anonymous Sorts.Relevant,t)) naming gl in Tacticals.New.tclTHENLAST (internal_cut b id t) (tac id) end let assert_before_gen b naming t = assert_before_then_gen b naming t (fun _ -> Proofview.tclUNIT ()) let assert_before na = assert_before_gen false (naming_of_name na) let assert_before_replacing id = assert_before_gen true (NamingMustBe (CAst.make id)) let assert_after_then_gen b naming t tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let id = find_name b (LocalAssum (make_annot Anonymous Sorts.Relevant,t)) naming gl in Tacticals.New.tclTHENFIRST (internal_cut_rev b id t) (tac id) end let assert_after_gen b naming t = assert_after_then_gen b naming t (fun _ -> (Proofview.tclUNIT ())) let assert_after na = assert_after_gen false (naming_of_name na) let assert_after_replacing id = assert_after_gen true (NamingMustBe (CAst.make id)) (**************************************************************) (* Fixpoints and CoFixpoints *) (**************************************************************) let rec mk_holes env sigma = function | [] -> (sigma, []) | arg :: rem -> let (sigma, arg) = Evarutil.new_evar env sigma arg in let (sigma, rem) = mk_holes env sigma rem in (sigma, arg :: rem) let rec check_mutind env sigma k cl = match EConstr.kind sigma (strip_outer_cast sigma cl) with | Prod (na, c1, b) -> if Int.equal k 1 then try let ((sp, _), u), _ = find_inductive env sigma c1 in (sp, u) with Not_found -> error "Cannot do a fixpoint on a non inductive type." else let open Context.Rel.Declaration in check_mutind (push_rel (LocalAssum (na, c1)) env) sigma (pred k) b | LetIn (na, c1, t, b) -> let open Context.Rel.Declaration in check_mutind (push_rel (LocalDef (na, c1, t)) env) sigma k b | _ -> error "Not enough products." (* Refine as a fixpoint *) let mutual_fix f n rest j = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let (sp, u) = check_mutind env sigma n concl in let firsts, lasts = List.chop j rest in let all = firsts @ (f, n, concl) :: lasts in let rec mk_sign sign = function | [] -> sign | (f, n, ar) :: oth -> let open Context.Named.Declaration in let (sp', u') = check_mutind env sigma n ar in if not (MutInd.equal sp sp') then error "Fixpoints should be on the same mutual inductive declaration."; if mem_named_context_val f sign then user_err ~hdr:"Logic.prim_refiner" (str "Name " ++ Id.print f ++ str " already used in the environment"); mk_sign (push_named_context_val (LocalAssum (make_annot f Sorts.Relevant, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine ~typecheck:false begin fun sigma -> let (sigma, evs) = mk_holes nenv sigma (List.map pi3 all) in let ids = List.map pi1 all in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in let indxs = Array.of_list (List.map (fun n -> n-1) (List.map pi2 all)) in (* TODO relevance *) let funnames = Array.of_list (List.map (fun i -> make_annot (Name i) Sorts.Relevant) ids) in let typarray = Array.of_list (List.map pi3 all) in let bodies = Array.of_list evs in let oterm = mkFix ((indxs,0),(funnames,typarray,bodies)) in (sigma, oterm) end end let fix id n = mutual_fix id n [] 0 let rec check_is_mutcoind env sigma cl = let b = whd_all env sigma cl in match EConstr.kind sigma b with | Prod (na, c1, b) -> let open Context.Rel.Declaration in check_is_mutcoind (push_rel (LocalAssum (na,c1)) env) sigma b | _ -> try let _ = find_coinductive env sigma b in () with Not_found -> error "All methods must construct elements in coinductive types." (* Refine as a cofixpoint *) let mutual_cofix f others j = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let firsts,lasts = List.chop j others in let all = firsts @ (f, concl) :: lasts in List.iter (fun (_, c) -> check_is_mutcoind env sigma c) all; let rec mk_sign sign = function | [] -> sign | (f, ar) :: oth -> let open Context.Named.Declaration in if mem_named_context_val f sign then error "Name already used in the environment."; mk_sign (push_named_context_val (LocalAssum (make_annot f Sorts.Relevant, ar)) sign) oth in let nenv = reset_with_named_context (mk_sign (named_context_val env) all) env in Refine.refine ~typecheck:false begin fun sigma -> let (ids, types) = List.split all in let (sigma, evs) = mk_holes nenv sigma types in let evs = List.map (Vars.subst_vars (List.rev ids)) evs in (* TODO relevance *) let funnames = Array.of_list (List.map (fun i -> make_annot (Name i) Sorts.Relevant) ids) in let typarray = Array.of_list types in let bodies = Array.of_list evs in let oterm = mkCoFix (0, (funnames, typarray, bodies)) in (sigma, oterm) end end let cofix id = mutual_cofix id [] 0 (**************************************************************) (* Reduction and conversion tactics *) (**************************************************************) type tactic_reduction = Reductionops.reduction_function type e_tactic_reduction = Reductionops.e_reduction_function let e_pf_change_decl (redfun : bool -> e_reduction_function) where env sigma decl = let open Context.Named.Declaration in match decl with | LocalAssum (id,ty) -> if where == InHypValueOnly then user_err (Id.print id.binder_name ++ str " has no value."); let (sigma, ty') = redfun false env sigma ty in (sigma, LocalAssum (id, ty')) | LocalDef (id,b,ty) -> let (sigma, b') = if where != InHypTypeOnly then redfun true env sigma b else (sigma, b) in let (sigma, ty') = if where != InHypValueOnly then redfun false env sigma ty else (sigma, ty) in (sigma, LocalDef (id,b',ty')) (* Possibly equip a reduction with the occurrences mentioned in an occurrence clause *) let error_illegal_clause () = error "\"at\" clause not supported in presence of an occurrence clause." let error_illegal_non_atomic_clause () = error "\"at\" clause not supported in presence of a non atomic \"in\" clause." let error_occurrences_not_unsupported () = error "Occurrences not supported for this reduction tactic." let bind_change_occurrences occs = function | None -> None | Some c -> Some (Redexpr.out_with_occurrences (occs,c)) let bind_red_expr_occurrences occs nbcl redexp = let has_at_clause = function | Unfold l -> List.exists (fun (occl,_) -> occl != AllOccurrences) l | Pattern l -> List.exists (fun (occl,_) -> occl != AllOccurrences) l | Simpl (_,Some (occl,_)) -> occl != AllOccurrences | _ -> false in if occs == AllOccurrences then if nbcl > 1 && has_at_clause redexp then error_illegal_non_atomic_clause () else redexp else match redexp with | Unfold (_::_::_) -> error_illegal_clause () | Unfold [(occl,c)] -> if occl != AllOccurrences then error_illegal_clause () else Unfold [(occs,c)] | Pattern (_::_::_) -> error_illegal_clause () | Pattern [(occl,c)] -> if occl != AllOccurrences then error_illegal_clause () else Pattern [(occs,c)] | Simpl (f,Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else Simpl (f,Some (occs,c)) | CbvVm (Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else CbvVm (Some (occs,c)) | CbvNative (Some (occl,c)) -> if occl != AllOccurrences then error_illegal_clause () else CbvNative (Some (occs,c)) | Red _ | Hnf | Cbv _ | Lazy _ | Cbn _ | ExtraRedExpr _ | Fold _ | Simpl (_,None) | CbvVm None | CbvNative None -> error_occurrences_not_unsupported () | Unfold [] | Pattern [] -> assert false (* The following two tactics apply an arbitrary reduction function either to the conclusion or to a certain hypothesis *) (** Tactic reduction modulo evars (for universes essentially) *) let e_change_in_concl ~check (redfun, sty) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let (sigma, c') = redfun (Tacmach.New.pf_env gl) sigma (Tacmach.New.pf_concl gl) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (convert_concl ~check c' sty) end let e_change_in_hyp ~check ~reorder redfun (id,where) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let hyp = Tacmach.New.pf_get_hyp id gl in let (sigma, c) = e_pf_change_decl redfun where (Proofview.Goal.env gl) sigma hyp in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (convert_hyp ~check ~reorder c) end type hyp_conversion = | AnyHypConv (** Arbitrary conversion *) | StableHypConv (** Does not introduce new dependencies on variables *) | LocalHypConv (** Same as above plus no dependence on the named environment *) let e_change_in_hyps ~check ~reorder f args = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (env, sigma) = match reorder with | LocalHypConv -> (* If the reduction function is known not to depend on the named context, then we can perform it in parallel. *) let fold accu arg = let (id, redfun) = f arg in let old = try Id.Map.find id accu with Not_found -> [] in Id.Map.add id (redfun :: old) accu in let reds = List.fold_left fold Id.Map.empty args in let evdref = ref sigma in let map d = let id = NamedDecl.get_id d in match Id.Map.find id reds with | reds -> let d = EConstr.of_named_decl d in let fold redfun (sigma, d) = redfun env sigma d in let (sigma, d) = List.fold_right fold reds (sigma, d) in let () = evdref := sigma in EConstr.Unsafe.to_named_decl d | exception Not_found -> d in let sign = Environ.map_named_val map (Environ.named_context_val env) in let env = reset_with_named_context sign env in (env, !evdref) | StableHypConv | AnyHypConv -> let reorder = reorder == AnyHypConv in let fold (env, sigma) arg = let (id, redfun) = f arg in let hyp = try lookup_named id env with Not_found -> raise (RefinerError (env, sigma, NoSuchHyp id)) in let (sigma, d) = redfun env sigma hyp in let sign = Logic.convert_hyp ~check ~reorder env sigma d in let env = reset_with_named_context sign env in (env, sigma) in List.fold_left fold (env, sigma) args in let ty = Proofview.Goal.concl gl in Proofview.Unsafe.tclEVARS sigma <*> Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true ty end end let e_reduct_in_concl = e_change_in_concl let reduct_in_concl ~check (redfun, sty) = let redfun env sigma c = (sigma, redfun env sigma c) in e_change_in_concl ~check (redfun, sty) let e_reduct_in_hyp ~check ~reorder redfun (id, where) = let redfun _ env sigma c = redfun env sigma c in e_change_in_hyp ~check ~reorder redfun (id, where) let reduct_in_hyp ~check ~reorder redfun (id, where) = let redfun _ env sigma c = (sigma, redfun env sigma c) in e_change_in_hyp ~check ~reorder redfun (id, where) let revert_cast (redfun,kind as r) = if kind == DEFAULTcast then (redfun,REVERTcast) else r let e_reduct_option ~check redfun = function | Some id -> e_reduct_in_hyp ~check ~reorder:check (fst redfun) id | None -> e_change_in_concl ~check (revert_cast redfun) let reduct_option ~check (redfun, sty) where = let redfun env sigma c = (sigma, redfun env sigma c) in e_reduct_option ~check (redfun, sty) where type change_arg = Ltac_pretype.patvar_map -> env -> evar_map -> evar_map * EConstr.constr let make_change_arg c pats env sigma = (sigma, replace_vars (Id.Map.bindings pats) c) let check_types env sigma mayneedglobalcheck deep newc origc = let t1 = Retyping.get_type_of env sigma newc in if deep then begin let t2 = Retyping.get_type_of env sigma origc in let sigma, t2 = Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t2 in match infer_conv ~pb:Reduction.CUMUL env sigma t1 t2 with | None -> if isSort sigma (whd_all env sigma t1) && isSort sigma (whd_all env sigma t2) then (mayneedglobalcheck := true; sigma) else user_err ~hdr:"convert-check-hyp" (str "Types are incompatible.") | Some sigma -> sigma end else if not (isSort sigma (whd_all env sigma t1)) then user_err ~hdr:"convert-check-hyp" (str "Not a type.") else sigma (* Now we introduce different instances of the previous tacticals *) let change_and_check cv_pb mayneedglobalcheck deep t env sigma c = let (sigma, t') = t env sigma in let sigma = check_types env sigma mayneedglobalcheck deep t' c in match infer_conv ~pb:cv_pb env sigma t' c with | None -> user_err ~hdr:"convert-check-hyp" (str "Not convertible."); | Some sigma -> (sigma, t') (* Use cumulativity only if changing the conclusion not a subterm *) let change_on_subterm ~check cv_pb deep t where env sigma c = let mayneedglobalcheck = ref false in let (sigma, c) = match where with | None -> if check then change_and_check cv_pb mayneedglobalcheck deep (t Id.Map.empty) env sigma c else t Id.Map.empty env sigma | Some occl -> e_contextually false occl (fun subst -> if check then change_and_check Reduction.CONV mayneedglobalcheck true (t subst) else fun env sigma _c -> t subst env sigma) env sigma c in if !mayneedglobalcheck then begin try ignore (Typing.unsafe_type_of env sigma c) with e when catchable_exception e -> error "Replacement would lead to an ill-typed term." end; (sigma, c) let change_in_concl ~check occl t = (* No need to check in e_change_in_concl, the check is done in change_on_subterm *) e_change_in_concl ~check:false ((change_on_subterm ~check Reduction.CUMUL false t occl),DEFAULTcast) let change_in_hyp ~check occl t id = (* Same as above *) e_change_in_hyp ~check:false ~reorder:check (fun x -> change_on_subterm ~check Reduction.CONV x t occl) id let concrete_clause_of enum_hyps cl = match cl.onhyps with | None -> let f id = (id, AllOccurrences, InHyp) in List.map f (enum_hyps ()) | Some l -> List.map (fun ((occs, id), w) -> (id, occs, w)) l let change ~check chg c cls = Proofview.Goal.enter begin fun gl -> let hyps = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cls in begin match cls.concl_occs with | NoOccurrences -> Proofview.tclUNIT () | occs -> change_in_concl ~check (bind_change_occurrences occs chg) c end <*> let f (id, occs, where) = let occl = bind_change_occurrences occs chg in let redfun deep env sigma t = change_on_subterm ~check Reduction.CONV deep c occl env sigma t in let redfun env sigma d = e_pf_change_decl redfun where env sigma d in (id, redfun) in let reorder = if check then AnyHypConv else StableHypConv in (* Don't check, we do it already in [change_on_subterm] *) e_change_in_hyps ~check:false ~reorder f hyps end let change_concl t = change_in_concl ~check:true None (make_change_arg t) (* Pour usage interne (le niveau User est pris en compte par reduce) *) let red_in_concl = reduct_in_concl ~check:false (red_product,REVERTcast) let red_in_hyp = reduct_in_hyp ~check:false ~reorder:false red_product let red_option = reduct_option ~check:false (red_product,REVERTcast) let hnf_in_concl = reduct_in_concl ~check:false (hnf_constr,REVERTcast) let hnf_in_hyp = reduct_in_hyp ~check:false ~reorder:false hnf_constr let hnf_option = reduct_option ~check:false (hnf_constr,REVERTcast) let simpl_in_concl = reduct_in_concl ~check:false (simpl,REVERTcast) let simpl_in_hyp = reduct_in_hyp ~check:false ~reorder:false simpl let simpl_option = reduct_option ~check:false (simpl,REVERTcast) let normalise_in_concl = reduct_in_concl ~check:false (compute,REVERTcast) let normalise_in_hyp = reduct_in_hyp ~check:false ~reorder:false compute let normalise_option = reduct_option ~check:false (compute,REVERTcast) let normalise_vm_in_concl = reduct_in_concl ~check:false (Redexpr.cbv_vm,VMcast) let unfold_in_concl loccname = reduct_in_concl ~check:false (unfoldn loccname,REVERTcast) let unfold_in_hyp loccname = reduct_in_hyp ~check:false ~reorder:false (unfoldn loccname) let unfold_option loccname = reduct_option ~check:false (unfoldn loccname,DEFAULTcast) let pattern_option l = e_reduct_option ~check:false (pattern_occs l,DEFAULTcast) (* The main reduction function *) let is_local_flag env flags = if flags.rDelta then false else let check = function | EvalVarRef _ -> false | EvalConstRef c -> Id.Set.is_empty (Environ.vars_of_global env (GlobRef.ConstRef c)) in List.for_all check flags.rConst let is_local_unfold env flags = let check (_, c) = match c with | EvalVarRef _ -> false | EvalConstRef c -> Id.Set.is_empty (Environ.vars_of_global env (GlobRef.ConstRef c)) in List.for_all check flags let reduce redexp cl = let trace env sigma = let open Printer in let pr = (pr_econstr_env, pr_leconstr_env, pr_evaluable_reference, pr_constr_pattern_env) in Pp.(hov 2 (Ppred.pr_red_expr_env env sigma pr str redexp)) in Proofview.Trace.name_tactic trace begin Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let hyps = concrete_clause_of (fun () -> Tacmach.New.pf_ids_of_hyps gl) cl in let nbcl = (if cl.concl_occs = NoOccurrences then 0 else 1) + List.length hyps in let check = match redexp with Fold _ | Pattern _ -> true | _ -> false in let reorder = match redexp with | Fold _ | Pattern _ -> AnyHypConv | Simpl (flags, _) | Cbv flags | Cbn flags | Lazy flags -> if is_local_flag env flags then LocalHypConv else StableHypConv | Unfold flags -> if is_local_unfold env flags then LocalHypConv else StableHypConv | Red _ | Hnf | CbvVm _ | CbvNative _ -> StableHypConv | ExtraRedExpr _ -> StableHypConv (* Should we be that lenient ?*) in begin match cl.concl_occs with | NoOccurrences -> Proofview.tclUNIT () | occs -> let redexp = bind_red_expr_occurrences occs nbcl redexp in let redfun = Redexpr.reduction_of_red_expr env redexp in e_change_in_concl ~check (revert_cast redfun) end <*> let f (id, occs, where) = let redexp = bind_red_expr_occurrences occs nbcl redexp in let (redfun, _) = Redexpr.reduction_of_red_expr env redexp in let redfun _ env sigma c = redfun env sigma c in let redfun env sigma d = e_pf_change_decl redfun where env sigma d in (id, redfun) in e_change_in_hyps ~check ~reorder f hyps end end (* Unfolding occurrences of a constant *) let unfold_constr = function | GlobRef.ConstRef sp -> unfold_in_concl [AllOccurrences,EvalConstRef sp] | GlobRef.VarRef id -> unfold_in_concl [AllOccurrences,EvalVarRef id] | _ -> user_err ~hdr:"unfold_constr" (str "Cannot unfold a non-constant.") (*******************************************) (* Introduction tactics *) (*******************************************) (* Returns the names that would be created by intros, without doing intros. This function is supposed to be compatible with an iteration of [find_name] above. As [default_id] checks the sort of the type to build hyp names, we maintain an environment to be able to type dependent hyps. *) let find_intro_names ctxt gl = let _, res, _ = List.fold_right (fun decl acc -> let env,idl,avoid = acc in let name = fresh_id avoid (default_id env gl.sigma decl) gl in let newenv = push_rel decl env in (newenv, name :: idl, Id.Set.add name avoid)) ctxt (pf_env gl, [], Id.Set.empty) in List.rev res let build_intro_tac id dest tac = match dest with | MoveLast -> Tacticals.New.tclTHEN (introduction id) (tac id) | dest -> Tacticals.New.tclTHENLIST [introduction id; move_hyp id dest; tac id] let rec intro_then_gen name_flag move_flag force_flag dep_flag tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let concl = Proofview.Goal.concl gl in match EConstr.kind sigma concl with | Prod (name,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalAssum (name,t)) name_flag gl in build_intro_tac name move_flag tac | LetIn (name,b,t,u) when not dep_flag || not (noccurn sigma 1 u) -> let name = find_name false (LocalDef (name,b,t)) name_flag gl in build_intro_tac name move_flag tac | Evar ev when force_flag -> let sigma, t = Evardefine.define_evar_as_product env sigma ev in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (intro_then_gen name_flag move_flag force_flag dep_flag tac) | _ -> begin if not force_flag then Proofview.tclZERO (RefinerError (env, sigma, IntroNeedsProduct)) (* Note: red_in_concl includes betaiotazeta and this was like *) (* this since at least V6.3 (a pity *) (* that intro do betaiotazeta only when reduction is needed; and *) (* probably also a pity that intro does zeta *) else Proofview.tclUNIT () end <*> Proofview.tclORELSE (Tacticals.New.tclTHEN hnf_in_concl (intro_then_gen name_flag move_flag false dep_flag tac)) begin function (e, info) -> match e with | RefinerError (env, sigma, IntroNeedsProduct) -> Tacticals.New.tclZEROMSG (str "No product even after head-reduction.") | e -> Proofview.tclZERO ~info e end end let intro_gen n m f d = intro_then_gen n m f d (fun _ -> Proofview.tclUNIT ()) let intro_mustbe_force id = intro_gen (NamingMustBe (CAst.make id)) MoveLast true false let intro_using id = intro_gen (NamingBasedOn (id, Id.Set.empty)) MoveLast false false let intro_then = intro_then_gen (NamingAvoid Id.Set.empty) MoveLast false false let intro = intro_gen (NamingAvoid Id.Set.empty) MoveLast false false let introf = intro_gen (NamingAvoid Id.Set.empty) MoveLast true false let intro_avoiding l = intro_gen (NamingAvoid l) MoveLast false false let intro_move_avoid idopt avoid hto = match idopt with | None -> intro_gen (NamingAvoid avoid) hto true false | Some id -> intro_gen (NamingMustBe (CAst.make id)) hto true false let intro_move idopt hto = intro_move_avoid idopt Id.Set.empty hto (**** Multiple introduction tactics ****) let rec intros_using = function | [] -> Proofview.tclUNIT() | str::l -> Tacticals.New.tclTHEN (intro_using str) (intros_using l) let intros = Tacticals.New.tclREPEAT intro let intro_forthcoming_then_gen name_flag move_flag dep_flag n bound tac = let rec aux n ids = (* Note: we always use the bound when there is one for "*" and "**" *) if (match bound with None -> true | Some (_,p) -> n < p) then Proofview.tclORELSE begin intro_then_gen name_flag move_flag false dep_flag (fun id -> aux (n+1) (id::ids)) end begin function (e, info) -> match e with | RefinerError (env, sigma, IntroNeedsProduct) -> tac ids | e -> Proofview.tclZERO ~info e end else tac ids in aux n [] let intro_replacing id = Proofview.Goal.enter begin fun gl -> let env, sigma = Proofview.Goal.(env gl, sigma gl) in let hyps = Proofview.Goal.hyps gl in let next_hyp = get_next_hyp_position env sigma id hyps in Tacticals.New.tclTHENLIST [ clear_for_replacing [id]; introduction id; move_hyp id next_hyp; ] end (* We have e.g. [x, y, y', x', y'' |- forall y y' y'', G] and want to reintroduce y, y,' y''. Note that we have to clear y, y' and y'' before introducing y because y' or y'' can e.g. depend on old y. *) (* This version assumes that replacement is actually possible *) (* (ids given in the introduction order) *) (* We keep a sub-optimality in cleaing for compatibility with *) (* the behavior of inversion *) let intros_possibly_replacing ids = let suboptimal = true in Proofview.Goal.enter begin fun gl -> let env, sigma = Proofview.Goal.(env gl, sigma gl) in let hyps = Proofview.Goal.hyps gl in let posl = List.map (fun id -> (id, get_next_hyp_position env sigma id hyps)) ids in Tacticals.New.tclTHEN (Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (clear_for_replacing [id])) (if suboptimal then ids else List.rev ids)) (Tacticals.New.tclMAP (fun (id,pos) -> Tacticals.New.tclORELSE (intro_move (Some id) pos) (intro_using id)) posl) end (* This version assumes that replacement is actually possible *) let intros_replacing ids = Proofview.Goal.enter begin fun gl -> let hyps = Proofview.Goal.hyps gl in let env, sigma = Proofview.Goal.(env gl, sigma gl) in let posl = List.map (fun id -> (id, get_next_hyp_position env sigma id hyps)) ids in Tacticals.New.tclTHEN (clear_for_replacing ids) (Tacticals.New.tclMAP (fun (id,pos) -> intro_move (Some id) pos) posl) end (* The standard for implementing Automatic Introduction *) let auto_intros_tac ids = let fold used = function | Name id -> Id.Set.add id used | Anonymous -> used in let avoid = NamingAvoid (List.fold_left fold Id.Set.empty ids) in let naming = function | Name id -> NamingMustBe CAst.(make id) | Anonymous -> avoid in Tacticals.New.tclMAP (fun name -> intro_gen (naming name) MoveLast true false) (List.rev ids) (* User-level introduction tactics *) let lookup_hypothesis_as_renamed env sigma ccl = function | AnonHyp n -> Detyping.lookup_index_as_renamed env sigma ccl n | NamedHyp id -> Detyping.lookup_name_as_displayed env sigma ccl id let lookup_hypothesis_as_renamed_gen red h gl = let env = Proofview.Goal.env gl in let rec aux ccl = match lookup_hypothesis_as_renamed env (Tacmach.New.project gl) ccl h with | None when red -> let (redfun, _) = Redexpr.reduction_of_red_expr env (Red true) in let (_, c) = redfun env (Proofview.Goal.sigma gl) ccl in aux c | x -> x in try aux (Proofview.Goal.concl gl) with Redelimination -> None let is_quantified_hypothesis id gl = match lookup_hypothesis_as_renamed_gen false (NamedHyp id) gl with | Some _ -> true | None -> false let msg_quantified_hypothesis = function | NamedHyp id -> str "quantified hypothesis named " ++ Id.print id | AnonHyp n -> pr_nth n ++ str " non dependent hypothesis" let warn_deprecated_intros_until_0 = CWarnings.create ~name:"deprecated-intros-until-0" ~category:"tactics" (fun () -> strbrk"\"intros until 0\" is deprecated, use \"intros *\"; instead of \"induction 0\" and \"destruct 0\" use explicitly a name.\"") let depth_of_quantified_hypothesis red h gl = if h = AnonHyp 0 then warn_deprecated_intros_until_0 (); match lookup_hypothesis_as_renamed_gen red h gl with | Some depth -> depth | None -> user_err ~hdr:"lookup_quantified_hypothesis" (str "No " ++ msg_quantified_hypothesis h ++ strbrk " in current goal" ++ (if red then strbrk " even after head-reduction" else mt ()) ++ str".") let intros_until_gen red h = Proofview.Goal.enter begin fun gl -> let n = depth_of_quantified_hypothesis red h gl in Tacticals.New.tclDO n (if red then introf else intro) end let intros_until_id id = intros_until_gen false (NamedHyp id) let intros_until_n_gen red n = intros_until_gen red (AnonHyp n) let intros_until = intros_until_gen true let intros_until_n = intros_until_n_gen true let tclCHECKVAR id = Proofview.Goal.enter begin fun gl -> let _ = Tacmach.New.pf_get_hyp id gl in Proofview.tclUNIT () end let try_intros_until_id_check id = Tacticals.New.tclORELSE (intros_until_id id) (tclCHECKVAR id) let try_intros_until tac = function | NamedHyp id -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac id) | AnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHypId tac) let rec intros_move = function | [] -> Proofview.tclUNIT () | (hyp,destopt) :: rest -> Tacticals.New.tclTHEN (intro_gen (NamingMustBe (CAst.make hyp)) destopt false false) (intros_move rest) (* Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) let tactic_infer_flags with_evar = { Pretyping.use_typeclasses = true; Pretyping.solve_unification_constraints = true; Pretyping.fail_evar = not with_evar; Pretyping.expand_evars = true; Pretyping.program_mode = false; Pretyping.polymorphic = false; } type evars_flag = bool (* true = pose evars false = fail on evars *) type rec_flag = bool (* true = recursive false = not recursive *) type advanced_flag = bool (* true = advanced false = basic *) type clear_flag = bool option (* true = clear hyp, false = keep hyp, None = use default *) type 'a core_destruction_arg = | ElimOnConstr of 'a | ElimOnIdent of lident | ElimOnAnonHyp of int type 'a destruction_arg = clear_flag * 'a core_destruction_arg let onOpenInductionArg env sigma tac = function | clear_flag,ElimOnConstr f -> let (sigma', cbl) = f env sigma in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma') (tac clear_flag (sigma,cbl)) | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(c,NoBindings)) end)) | clear_flag,ElimOnIdent {CAst.v=id} -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in tac clear_flag (sigma,(mkVar id,NoBindings)) end) let onInductionArg tac = function | clear_flag,ElimOnConstr cbl -> tac clear_flag cbl | clear_flag,ElimOnAnonHyp n -> Tacticals.New.tclTHEN (intros_until_n n) (Tacticals.New.onLastHyp (fun c -> tac clear_flag (c,NoBindings))) | clear_flag,ElimOnIdent {CAst.v=id} -> (* A quantified hypothesis *) Tacticals.New.tclTHEN (try_intros_until_id_check id) (tac clear_flag (mkVar id,NoBindings)) let map_destruction_arg f sigma = function | clear_flag,ElimOnConstr g -> let sigma,x = f sigma g in (sigma, (clear_flag,ElimOnConstr x)) | clear_flag,ElimOnAnonHyp n as x -> (sigma,x) | clear_flag,ElimOnIdent id as x -> (sigma,x) let finish_delayed_evar_resolution with_evars env sigma f = let (sigma', (c, lbind)) = f env sigma in let flags = tactic_infer_flags with_evars in let (sigma', c) = finish_evar_resolution ~flags env sigma' (sigma,c) in (sigma', (c, lbind)) let with_no_bindings (c, lbind) = if lbind != NoBindings then error "'with' clause not supported here."; c let force_destruction_arg with_evars env sigma c = map_destruction_arg (finish_delayed_evar_resolution with_evars env) sigma c (****************************************) (* tactic "cut" (actually modus ponens) *) (****************************************) let normalize_cut = false let cut c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in let relevance = try (* Backward compat: ensure that [c] is well-typed. Plus we need to know the relevance *) let typ = Typing.unsafe_type_of env sigma c in let typ = whd_all env sigma typ in match EConstr.kind sigma typ with | Sort s -> Some (Sorts.relevance_of_sort (ESorts.kind sigma s)) | _ -> None with e when Pretype_errors.precatchable_exception e -> None in match relevance with | Some r -> let id = next_name_away_with_default "H" Anonymous (Tacmach.New.pf_ids_set_of_hyps gl) in (* Backward compat: normalize [c]. *) let c = if normalize_cut then local_strong whd_betaiota sigma c else c in Refine.refine ~typecheck:false begin fun h -> let (h, f) = Evarutil.new_evar ~principal:true env h (mkArrow c r (Vars.lift 1 concl)) in let (h, x) = Evarutil.new_evar env h c in let f = mkLetIn (make_annot (Name id) r, x, c, mkApp (Vars.lift 1 f, [|mkRel 1|])) in (h, f) end | None -> Tacticals.New.tclZEROMSG (str "Not a proposition or a type.") end let error_uninstantiated_metas t clenv = let na = meta_name clenv.evd (List.hd (Metaset.elements (metavars_of t))) in let id = match na with Name id -> id | _ -> anomaly (Pp.str "unnamed dependent meta.") in user_err (str "Cannot find an instance for " ++ Id.print id ++ str".") let check_unresolved_evars_of_metas sigma clenv = (* This checks that Metas turned into Evars by *) (* Refiner.pose_all_metas_as_evars are resolved *) List.iter (fun (mv,b) -> match b with | Clval (_,(c,_),_) -> (match Constr.kind (EConstr.Unsafe.to_constr c.rebus) with | Evar (evk,_) when Evd.is_undefined clenv.evd evk && not (Evd.mem sigma evk) -> error_uninstantiated_metas (mkMeta mv) clenv | _ -> ()) | _ -> ()) (meta_list clenv.evd) let do_replace id = function | NamingMustBe {CAst.v=id'} when Option.equal Id.equal id (Some id') -> true | _ -> false (* For a clenv expressing some lemma [C[?1:T1,...,?n:Tn] : P] and some goal [G], [clenv_refine_in] returns [n+1] subgoals, the [n] last ones (resp [n] first ones if [sidecond_first] is [true]) being the [Ti] and the first one (resp last one) being [G] whose hypothesis [id] is replaced by P using the proof given by [tac] *) let clenv_refine_in with_evars targetid id sigma0 clenv tac = let clenv = Clenvtac.clenv_pose_dependent_evars ~with_evars clenv in let clenv = { clenv with evd = Typeclasses.resolve_typeclasses ~fail:(not with_evars) clenv.env clenv.evd } in let new_hyp_typ = clenv_type clenv in if not with_evars then check_unresolved_evars_of_metas sigma0 clenv; if not with_evars && occur_meta clenv.evd new_hyp_typ then error_uninstantiated_metas new_hyp_typ clenv; let new_hyp_prf = clenv_value clenv in let exact_tac = Proofview.V82.tactic (Refiner.refiner ~check:false EConstr.Unsafe.(to_constr new_hyp_prf)) in let naming = NamingMustBe (CAst.make targetid) in let with_clear = do_replace (Some id) naming in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS (clear_metas clenv.evd)) (Tacticals.New.tclTHENLAST (assert_after_then_gen with_clear naming new_hyp_typ tac) exact_tac) (********************************************) (* Elimination tactics *) (********************************************) let last_arg sigma c = match EConstr.kind sigma c with | App (f,cl) -> Array.last cl | _ -> anomaly (Pp.str "last_arg.") let nth_arg sigma i c = if Int.equal i (-1) then last_arg sigma c else match EConstr.kind sigma c with | App (f,cl) -> cl.(i) | _ -> anomaly (Pp.str "nth_arg.") let index_of_ind_arg sigma t = let rec aux i j t = match EConstr.kind sigma t with | Prod (_,t,u) -> (* heuristic *) if isInd sigma (fst (decompose_app sigma t)) then aux (Some j) (j+1) u else aux i (j+1) u | _ -> match i with | Some i -> i | None -> error "Could not find inductive argument of elimination scheme." in aux None 0 t let rec contract_letin_in_lam_header sigma c = match EConstr.kind sigma c with | Lambda (x,t,c) -> mkLambda (x,t,contract_letin_in_lam_header sigma c) | LetIn (x,b,t,c) -> contract_letin_in_lam_header sigma (subst1 b c) | _ -> c let elimination_in_clause_scheme env sigma with_evars ~flags id hypmv elimclause = let hyp = mkVar id in let hyp_typ = Retyping.get_type_of env sigma hyp in let hypclause = mk_clenv_from_env env sigma (Some 0) (hyp, hyp_typ) in let elimclause'' = (* The evarmap of elimclause is assumed to be an extension of hypclause, so we do not need to merge the universes coming from hypclause. *) try clenv_fchain ~with_univs:false ~flags hypmv elimclause hypclause with PretypeError (env,evd,NoOccurrenceFound (op,_)) -> (* Set the hypothesis name in the message *) raise (PretypeError (env,evd,NoOccurrenceFound (op,Some id))) in let new_hyp_typ = clenv_type elimclause'' in if EConstr.eq_constr sigma hyp_typ new_hyp_typ then user_err ~hdr:"general_rewrite_in" (str "Nothing to rewrite in " ++ Id.print id ++ str"."); clenv_refine_in with_evars id id sigma elimclause'' (fun id -> Proofview.tclUNIT ()) (* * Elimination tactic with bindings and using an arbitrary * elimination constant called elimc. This constant should end * with a clause (x:I)(P .. ), where P is a bound variable. * The term c is of type t, which is a product ending with a type * matching I, lbindc are the expected terms for c arguments *) type eliminator = { elimindex : int option; (* None = find it automatically *) elimbody : EConstr.constr with_bindings } let general_elim_clause with_evars flags where indclause elim = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (elimc,lbindelimc) = elim.elimbody in let elimt = Retyping.get_type_of env sigma elimc in let i = match elim.elimindex with None -> index_of_ind_arg sigma elimt | Some i -> i in let elimc = contract_letin_in_lam_header sigma elimc in let elimclause = make_clenv_binding env sigma (elimc, elimt) lbindelimc in let indmv = (match EConstr.kind sigma (nth_arg sigma i elimclause.templval.rebus) with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.")) in match where with | None -> let elimclause = clenv_fchain ~flags indmv elimclause indclause in Clenvtac.res_pf elimclause ~with_evars ~with_classes:true ~flags | Some id -> let hypmv = match List.remove Int.equal indmv (clenv_independent elimclause) with | [a] -> a | _ -> user_err ~hdr:"elimination_clause" (str "The type of elimination clause is not well-formed.") in let elimclause = clenv_fchain ~flags indmv elimclause indclause in elimination_in_clause_scheme env sigma with_evars ~flags id hypmv elimclause end let general_elim with_evars clear_flag (c, lbindc) elim = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ct = Retyping.get_type_of env sigma c in let t = try snd (reduce_to_quantified_ind env sigma ct) with UserError _ -> ct in let indclause = make_clenv_binding env sigma (c, t) lbindc in let sigma = meta_merge sigma (clear_metas indclause.evd) in let flags = elim_flags () in Proofview.Unsafe.tclEVARS sigma <*> Tacticals.New.tclTHEN (general_elim_clause with_evars flags None indclause elim) (apply_clear_request clear_flag (use_clear_hyp_by_default ()) c) end (* Case analysis tactics *) let general_case_analysis_in_context with_evars clear_flag (c,lbindc) = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let t = Retyping.get_type_of env sigma c in let (mind,_) = reduce_to_quantified_ind env sigma t in let sort = Tacticals.New.elimination_sort_of_goal gl in let mind = on_snd (fun u -> EInstance.kind sigma u) mind in let (sigma, elim) = if dependent sigma c concl then build_case_analysis_scheme env sigma mind true sort else build_case_analysis_scheme_default env sigma mind sort in let elim = EConstr.of_constr elim in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (general_elim with_evars clear_flag (c,lbindc) {elimindex = None; elimbody = (elim,NoBindings); }) end let general_case_analysis with_evars clear_flag (c,lbindc as cx) = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (general_case_analysis_in_context with_evars clear_flag cx) | _ -> general_case_analysis_in_context with_evars clear_flag cx let simplest_case c = general_case_analysis false None (c,NoBindings) let simplest_ecase c = general_case_analysis true None (c,NoBindings) (* Elimination tactic with bindings but using the default elimination * constant associated with the type. *) exception IsNonrec let is_nonrec mind = (Global.lookup_mind (fst mind)).mind_finite == Declarations.BiFinite let find_ind_eliminator ind s gl = let env = Proofview.Goal.env gl in let gr = lookup_eliminator env ind s in Tacmach.New.pf_apply Evd.fresh_global gl gr let find_eliminator c gl = let ((ind,u),t) = Tacmach.New.pf_reduce_to_quantified_ind gl (Tacmach.New.pf_unsafe_type_of gl c) in if is_nonrec ind then raise IsNonrec; let evd, c = find_ind_eliminator ind (Tacticals.New.elimination_sort_of_goal gl) gl in evd, { elimindex = None; elimbody = (c,NoBindings) } let default_elim with_evars clear_flag (c,_ as cx) = Proofview.tclORELSE (Proofview.Goal.enter begin fun gl -> let sigma, elim = find_eliminator c gl in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (general_elim with_evars clear_flag cx elim) end) begin function (e, info) -> match e with | IsNonrec -> (* For records, induction principles aren't there by default anymore. Instead, we do a case analysis. *) general_case_analysis with_evars clear_flag cx | e -> Proofview.tclZERO ~info e end let elim_in_context with_evars clear_flag c = function | Some elim -> general_elim with_evars clear_flag c { elimindex = Some (-1); elimbody = elim } | None -> default_elim with_evars clear_flag c let elim with_evars clear_flag (c,lbindc as cx) elim = Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when lbindc == NoBindings -> Tacticals.New.tclTHEN (try_intros_until_id_check id) (elim_in_context with_evars clear_flag cx elim) | _ -> elim_in_context with_evars clear_flag cx elim (* The simplest elimination tactic, with no substitutions at all. *) let simplest_elim c = default_elim false None (c,NoBindings) (* Elimination in hypothesis *) (* Typically, elimclause := (eq_ind ?x ?P ?H ?y ?Heq : ?P ?y) indclause : forall ..., hyps -> a=b (to take place of ?Heq) id : phi(a) (to take place of ?H) and the result is to overwrite id with the proof of phi(b) but this generalizes to any elimination scheme with one constructor (e.g. it could replace id:A->B->C by id:C, knowing A/\B) *) (* Apply a tactic below the products of the conclusion of a lemma *) type conjunction_status = | DefinedRecord of Constant.t option list | NotADefinedRecordUseScheme of constr let make_projection env sigma params cstr sign elim i n c u = let open Context.Rel.Declaration in let elim = match elim with | NotADefinedRecordUseScheme elim -> (* bugs: goes from right to left when i increases! *) let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cstr.cs_args in let decl = List.nth cs_args i in let t = RelDecl.get_type decl in let b = match decl with LocalAssum _ -> mkRel (i+1) | LocalDef (_,b,_) -> b in let branch = it_mkLambda_or_LetIn b cs_args in if (* excludes dependent projection types *) noccur_between sigma 1 (n-i-1) t (* to avoid surprising unifications, excludes flexible projection types or lambda which will be instantiated by Meta/Evar *) && not (isEvar sigma (fst (whd_betaiota_stack sigma t))) && (accept_universal_lemma_under_conjunctions () || not (isRel sigma t)) then let t = lift (i+1-n) t in let abselim = beta_applist sigma (elim, params@[t;branch]) in let args = Context.Rel.to_extended_vect mkRel 0 sign in let c = beta_applist sigma (abselim, [mkApp (c, args)]) in Some (it_mkLambda_or_LetIn c sign, it_mkProd_or_LetIn t sign) else None | DefinedRecord l -> (* goes from left to right when i increases! *) match List.nth l i with | Some proj -> let args = Context.Rel.to_extended_vect mkRel 0 sign in let proj = match Recordops.find_primitive_projection proj with | Some proj -> mkProj (Projection.make proj false, mkApp (c, args)) | None -> mkApp (mkConstU (proj,u), Array.append (Array.of_list params) [|mkApp (c, args)|]) in let app = it_mkLambda_or_LetIn proj sign in let t = Retyping.get_type_of env sigma app in Some (app, t) | None -> None in elim let descend_in_conjunctions avoid tac (err, info) c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in try let t = Retyping.get_type_of env sigma c in let ((ind,u),t) = reduce_to_quantified_ind env sigma t in let sign,ccl = EConstr.decompose_prod_assum sigma t in match match_with_tuple env sigma ccl with | Some (_,_,isrec) -> let n = (constructors_nrealargs env ind).(0) in let sort = Tacticals.New.elimination_sort_of_goal gl in let IndType (indf,_) = find_rectype env sigma ccl in let (_,inst), params = dest_ind_family indf in let params = List.map EConstr.of_constr params in let cstr = (get_constructors env indf).(0) in let elim = try DefinedRecord (Recordops.lookup_projections ind) with Not_found -> let u = EInstance.kind sigma u in let (_, elim) = build_case_analysis_scheme env sigma (ind,u) false sort in let elim = EConstr.of_constr elim in NotADefinedRecordUseScheme elim in Tacticals.New.tclORELSE0 (Tacticals.New.tclFIRST (List.init n (fun i -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match make_projection env sigma params cstr sign elim i n c u with | None -> Tacticals.New.tclFAIL 0 (mt()) | Some (p,pt) -> Tacticals.New.tclTHENS (assert_before_gen false (NamingAvoid avoid) pt) [Proofview.V82.tactic (refiner ~check:true EConstr.Unsafe.(to_constr p)); (* Might be ill-typed due to forbidden elimination. *) Tacticals.New.onLastHypId (tac (not isrec))] end))) (Proofview.tclZERO ~info err) | None -> Proofview.tclZERO ~info err with RefinerError _|UserError _ -> Proofview.tclZERO ~info err end (****************************************************) (* Resolution tactics *) (****************************************************) let tclORELSEOPT t k = Proofview.tclORELSE t (fun e -> match k e with | None -> let (e, info) = e in Proofview.tclZERO ~info e | Some tac -> tac) let general_apply ?(respect_opaque=false) with_delta with_destruct with_evars clear_flag {CAst.loc;v=(c,lbind : EConstr.constr with_bindings)} = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in (* The actual type of the theorem. It will be matched against the goal. If this fails, then the head constant will be unfolded step by step. *) let concl_nprod = nb_prod_modulo_zeta sigma concl in let rec try_main_apply with_destruct c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ts = if respect_opaque then Conv_oracle.get_transp_state (oracle env) else TransparentState.full in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags ts in let thm_ty0 = nf_betaiota env sigma (Retyping.get_type_of env sigma c) in let try_apply thm_ty nprod = try let n = nb_prod_modulo_zeta sigma thm_ty - nprod in if n<0 then error "Applied theorem does not have enough premises."; let clause = make_clenv_binding_apply env sigma (Some n) (c,thm_ty) lbind in Clenvtac.res_pf clause ~with_evars ~flags with exn when catchable_exception exn -> Proofview.tclZERO exn in let rec try_red_apply thm_ty (exn0, info) = try (* Try to head-reduce the conclusion of the theorem *) let red_thm = try_red_product env sigma thm_ty in tclORELSEOPT (try_apply red_thm concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply red_thm (exn0, info)) | _ -> None) with Redelimination -> (* Last chance: if the head is a variable, apply may try second order unification *) let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in let tac = if with_destruct then descend_in_conjunctions Id.Set.empty (fun b id -> Tacticals.New.tclTHEN (try_main_apply b (mkVar id)) (clear [id])) (exn0, info) c else Proofview.tclZERO ~info exn0 in if not (Int.equal concl_nprod 0) then tclORELSEOPT (try_apply thm_ty 0) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _-> Some tac | _ -> None) else tac in tclORELSEOPT (try_apply thm_ty0 concl_nprod) (function (e, info) -> match e with | PretypeError _|RefinerError _|UserError _|Failure _ -> Some (try_red_apply thm_ty0 (e, info)) | _ -> None) end in Tacticals.New.tclTHEN (try_main_apply with_destruct c) (apply_clear_request clear_flag (use_clear_hyp_by_default ()) c) end let rec apply_with_bindings_gen b e = function | [] -> Proofview.tclUNIT () | [k,cb] -> general_apply b b e k cb | (k,cb)::cbl -> Tacticals.New.tclTHENLAST (general_apply b b e k cb) (apply_with_bindings_gen b e cbl) let apply_with_delayed_bindings_gen b e l = let one k {CAst.loc;v=f} = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let env = Proofview.Goal.env gl in let (sigma, cb) = f env sigma in Tacticals.New.tclWITHHOLES e (general_apply ~respect_opaque:(not b) b b e k CAst.(make ?loc cb)) sigma end in let rec aux = function | [] -> Proofview.tclUNIT () | [k,f] -> one k f | (k,f)::cbl -> Tacticals.New.tclTHENLAST (one k f) (aux cbl) in aux l let apply_with_bindings cb = apply_with_bindings_gen false false [None,(CAst.make cb)] let eapply_with_bindings cb = apply_with_bindings_gen false true [None,(CAst.make cb)] let apply c = apply_with_bindings_gen false false [None,(CAst.make (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(CAst.make (c,NoBindings))] let apply_list = function | c::l -> apply_with_bindings (c,ImplicitBindings l) | _ -> assert false (* [apply_in hyp c] replaces hyp : forall y1, ti -> t hyp : rho(u) ======================== with ============ and the ======= goal goal rho(ti) assuming that [c] has type [forall x1..xn -> t' -> u] for some [t] unifiable with [t'] with unifier [rho] *) let find_matching_clause unifier clause = let rec find clause = try unifier clause with e when catchable_exception e -> try find (clenv_push_prod clause) with NotExtensibleClause -> failwith "Cannot apply" in find clause exception UnableToApply let progress_with_clause flags innerclause clause = let ordered_metas = List.rev (clenv_independent clause) in if List.is_empty ordered_metas then raise UnableToApply; let f mv = try Some (find_matching_clause (clenv_fchain ~with_univs:false mv ~flags clause) innerclause) with Failure _ -> None in try List.find_map f ordered_metas with Not_found -> raise UnableToApply let explain_unable_to_apply_lemma ?loc env sigma thm innerclause = user_err ?loc (hov 0 (Pp.str "Unable to apply lemma of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env env sigma thm) ++ spc() ++ str "on hypothesis of type" ++ brk(1,1) ++ Pp.quote (Printer.pr_leconstr_env innerclause.env innerclause.evd (clenv_type innerclause)) ++ str ".")) let apply_in_once_main flags innerclause env sigma (loc,d,lbind) = let thm = nf_betaiota env sigma (Retyping.get_type_of env sigma d) in let rec aux clause = try progress_with_clause flags innerclause clause with e when CErrors.noncritical e -> let e' = CErrors.push e in try aux (clenv_push_prod clause) with NotExtensibleClause -> match e with | UnableToApply -> explain_unable_to_apply_lemma ?loc env sigma thm innerclause | _ -> iraise e' in aux (make_clenv_binding env sigma (d,thm) lbind) let apply_in_once ?(respect_opaque = false) with_delta with_destruct with_evars naming id (clear_flag,{ CAst.loc; v= d,lbind}) tac = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let t' = Tacmach.New.pf_get_hyp_typ id gl in let innerclause = mk_clenv_from_env env sigma (Some 0) (mkVar id,t') in let targetid = find_name true (LocalAssum (make_annot Anonymous Sorts.Relevant,t')) naming gl in let rec aux idstoclear with_destruct c = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ts = if respect_opaque then Conv_oracle.get_transp_state (oracle env) else TransparentState.full in let flags = if with_delta then default_unify_flags () else default_no_delta_unify_flags ts in try let clause = apply_in_once_main flags innerclause env sigma (loc,c,lbind) in clenv_refine_in with_evars targetid id sigma clause (fun id -> Tacticals.New.tclTHENLIST [ apply_clear_request clear_flag false c; clear idstoclear; tac id ]) with e when with_destruct && CErrors.noncritical e -> let (e, info) = CErrors.push e in (descend_in_conjunctions (Id.Set.singleton targetid) (fun b id -> aux (id::idstoclear) b (mkVar id)) (e, info) c) end in aux [] with_destruct d end let apply_in_delayed_once ?(respect_opaque = false) with_delta with_destruct with_evars naming id (clear_flag,{CAst.loc;v=f}) tac = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let (sigma, c) = f env sigma in Tacticals.New.tclWITHHOLES with_evars (apply_in_once ~respect_opaque with_delta with_destruct with_evars naming id (clear_flag,CAst.(make ?loc c)) tac) sigma end (* A useful resolution tactic which, if c:A->B, transforms |- C into |- B -> C and |- A ------------------- Gamma |- c : A -> B Gamma |- ?2 : A ---------------------------------------- Gamma |- B Gamma |- ?1 : B -> C ----------------------------------------------------- Gamma |- ? : C Ltac lapply c := let ty := check c in match eval hnf in ty with ?A -> ?B => cut B; [ idtac | apply c ] end. *) let cut_and_apply c = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in match EConstr.kind sigma (Tacmach.New.pf_hnf_constr gl (Tacmach.New.pf_unsafe_type_of gl c)) with | Prod (_,c1,c2) when Vars.noccurn sigma 1 c2 -> let concl = Proofview.Goal.concl gl in let env = Tacmach.New.pf_env gl in Refine.refine ~typecheck:false begin fun sigma -> let typ = mkProd (make_annot Anonymous Sorts.Relevant, c2, concl) in let (sigma, f) = Evarutil.new_evar env sigma typ in let (sigma, x) = Evarutil.new_evar env sigma c1 in (sigma, mkApp (f, [|mkApp (c, [|x|])|])) end | _ -> error "lapply needs a non-dependent product." end (********************************************************************) (* Exact tactics *) (********************************************************************) (* let convert_leqkey = CProfile.declare_profile "convert_leq";; *) (* let convert_leq = CProfile.profile3 convert_leqkey convert_leq *) (* let refine_no_checkkey = CProfile.declare_profile "refine_no_check";; *) (* let refine_no_check = CProfile.profile2 refine_no_checkkey refine_no_check *) let exact_no_check c = Refine.refine ~typecheck:false (fun h -> (h,c)) let exact_check c = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in (* We do not need to normalize the goal because we just check convertibility *) let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma, ct = Typing.type_of env sigma c in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Tacticals.New.tclTHEN (convert_leq ct concl) (exact_no_check c)) end let cast_no_check cast c = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in exact_no_check (mkCast (c, cast, concl)) end let vm_cast_no_check c = cast_no_check VMcast c let native_cast_no_check c = cast_no_check NATIVEcast c let exact_proof c = let open Tacmach.New in Proofview.Goal.enter begin fun gl -> Refine.refine ~typecheck:false begin fun sigma -> let (c, ctx) = Constrintern.interp_casted_constr (pf_env gl) sigma c (pf_concl gl) in let sigma = Evd.merge_universe_context sigma ctx in (sigma, c) end end let assumption = let rec arec gl only_eq = function | [] -> if only_eq then let hyps = Proofview.Goal.hyps gl in arec gl false hyps else Tacticals.New.tclZEROMSG (str "No such assumption.") | decl::rest -> let t = NamedDecl.get_type decl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let ans = if only_eq then if EConstr.eq_constr sigma t concl then Some sigma else None else let env = Proofview.Goal.env gl in infer_conv env sigma t concl in match ans with | Some sigma -> (Proofview.Unsafe.tclEVARS sigma) <*> exact_no_check (mkVar (NamedDecl.get_id decl)) | None -> arec gl only_eq rest in let assumption_tac gl = let hyps = Proofview.Goal.hyps gl in arec gl true hyps in Proofview.Goal.enter assumption_tac (*****************************************************************) (* Modification of a local context *) (*****************************************************************) let on_the_bodies = function | [] -> assert false | [id] -> str " depends on the body of " ++ Id.print id | l -> str " depends on the bodies of " ++ pr_sequence Id.print l exception DependsOnBody of Id.t option let check_is_type env sigma ty = try let sigma, _ = Typing.sort_of env sigma ty in sigma with e when CErrors.noncritical e -> raise (DependsOnBody None) let check_decl env sigma decl = let open Context.Named.Declaration in let ty = NamedDecl.get_type decl in try let sigma, _ = Typing.sort_of env sigma ty in let sigma = match decl with | LocalAssum _ -> sigma | LocalDef (_,c,_) -> Typing.check env sigma c ty in sigma with e when CErrors.noncritical e -> let id = NamedDecl.get_id decl in raise (DependsOnBody (Some id)) let clear_body ids = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let ctx = named_context env in let map = function | LocalAssum (id,t) as decl -> let () = if List.mem_f Id.equal id.binder_name ids then user_err (str "Hypothesis " ++ Id.print id.binder_name ++ str " is not a local definition") in decl | LocalDef (id,_,t) as decl -> if List.mem_f Id.equal id.binder_name ids then LocalAssum (id, t) else decl in let ctx = List.map map ctx in let base_env = reset_context env in let env = push_named_context ctx base_env in let check = try let check (env, sigma, seen) decl = (* Do no recheck hypotheses that do not depend *) let sigma = if not seen then sigma else if List.exists (fun id -> occur_var_in_decl env sigma id decl) ids then check_decl env sigma decl else sigma in let seen = seen || List.mem_f Id.equal (NamedDecl.get_id decl) ids in (push_named decl env, sigma, seen) in let (env, sigma, _) = List.fold_left check (base_env, sigma, false) (List.rev ctx) in let sigma = if List.exists (fun id -> occur_var env sigma id concl) ids then check_is_type env sigma concl else sigma in Proofview.Unsafe.tclEVARS sigma with DependsOnBody where -> let msg = match where with | None -> str "Conclusion" ++ on_the_bodies ids | Some id -> str "Hypothesis " ++ Id.print id ++ on_the_bodies ids in Tacticals.New.tclZEROMSG msg in check <*> Refine.refine ~typecheck:false begin fun sigma -> Evarutil.new_evar env sigma ~principal:true concl end end let clear_wildcards ids = Tacticals.New.tclMAP (fun {CAst.loc;v=id} -> clear [id]) ids (* Takes a list of booleans, and introduces all the variables * quantified in the goal which are associated with a value * true in the boolean list. *) let rec intros_clearing = function | [] -> Proofview.tclUNIT () | (false::tl) -> Tacticals.New.tclTHEN intro (intros_clearing tl) | (true::tl) -> Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHypId (fun id -> clear [id]); intros_clearing tl] (* Keeping only a few hypotheses *) let keep hyps = Proofview.Goal.enter begin fun gl -> Proofview.tclENV >>= fun env -> let ccl = Proofview.Goal.concl gl in let sigma = Tacmach.New.project gl in let cl,_ = fold_named_context_reverse (fun (clear,keep) decl -> let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if Id.List.mem hyp hyps || List.exists (occur_var_in_decl env sigma hyp) keep || occur_var env sigma hyp ccl then (clear,decl::keep) else (hyp::clear,keep)) ~init:([],[]) (Proofview.Goal.env gl) in clear cl end (*********************************) (* Basic generalization tactics *) (*********************************) (* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)] and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)], this generalizes [hyps |- goal] into [hyps |- T] *) let apply_type ~typecheck newcl args = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in Refine.refine ~typecheck begin fun sigma -> let newcl = nf_betaiota env sigma newcl (* As in former Logic.refine *) in let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, applist (ev, args)) end end (* Given a context [hyps] with domain [x1..xn], possibly with let-ins, and well-typed in the current goal, [bring_hyps hyps] generalizes [ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *) let bring_hyps hyps = if List.is_empty hyps then Tacticals.New.tclIDTAC else Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let concl = Tacmach.New.pf_concl gl in let newcl = List.fold_right mkNamedProd_or_LetIn hyps concl in let args = Array.of_list (Context.Named.to_instance mkVar hyps) in Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, mkApp (ev, args)) end end let revert hyps = Proofview.Goal.enter begin fun gl -> let ctx = List.map (fun id -> Tacmach.New.pf_get_hyp id gl) hyps in (bring_hyps ctx) <*> (clear hyps) end (************************) (* Introduction tactics *) (************************) let check_number_of_constructors expctdnumopt i nconstr = if Int.equal i 0 then error "The constructors are numbered starting from 1."; begin match expctdnumopt with | Some n when not (Int.equal n nconstr) -> user_err ~hdr:"Tactics.check_number_of_constructors" (str "Not an inductive goal with " ++ int n ++ str (String.plural n " constructor") ++ str ".") | _ -> () end; if i > nconstr then error "Not enough constructors." let constructor_core with_evars cstr lbind = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let (sigma, (cons, u)) = Evd.fresh_constructor_instance env sigma cstr in let cons = mkConstructU (cons, EInstance.make u) in let apply_tac = general_apply true false with_evars None (CAst.make (cons,lbind)) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) apply_tac end let constructor_tac with_evars expctdnumopt i lbind = Proofview.Goal.enter begin fun gl -> let cl = Tacmach.New.pf_concl gl in let ((ind,_),redcl) = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl cl in let nconstr = Array.length (snd (Global.lookup_inductive ind)).mind_consnames in check_number_of_constructors expctdnumopt i nconstr; Tacticals.New.tclTHENLIST [ convert_concl ~check:false redcl DEFAULTcast; intros; constructor_core with_evars (ind, i) lbind ] end let one_constructor i lbind = constructor_tac false None i lbind (* Try to apply the constructor of the inductive definition followed by a tactic t given as an argument. Should be generalize in Constructor (Fun c : I -> tactic) *) let any_constructor with_evars tacopt = let one_constr = let tac cstr = constructor_core with_evars cstr NoBindings in match tacopt with | None -> tac | Some t -> fun cstr -> Tacticals.New.tclTHEN (tac cstr) t in let rec any_constr ind n i () = if Int.equal i n then one_constr (ind,i) else Tacticals.New.tclORD (one_constr (ind,i)) (any_constr ind n (i + 1)) in Proofview.Goal.enter begin fun gl -> let cl = Tacmach.New.pf_concl gl in let (ind,_),redcl = Tacmach.New.pf_apply Tacred.reduce_to_quantified_ind gl cl in let nconstr = Array.length (snd (Global.lookup_inductive ind)).mind_consnames in if Int.equal nconstr 0 then error "The type has no constructors."; Tacticals.New.tclTHENLIST [ convert_concl ~check:false redcl DEFAULTcast; intros; any_constr ind nconstr 1 () ] end let left_with_bindings with_evars = constructor_tac with_evars (Some 2) 1 let right_with_bindings with_evars = constructor_tac with_evars (Some 2) 2 let split_with_bindings with_evars l = Tacticals.New.tclMAP (constructor_tac with_evars (Some 1) 1) l let left = left_with_bindings false let simplest_left = left NoBindings let right = right_with_bindings false let simplest_right = right NoBindings let split = constructor_tac false (Some 1) 1 let simplest_split = split NoBindings (*****************************) (* Decomposing introductions *) (*****************************) (* Rewriting function for rewriting one hypothesis at the time *) let (forward_general_rewrite_clause, general_rewrite_clause) = Hook.make () (* Rewriting function for substitution (x=t) everywhere at the same time *) let (forward_subst_one, subst_one) = Hook.make () let error_unexpected_extra_pattern loc bound pat = let _,nb = Option.get bound in let s1,s2,s3 = match pat with | IntroNaming (IntroIdentifier _) -> "name", (String.plural nb " introduction pattern"), "no" | _ -> "introduction pattern", "", "none" in user_err ?loc (str "Unexpected " ++ str s1 ++ str " (" ++ (if Int.equal nb 0 then (str s3 ++ str s2) else (str "at most " ++ int nb ++ str s2)) ++ spc () ++ str (if Int.equal nb 1 then "was" else "were") ++ strbrk " expected in the branch).") let intro_decomp_eq_function = ref (fun _ -> failwith "Not implemented") let declare_intro_decomp_eq f = intro_decomp_eq_function := f let my_find_eq_data_decompose gl t = try Some (find_eq_data_decompose gl t) with e when is_anomaly e (* Hack in case equality is not yet defined... one day, maybe, known equalities will be dynamically registered *) -> None | Constr_matching.PatternMatchingFailure -> None let intro_decomp_eq ?loc l thin tac id = Proofview.Goal.enter begin fun gl -> let c = mkVar id in let t = Tacmach.New.pf_unsafe_type_of gl c in let _,t = Tacmach.New.pf_reduce_to_quantified_ind gl t in match my_find_eq_data_decompose gl t with | Some (eq,u,eq_args) -> !intro_decomp_eq_function (fun n -> tac ((CAst.make id)::thin) (Some (true,n)) l) (eq,t,eq_args) (c, t) | None -> Tacticals.New.tclZEROMSG (str "Not a primitive equality here.") end let intro_or_and_pattern ?loc with_evars bracketed ll thin tac id = Proofview.Goal.enter begin fun gl -> let c = mkVar id in let t = Tacmach.New.pf_unsafe_type_of gl c in let (ind,t) = Tacmach.New.pf_reduce_to_quantified_ind gl t in let branchsigns = compute_constructor_signatures ~rec_flag:false ind in let nv_with_let = Array.map List.length branchsigns in let ll = fix_empty_or_and_pattern (Array.length branchsigns) ll in let ll = get_and_check_or_and_pattern ?loc ll branchsigns in Tacticals.New.tclTHENLASTn (Tacticals.New.tclTHEN (simplest_ecase c) (clear [id])) (Array.map2 (fun n l -> tac thin (Some (bracketed,n)) l) nv_with_let ll) end let rewrite_hyp_then assert_style with_evars thin l2r id tac = let rew_on l2r = Hook.get forward_general_rewrite_clause l2r with_evars (mkVar id,NoBindings) in let subst_on l2r x rhs = Hook.get forward_subst_one true x (id,rhs,l2r) in let clear_var_and_eq id' = clear [id';id] in let early_clear id' thin = List.filter (fun {CAst.v=id} -> not (Id.equal id id')) thin in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let type_of = Tacmach.New.pf_unsafe_type_of gl in let whd_all = Tacmach.New.pf_apply whd_all gl in let t = whd_all (type_of (mkVar id)) in let eqtac, thin = match match_with_equality_type env sigma t with | Some (hdcncl,[_;lhs;rhs]) -> if l2r && isVar sigma lhs && not (occur_var env sigma (destVar sigma lhs) rhs) then let id' = destVar sigma lhs in subst_on l2r id' rhs, early_clear id' thin else if not l2r && isVar sigma rhs && not (occur_var env sigma (destVar sigma rhs) lhs) then let id' = destVar sigma rhs in subst_on l2r id' lhs, early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | Some (hdcncl,[c]) -> let l2r = not l2r in (* equality of the form eq_true *) if isVar sigma c then let id' = destVar sigma c in Tacticals.New.tclTHEN (rew_on l2r allHypsAndConcl) (clear_var_and_eq id'), early_clear id' thin else Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin | _ -> Tacticals.New.tclTHEN (rew_on l2r onConcl) (clear [id]), thin in (* Skip the side conditions of the rewriting step *) Tacticals.New.tclTHENFIRST eqtac (tac thin) end let prepare_naming ?loc = function | IntroIdentifier id -> NamingMustBe (CAst.make ?loc id) | IntroAnonymous -> NamingAvoid Id.Set.empty | IntroFresh id -> NamingBasedOn (id, Id.Set.empty) let rec explicit_intro_names = let open CAst in function | {v=IntroForthcoming _} :: l -> explicit_intro_names l | {v=IntroNaming (IntroIdentifier id)} :: l -> Id.Set.add id (explicit_intro_names l) | {v=IntroAction (IntroOrAndPattern l)} :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in let fold accu l = Id.Set.union accu (explicit_intro_names (l@l')) in List.fold_left fold Id.Set.empty ll | {v=IntroAction (IntroInjection l)} :: l' -> explicit_intro_names (l@l') | {v=IntroAction (IntroApplyOn (c,pat))} :: l' -> explicit_intro_names (pat::l') | {v=(IntroNaming (IntroAnonymous | IntroFresh _) | IntroAction (IntroWildcard | IntroRewrite _))} :: l -> explicit_intro_names l | [] -> Id.Set.empty let rec check_name_unicity env ok seen = let open CAst in function | {v=IntroForthcoming _} :: l -> check_name_unicity env ok seen l | {loc;v=IntroNaming (IntroIdentifier id)} :: l -> (try ignore (if List.mem_f Id.equal id ok then raise Not_found else lookup_named id env); user_err ?loc (Id.print id ++ str" is already used.") with Not_found -> if List.mem_f Id.equal id seen then user_err ?loc (Id.print id ++ str" is used twice.") else check_name_unicity env ok (id::seen) l) | {v=IntroAction (IntroOrAndPattern l)} :: l' -> let ll = match l with IntroAndPattern l -> [l] | IntroOrPattern ll -> ll in List.iter (fun l -> check_name_unicity env ok seen (l@l')) ll | {v=IntroAction (IntroInjection l)} :: l' -> check_name_unicity env ok seen (l@l') | {v=IntroAction (IntroApplyOn (c,pat))} :: l' -> check_name_unicity env ok seen (pat::l') | {v=(IntroNaming (IntroAnonymous | IntroFresh _) | IntroAction (IntroWildcard | IntroRewrite _))} :: l -> check_name_unicity env ok seen l | [] -> () let wild_id = Id.of_string "_tmp" let rec list_mem_assoc_right id = function | [] -> false | {CAst.v=id'}::l -> Id.equal id id' || list_mem_assoc_right id l let check_thin_clash_then id thin avoid tac = if list_mem_assoc_right id thin then let newid = next_ident_away (add_suffix id "'") avoid in let thin = List.map CAst.(map (fun id' -> if Id.equal id id' then newid else id')) thin in Tacticals.New.tclTHEN (rename_hyp [id,newid]) (tac thin) else tac thin let make_tmp_naming avoid l = function (* In theory, we could use a tmp id like "wild_id" for all actions but we prefer to avoid it to avoid this kind of "ugly" names *) (* Alternatively, we could have called check_thin_clash_then on IntroAnonymous, but at the cost of a "renaming"; Note that in the case of IntroFresh, we should use check_thin_clash_then anyway to prevent the case of an IntroFresh precisely using the wild_id *) | IntroWildcard -> NamingBasedOn (wild_id, Id.Set.union avoid (explicit_intro_names l)) | pat -> NamingAvoid(Id.Set.union avoid (explicit_intro_names ((CAst.make @@ IntroAction pat)::l))) let fit_bound n = function | None -> true | Some (use_bound,n') -> not use_bound || n = n' let exceed_bound n = function | None -> false | Some (use_bound,n') -> use_bound && n >= n' (* We delay thinning until the completion of the whole intros tactic to ensure that dependent hypotheses are cleared in the right dependency order (see BZ#1000); we use fresh names, not used in the tactic, for the hyps to clear *) (* In [intro_patterns_core b avoid ids thin destopt bound n tac patl]: [b]: compatibility flag, if false at toplevel, do not complete incomplete trailing toplevel or_and patterns (as in "intros []", see [bracketing_last_or_and_intro_pattern]) [avoid]: names to avoid when creating an internal name [ids]: collect introduced names for possible use by the [tac] continuation [thin]: collect names to erase at the end [destopt]: position in the context where to introduce the hypotheses [bound]: number of pending intros to do in the current or-and pattern, with remembering of [b] flag if at toplevel [n]: number of introduction done in the current or-and pattern [tac]: continuation tactic [patl]: introduction patterns to interpret *) let rec intro_patterns_core with_evars b avoid ids thin destopt bound n tac = function | [] when fit_bound n bound -> tac ids thin | [] -> (* Behave as IntroAnonymous *) intro_patterns_core with_evars b avoid ids thin destopt bound n tac [CAst.make @@ IntroNaming IntroAnonymous] | {CAst.loc;v=pat} :: l -> if exceed_bound n bound then error_unexpected_extra_pattern loc bound pat else match pat with | IntroForthcoming onlydeps -> intro_forthcoming_then_gen (NamingAvoid (Id.Set.union avoid (explicit_intro_names l))) destopt onlydeps n bound (fun ids -> intro_patterns_core with_evars b avoid ids thin destopt bound (n+List.length ids) tac l) | IntroAction pat -> intro_then_gen (make_tmp_naming avoid l pat) destopt true false (intro_pattern_action ?loc with_evars (b || not (List.is_empty l)) false pat thin destopt (fun thin bound' -> intro_patterns_core with_evars b avoid ids thin destopt bound' 0 (fun ids thin -> intro_patterns_core with_evars b avoid ids thin destopt bound (n+1) tac l))) | IntroNaming pat -> intro_pattern_naming loc with_evars b avoid ids pat thin destopt bound (n+1) tac l (* Pi-introduction rule, used backwards *) and intro_pattern_naming loc with_evars b avoid ids pat thin destopt bound n tac l = match pat with | IntroIdentifier id -> check_thin_clash_then id thin avoid (fun thin -> intro_then_gen (NamingMustBe CAst.(make ?loc id)) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l)) | IntroAnonymous -> intro_then_gen (NamingAvoid (Id.Set.union avoid (explicit_intro_names l))) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l) | IntroFresh id -> (* todo: avoid thinned names to interfere with generation of fresh name *) intro_then_gen (NamingBasedOn (id, Id.Set.union avoid (explicit_intro_names l))) destopt true false (fun id -> intro_patterns_core with_evars b avoid (id::ids) thin destopt bound n tac l) and intro_pattern_action ?loc with_evars b style pat thin destopt tac id = match pat with | IntroWildcard -> tac (CAst.(make ?loc id)::thin) None [] | IntroOrAndPattern ll -> intro_or_and_pattern ?loc with_evars b ll thin tac id | IntroInjection l' -> intro_decomp_eq ?loc l' thin tac id | IntroRewrite l2r -> rewrite_hyp_then style with_evars thin l2r id (fun thin -> tac thin None []) | IntroApplyOn ({CAst.loc=loc';v=f},{CAst.loc;v=pat}) -> let naming,tac_ipat = prepare_intros ?loc with_evars (IntroIdentifier id) destopt pat in let doclear = if naming = NamingMustBe (CAst.make ?loc id) then Proofview.tclUNIT () (* apply_in_once do a replacement *) else clear [id] in let f env sigma = let (sigma, c) = f env sigma in (sigma,(c, NoBindings)) in apply_in_delayed_once true true with_evars naming id (None,CAst.make ?loc:loc' f) (fun id -> Tacticals.New.tclTHENLIST [doclear; tac_ipat id; tac thin None []]) and prepare_intros ?loc with_evars dft destopt = function | IntroNaming ipat -> prepare_naming ?loc ipat, (fun id -> move_hyp id destopt) | IntroAction ipat -> prepare_naming ?loc dft, (let tac thin bound = intro_patterns_core with_evars true Id.Set.empty [] thin destopt bound 0 (fun _ l -> clear_wildcards l) in fun id -> intro_pattern_action ?loc with_evars true true ipat [] destopt tac id) | IntroForthcoming _ -> user_err ?loc (str "Introduction pattern for one hypothesis expected.") let intro_patterns_head_core with_evars b destopt bound pat = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in check_name_unicity env [] [] pat; intro_patterns_core with_evars b Id.Set.empty [] [] destopt bound 0 (fun _ l -> clear_wildcards l) pat end let intro_patterns_bound_to with_evars n destopt = intro_patterns_head_core with_evars true destopt (Some (true,n)) let intro_patterns_to with_evars destopt = intro_patterns_head_core with_evars (use_bracketing_last_or_and_intro_pattern ()) destopt None let intro_pattern_to with_evars destopt pat = intro_patterns_to with_evars destopt [CAst.make pat] let intro_patterns with_evars = intro_patterns_to with_evars MoveLast (* Implements "intros" *) let intros_patterns with_evars = function | [] -> intros | l -> intro_patterns_to with_evars MoveLast l (**************************) (* Forward reasoning *) (**************************) let prepare_intros_opt with_evars dft destopt = function | None -> prepare_naming dft, (fun _id -> Proofview.tclUNIT ()) | Some {CAst.loc;v=ipat} -> prepare_intros ?loc with_evars dft destopt ipat let ipat_of_name = function | Anonymous -> None | Name id -> Some (CAst.make @@ IntroNaming (IntroIdentifier id)) let head_ident sigma c = let c = fst (decompose_app sigma (snd (decompose_lam_assum sigma c))) in if isVar sigma c then Some (destVar sigma c) else None let assert_as first hd ipat t = let naming,tac = prepare_intros_opt false IntroAnonymous MoveLast ipat in let repl = do_replace hd naming in let tac = if repl then (fun id -> Proofview.tclUNIT ()) else tac in if first then assert_before_then_gen repl naming t tac else assert_after_then_gen repl naming t tac (* apply in as *) let general_apply_in ?(respect_opaque=false) with_delta with_destruct with_evars id lemmas ipat = let tac (naming,lemma) tac id = apply_in_delayed_once ~respect_opaque with_delta with_destruct with_evars naming id lemma tac in Proofview.Goal.enter begin fun gl -> let destopt = if with_evars then MoveLast (* evars would depend on the whole context *) else ( let env, sigma = Proofview.Goal.(env gl, sigma gl) in get_previous_hyp_position env sigma id (Proofview.Goal.hyps gl) ) in let naming,ipat_tac = prepare_intros_opt with_evars (IntroIdentifier id) destopt ipat in let lemmas_target, last_lemma_target = let last,first = List.sep_last lemmas in List.map (fun lem -> (NamingMustBe (CAst.make id),lem)) first, (naming,last) in (* We chain apply_in_once, ending with an intro pattern *) List.fold_right tac lemmas_target (tac last_lemma_target ipat_tac) id end (* if sidecond_first then (* Skip the side conditions of the applied lemma *) Tacticals.New.tclTHENLAST (tclMAPLAST tac lemmas_target) (ipat_tac id) else Tacticals.New.tclTHENFIRST (tclMAPFIRST tac lemmas_target) (ipat_tac id) *) let apply_in simple with_evars id lemmas ipat = let lemmas = List.map (fun (k,{CAst.loc;v=l}) -> k, CAst.make ?loc (fun _ sigma -> (sigma,l))) lemmas in general_apply_in simple simple with_evars id lemmas ipat let apply_delayed_in simple with_evars id lemmas ipat = general_apply_in ~respect_opaque:true simple simple with_evars id lemmas ipat (*****************************) (* Tactics abstracting terms *) (*****************************) (* Implementation without generalisation: abbrev will be lost in hyps in *) (* in the extracted proof *) let decode_hyp = function | None -> MoveLast | Some id -> MoveAfter id (* [letin_tac b (... abstract over c ...) gl] transforms [...x1:T1(c),...,x2:T2(c),... |- G(c)] into [...x:T;Heqx:(x=c);x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is false or [...x:=c:T;x1:T1(x),...,x2:T2(x),... |- G(x)] if [b] is true *) let letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let (sigma, t) = match ty with | Some t -> (sigma, t) | None -> let t = typ_of env sigma c in Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t in let (sigma, (newcl, eq_tac)) = match with_eq with | Some (lr,{CAst.loc;v=ido}) -> let heq = match ido with | IntroAnonymous -> new_fresh_id (Id.Set.singleton id) (add_prefix "Heq" id) gl | IntroFresh heq_base -> new_fresh_id (Id.Set.singleton id) heq_base gl | IntroIdentifier id -> id in let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let term = mkNamedLetIn (make_annot id Sorts.Relevant) c t (mkLetIn (make_annot (Name heq) Sorts.Relevant, refl, eq, ccl)) in let sigma, _ = Typing.type_of env sigma term in let ans = term, Tacticals.New.tclTHENLIST [ intro_gen (NamingMustBe CAst.(make ?loc heq)) (decode_hyp lastlhyp) true false; clear_body [heq;id]] in (sigma, ans) | None -> (sigma, (mkNamedLetIn (make_annot id Sorts.Relevant) c t ccl, Proofview.tclUNIT ())) in Tacticals.New.tclTHENLIST [ Proofview.Unsafe.tclEVARS sigma; convert_concl ~check:false newcl DEFAULTcast; intro_gen (NamingMustBe (CAst.make id)) (decode_hyp lastlhyp) true false; Tacticals.New.tclMAP (convert_hyp ~check:false ~reorder:false) depdecls; eq_tac ] end let insert_before decls lasthyp env = match lasthyp with | None -> push_named_context decls env | Some id -> Environ.fold_named_context (fun _ d env -> let d = map_named_decl EConstr.of_constr d in let env = if Id.equal id (NamedDecl.get_id d) then push_named_context decls env else env in push_named d env) ~init:(reset_context env) env let mk_eq_name env id {CAst.loc;v=ido} = match ido with | IntroAnonymous -> fresh_id_in_env (Id.Set.singleton id) (add_prefix "Heq" id) env | IntroFresh heq_base -> fresh_id_in_env (Id.Set.singleton id) heq_base env | IntroIdentifier id -> if List.mem id (ids_of_named_context (named_context env)) then user_err ?loc (Id.print id ++ str" is already used."); id (* unsafe *) let mkletin_goal env sigma with_eq dep (id,lastlhyp,ccl,c) ty = let open Context.Named.Declaration in let t = match ty with Some t -> t | _ -> typ_of env sigma c in let r = Retyping.relevance_of_type env sigma t in let decl = if dep then LocalDef (make_annot id r,c,t) else LocalAssum (make_annot id r,t) in match with_eq with | Some (lr,heq) -> let eqdata = build_coq_eq_data () in let args = if lr then [t;mkVar id;c] else [t;c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let newenv = insert_before [LocalAssum (make_annot heq Sorts.Relevant,eq); decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn (make_annot id r) c t (mkNamedLetIn (make_annot heq Sorts.Relevant) refl eq x)) | None -> let newenv = insert_before [decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn (make_annot id r) c t x) let pose_tac na c = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let hyps = named_context_val env in let concl = Proofview.Goal.concl gl in let t = typ_of env sigma c in let (sigma, t) = Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma t in let id = match na with | Name id -> let () = if mem_named_context_val id hyps then user_err (str "Variable " ++ Id.print id ++ str " is already declared.") in id | Anonymous -> let id = id_of_name_using_hdchar env sigma t Anonymous in next_ident_away_in_goal id (ids_of_named_context_val hyps) in Proofview.Unsafe.tclEVARS sigma <*> Refine.refine ~typecheck:false begin fun sigma -> (* TODO relevance *) let id = make_annot id Sorts.Relevant in let nhyps = EConstr.push_named_context_val (NamedDecl.LocalDef (id, c, t)) hyps in let (sigma, ev) = Evarutil.new_pure_evar nhyps sigma concl in let inst = Array.map_of_list (fun d -> mkVar (get_id d)) (named_context env) in let body = mkEvar (ev, Array.append [|mkRel 1|] inst) in (sigma, mkLetIn (map_annot Name.mk_name id, c, t, body)) end end let letin_tac with_eq id c ty occs = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let abs = AbstractExact (id,c,ty,occs,true) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in (* We keep the original term to match but record the potential side-effects of unifying universes. *) let (sigma, c) = match res with | None -> (sigma, c) | Some (sigma, _) -> (sigma, c) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) ty) end let letin_pat_tac with_evars with_eq id c occs = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check t = true in let abs = AbstractPattern (false,check,id,c,occs,false) in let (id,_,depdecls,lastlhyp,ccl,res) = make_abstraction env sigma ccl abs in let (sigma, c) = match res with | None -> finish_evar_resolution ~flags:(tactic_infer_flags with_evars) env sigma c | Some res -> res in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (letin_tac_gen with_eq (id,depdecls,lastlhyp,ccl,c) None) end (* Tactics "pose proof" (usetac=None) and "assert"/"enough" (otherwise) *) let forward b usetac ipat c = match usetac with | None -> Proofview.Goal.enter begin fun gl -> let t = Tacmach.New.pf_get_type_of gl c in let sigma = Tacmach.New.project gl in let hd = head_ident sigma c in Tacticals.New.tclTHENFIRST (assert_as true hd ipat t) (exact_no_check c) end | Some tac -> let tac = match tac with | None -> Tacticals.New.tclIDTAC | Some tac -> Tacticals.New.tclCOMPLETE tac in if b then Tacticals.New.tclTHENFIRST (assert_as b None ipat c) tac else Tacticals.New.tclTHENS3PARTS (assert_as b None ipat c) [||] tac [|Tacticals.New.tclIDTAC|] let pose_proof na c = forward true None (ipat_of_name na) c let assert_by na t tac = forward true (Some (Some tac)) (ipat_of_name na) t let enough_by na t tac = forward false (Some (Some tac)) (ipat_of_name na) t (***************************) (* Generalization tactics *) (***************************) (* Compute a name for a generalization *) let generalized_name env sigma c t ids cl = function | Name id as na -> if Id.List.mem id ids then user_err (Id.print id ++ str " is already used."); na | Anonymous -> match EConstr.kind sigma c with | Var id -> (* Keep the name even if not occurring: may be used by intros later *) Name id | _ -> if noccurn sigma 1 cl then Anonymous else (* On ne s'etait pas casse la tete : on avait pris pour nom de variable la premiere lettre du type, meme si "c" avait ete une constante dont on aurait pu prendre directement le nom *) named_hd env sigma t Anonymous (* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing [forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai] but only those at [occs] in [T] *) let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl = let open Context.Rel.Declaration in let decls,cl = decompose_prod_n_assum sigma i cl in let dummy_prod = it_mkProd_or_LetIn mkProp decls in let newdecls,_ = decompose_prod_n_assum sigma i (subst_term_gen sigma EConstr.eq_constr_nounivs c dummy_prod) in let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in let na = generalized_name env sigma c t ids cl' na in let r = Retyping.relevance_of_type env sigma t in let decl = match b with | None -> LocalAssum (make_annot na r,t) | Some b -> LocalDef (make_annot na r,b,t) in mkProd_or_LetIn decl cl', sigma' let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) = let open Tacmach.New in let env = pf_env gl in let ids = pf_ids_of_hyps gl in let sigma, t = Typing.type_of env sigma c in generalize_goal_gen env sigma ids i o t cl let generalize_dep ?(with_let=false) c = let open Tacmach.New in let open Tacticals.New in Proofview.Goal.enter begin fun gl -> let env = pf_env gl in let sign = Proofview.Goal.hyps gl in let sigma = project gl in let init_ids = ids_of_named_context (Global.named_context()) in let seek (d:named_declaration) (toquant:named_context) = if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant || dependent_in_decl sigma c d then d::toquant else toquant in let to_quantify = Context.Named.fold_outside seek sign ~init:[] in let to_quantify_rev = List.rev to_quantify in let qhyps = List.map NamedDecl.get_id to_quantify_rev in let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in let tothin' = match EConstr.kind sigma c with | Var id when mem_named_context_val id (val_of_named_context sign) && not (Id.List.mem id init_ids) -> id::tothin | _ -> tothin in let cl' = it_mkNamedProd_or_LetIn (pf_concl gl) to_quantify in let is_var, body = match EConstr.kind sigma c with | Var id -> let body = NamedDecl.get_value (pf_get_hyp id gl) in let is_var = Option.is_empty body && not (List.mem id init_ids) in if with_let then is_var, body else is_var, None | _ -> false, None in let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous) (cl',project gl) in (* Check that the generalization is indeed well-typed *) let evd = (* No need to retype for variables, term is statically well-typed *) if is_var then evd else fst (Typing.type_of env evd cl'') in let args = Context.Named.to_instance mkVar to_quantify_rev in tclTHENLIST [ Proofview.Unsafe.tclEVARS evd; apply_type ~typecheck:false cl'' (if Option.is_empty body then c::args else args); clear (List.rev tothin')] end (** *) let generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let newcl, evd = List.fold_right_i (generalize_goal gl) 0 lconstr (Tacmach.New.pf_concl gl,Tacmach.New.project gl) in let (evd, _) = Typing.type_of env evd newcl in let map ((_, c, b),_) = if Option.is_empty b then Some c else None in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (apply_type ~typecheck:false newcl (List.map_filter map lconstr)) end let new_generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let ids = Tacmach.New.pf_ids_of_hyps gl in let newcl, sigma, args = List.fold_right_i (fun i ((_,c,b),_ as o) (cl, sigma, args) -> let sigma, t = Typing.type_of env sigma c in let args = if Option.is_empty b then c :: args else args in let cl, sigma = generalize_goal_gen env sigma ids i o t cl in (cl, sigma, args)) 0 lconstr (concl, sigma, []) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, applist (ev, args)) end) end let generalize_gen lconstr = generalize_gen_let (List.map (fun (occs_c,na) -> let (occs,c) = Redexpr.out_with_occurrences occs_c in (occs,c,None),na) lconstr) let new_generalize_gen lconstr = new_generalize_gen_let (List.map (fun ((occs,c),na) -> (occs,c,None),na) lconstr) let generalize l = new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l) (* Faudra-t-il une version avec plusieurs args de generalize_dep ? Cela peut-être troublant de faire "Generalize Dependent H n" dans "n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la généralisation dépendante par n. let quantify lconstr = List.fold_right (fun com tac -> tclTHEN tac (tactic_com generalize_dep c)) lconstr tclIDTAC *) (* Modifying/Adding an hypothesis *) (* Instantiating some arguments (whatever their position) of an hypothesis or any term, leaving other arguments quantified. If operating on an hypothesis of the goal, the new hypothesis replaces it. (c,lbind) are supposed to be of the form ((t t1 t2 ... tm) , someBindings) in which case we pose a proof with body (fun y1...yp => H t1 t2 ... tm u1 ... uq) where yi are the remaining arguments of H that lbind could not resolve, ui are a mix of inferred args and yi. The overall effect is to remove from H as much quantification as possible given lbind. *) let specialize (c,lbind) ipat = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sigma, term = if lbind == NoBindings then sigma, c else let typ_of_c = Retyping.get_type_of env sigma c in (* If the term is lambda then we put a letin to put avoid interaction between the term and the bindings. *) let c = match EConstr.kind sigma c with | Lambda _ -> mkLetIn(make_annot Name.Anonymous Sorts.Relevant, c, typ_of_c, (mkRel 1)) | _ -> c in let clause = make_clenv_binding env sigma (c,typ_of_c) lbind in let flags = { (default_unify_flags ()) with resolve_evars = true } in let clause = clenv_unify_meta_types ~flags clause in let sigma = clause.evd in let (thd,tstack) = whd_nored_stack sigma (clenv_value clause) in let c_hd , c_args = decompose_app sigma c in let liftrel x = match kind sigma x with | Rel n -> mkRel (n+1) | _ -> x in (* We grab names used in product to remember them at re-abstracting phase *) let typ_of_c_hd = pf_get_type_of gl c_hd in let lprod, concl = decompose_prod_assum sigma typ_of_c_hd in (* accumulator args: arguments to apply to c_hd: all inferred args + re-abstracted rels *) let rec rebuild_lambdas sigma lprd args hd l = match lprd , l with | _, [] -> sigma,applist (hd, (List.map (nf_evar sigma) args)) | Context.Rel.Declaration.LocalAssum(nme,_)::lp' , t::l' when occur_meta sigma t -> (* nme has not been resolved, let us re-abstract it. Same name but type updated by instantiation of other args. *) let sigma,new_typ_of_t = Typing.type_of clause.env sigma t in let r = Retyping.relevance_of_type env sigma new_typ_of_t in let liftedargs = List.map liftrel args in (* lifting rels in the accumulator args *) let sigma,hd' = rebuild_lambdas sigma lp' (liftedargs@[mkRel 1 ]) hd l' in (* replace meta variable by the abstracted variable *) let hd'' = subst_term sigma t hd' in (* lambda expansion *) sigma,mkLambda ({nme with binder_relevance=r},new_typ_of_t,hd'') | Context.Rel.Declaration.LocalAssum _::lp' , t::l' -> let sigma,hd' = rebuild_lambdas sigma lp' (args@[t]) hd l' in sigma,hd' | _ ,_ -> assert false in let sigma,hd = rebuild_lambdas sigma (List.rev lprod) [] c_hd tstack in Evd.clear_metas sigma, hd in let typ = Retyping.get_type_of env sigma term in let tac = match EConstr.kind sigma (fst(EConstr.decompose_app sigma (snd(EConstr.decompose_lam_assum sigma c)))) with | Var id when Id.List.mem id (Tacmach.New.pf_ids_of_hyps gl) -> (* Like assert (id:=id args) but with the concept of specialization *) let naming,tac = prepare_intros_opt false (IntroIdentifier id) MoveLast ipat in let repl = do_replace (Some id) naming in Tacticals.New.tclTHENFIRST (assert_before_then_gen repl naming typ tac) (exact_no_check term) | _ -> match ipat with | None -> (* Like generalize with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) (* TODO: add intro to be more homogeneous. It will break scripts but will be easy to fix *) (Tacticals.New.tclTHENLAST (cut typ) (exact_no_check term)) | Some {CAst.loc;v=ipat} -> (* Like pose proof with extra support for "with" bindings *) (* even though the "with" bindings forces full application *) let naming,tac = prepare_intros ?loc false IntroAnonymous MoveLast ipat in Tacticals.New.tclTHENFIRST (assert_before_then_gen false naming typ tac) (exact_no_check term) in Tacticals.New.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end (*****************************) (* Ad hoc unfold *) (*****************************) (* The two following functions should already exist, but found nowhere *) (* Unfolds x by its definition everywhere *) let unfold_body x = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> (* We normalize the given hypothesis immediately. *) let env = Proofview.Goal.env gl in let xval = match Environ.lookup_named x env with | LocalAssum _ -> user_err ~hdr:"unfold_body" (Id.print x ++ str" is not a defined hypothesis.") | LocalDef (_,xval,_) -> xval in let xval = EConstr.of_constr xval in Tacticals.New.afterHyp x begin fun aft -> let hl = List.fold_right (fun decl cl -> (NamedDecl.get_id decl, InHyp) :: cl) aft [] in let rfun _ _ c = replace_vars [x, xval] c in let reducth h = reduct_in_hyp ~check:false ~reorder:false rfun h in let reductc = reduct_in_concl ~check:false (rfun, DEFAULTcast) in Tacticals.New.tclTHENLIST [Tacticals.New.tclMAP reducth hl; reductc] end end let warn_cannot_remove_as_expected = CWarnings.create ~name:"cannot-remove-as-expected" ~category:"tactics" (fun (id,inglobal) -> let pp = match inglobal with | None -> mt () | Some ref -> str ", it is used implicitly in " ++ Printer.pr_global ref in str "Cannot remove " ++ Id.print id ++ pp ++ str ".") let clear_for_destruct ids = Proofview.tclORELSE (clear_gen (fun env sigma id err inglobal -> raise (ClearDependencyError (id,err,inglobal))) ids) (function | ClearDependencyError (id,err,inglobal),_ -> warn_cannot_remove_as_expected (id,inglobal); Proofview.tclUNIT () | e -> iraise e) (* Either unfold and clear if defined or simply clear if not a definition *) let expand_hyp id = Tacticals.New.tclTRY (unfold_body id) <*> clear_for_destruct [id] (*****************************) (* High-level induction *) (*****************************) (* * A "natural" induction tactic * - [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal - [hyp0] is the induction hypothesis - we extract from [args] the variables which are not rigid parameters of the inductive type, this is [indvars] (other terms are forgotten); - we look for all hyps depending of [hyp0] or one of [indvars]: this is [dephyps] of types [deptyps] respectively - [statuslist] tells for each hyps in [dephyps] after which other hyp fixed in the context they must be moved (when induction is done) - [hyp0succ] is the name of the hyp fixed in the context after which to move the subterms of [hyp0succ] in the i-th branch where it is supposed to be the i-th constructor of the inductive type. Strategy: (cf in [induction_with_atomization_of_ind_arg]) - requantify and clear all [dephyps] - apply induction on [hyp0] - clear those of [indvars] that are variables and [hyp0] - in the i-th subgoal, intro the arguments of the i-th constructor of the inductive type after [hyp0succ] (done in [induct_discharge]) let the induction hypotheses on top of the hyps because they may depend on variables between [hyp0] and the top. A counterpart is that the dep hyps programmed to be intro-ed on top must now be intro-ed after the induction hypotheses - move each of [dephyps] at the right place following the [statuslist] *) let warn_unused_intro_pattern env sigma = CWarnings.create ~name:"unused-intro-pattern" ~category:"tactics" (fun names -> strbrk"Unused introduction " ++ str (String.plural (List.length names) "pattern") ++ str": " ++ prlist_with_sep spc (Miscprint.pr_intro_pattern (fun c -> Printer.pr_econstr_env env sigma (snd (c env sigma)))) names) let check_unused_names env sigma names = if not (List.is_empty names) then warn_unused_intro_pattern env sigma names let intropattern_of_name gl avoid = function | Anonymous -> IntroNaming IntroAnonymous | Name id -> IntroNaming (IntroIdentifier (new_fresh_id avoid id gl)) let rec consume_pattern avoid na isdep gl = let open CAst in function | [] -> ((CAst.make @@ intropattern_of_name gl avoid na), []) | {loc;v=IntroForthcoming true}::names when not isdep -> consume_pattern avoid na isdep gl names | {loc;v=IntroForthcoming _}::names as fullpat -> let avoid = Id.Set.union avoid (explicit_intro_names names) in (CAst.make ?loc @@ intropattern_of_name gl avoid na, fullpat) | {loc;v=IntroNaming IntroAnonymous}::names -> let avoid = Id.Set.union avoid (explicit_intro_names names) in (CAst.make ?loc @@ intropattern_of_name gl avoid na, names) | {loc;v=IntroNaming (IntroFresh id')}::names -> let avoid = Id.Set.union avoid (explicit_intro_names names) in (CAst.make ?loc @@ IntroNaming (IntroIdentifier (new_fresh_id avoid id' gl)), names) | pat::names -> (pat,names) let re_intro_dependent_hypotheses (lstatus,rstatus) (_,tophyp) = let tophyp = match tophyp with None -> MoveLast | Some hyp -> MoveAfter hyp in let newlstatus = (* if some IH has taken place at the top of hyps *) List.map (function (hyp,MoveLast) -> (hyp,tophyp) | x -> x) lstatus in Tacticals.New.tclTHEN (intros_move rstatus) (intros_move newlstatus) let dest_intro_patterns with_evars avoid thin dest pat tac = intro_patterns_core with_evars true avoid [] thin dest None 0 tac pat let safe_dest_intro_patterns with_evars avoid thin dest pat tac = Proofview.tclORELSE (dest_intro_patterns with_evars avoid thin dest pat tac) begin function (e, info) -> match e with | UserError (Some "move_hyp",_) -> (* May happen e.g. with "destruct x using s" with an hypothesis which is morally an induction hypothesis to be "MoveLast" if known as such but which is considered instead as a subterm of a constructor to be move at the place of x. *) dest_intro_patterns with_evars avoid thin MoveLast pat tac | e -> Proofview.tclZERO ~info e end type elim_arg_kind = RecArg | IndArg | OtherArg type recarg_position = | AfterFixedPosition of Id.t option (* None = top of context *) let update_dest (recargdests,tophyp as dests) = function | [] -> dests | hyp::_ -> (match recargdests with | AfterFixedPosition None -> AfterFixedPosition (Some hyp) | x -> x), (match tophyp with None -> Some hyp | x -> x) let get_recarg_dest (recargdests,tophyp) = match recargdests with | AfterFixedPosition None -> MoveLast | AfterFixedPosition (Some id) -> MoveAfter id (* Current policy re-introduces recursive arguments of destructed variable at the place of the original variable while induction hypothesese are introduced at the top of the context. Since in the general case of an inductive scheme, the induction hypotheses can arrive just after the recursive arguments (e.g. as in "forall t1:tree, P t1 -> forall t2:tree, P t2 -> P (node t1 t2)", we need to update the position for t2 after "P t1" is introduced if ever t2 had to be introduced at the top of the context). *) let induct_discharge with_evars dests avoid' tac (avoid,ra) names = let avoid = Id.Set.union avoid avoid' in let rec peel_tac ra dests names thin = match ra with | (RecArg,_,deprec,recvarname) :: (IndArg,_,depind,hyprecname) :: ra' -> Proofview.Goal.enter begin fun gl -> let (recpat,names) = match names with | [{CAst.loc;v=IntroNaming (IntroIdentifier id)} as pat] -> let id' = next_ident_away (add_prefix "IH" id) avoid in (pat, [CAst.make @@ IntroNaming (IntroIdentifier id')]) | _ -> consume_pattern avoid (Name recvarname) deprec gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [recpat] (fun ids thin -> Proofview.Goal.enter begin fun gl -> let (hyprec,names) = consume_pattern avoid (Name hyprecname) depind gl names in dest_intro_patterns with_evars avoid thin MoveLast [hyprec] (fun ids' thin -> peel_tac ra' (update_dest dests ids') names thin) end) end | (IndArg,_,dep,hyprecname) :: ra' -> Proofview.Goal.enter begin fun gl -> (* Rem: does not happen in Coq schemes, only in user-defined schemes *) let pat,names = consume_pattern avoid (Name hyprecname) dep gl names in dest_intro_patterns with_evars avoid thin MoveLast [pat] (fun ids thin -> peel_tac ra' (update_dest dests ids) names thin) end | (RecArg,_,dep,recvarname) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid (Name recvarname) dep gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | (OtherArg,_,dep,_) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid Anonymous dep gl names in let dest = get_recarg_dest dests in safe_dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | [] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in check_unused_names env sigma names; Tacticals.New.tclTHEN (clear_wildcards thin) (tac dests) end in peel_tac ra dests names [] (* - le recalcul de indtyp à chaque itération de atomize_one est pour ne pas s'embêter à regarder si un letin_tac ne fait pas des substitutions aussi sur l'argument voisin *) let expand_projections env sigma c = let rec aux env c = match EConstr.kind sigma c with | Proj (p, c) -> Retyping.expand_projection env sigma p (aux env c) [] | _ -> map_constr_with_full_binders sigma push_rel aux env c in aux env c (* Marche pas... faut prendre en compte l'occurrence précise... *) let atomize_param_of_ind_then (indref,nparams,_) hyp0 tac = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let reduce_to_quantified_ref = Tacmach.New.pf_apply reduce_to_quantified_ref gl in let typ0 = reduce_to_quantified_ref indref tmptyp0 in let prods, indtyp = decompose_prod_assum sigma typ0 in let hd,argl = decompose_app sigma indtyp in let env' = push_rel_context prods env in let params = List.firstn nparams argl in let params' = List.map (expand_projections env' sigma) params in (* le gl est important pour ne pas préévaluer *) let rec atomize_one i args args' avoid = if Int.equal i nparams then let t = applist (hd, params@args) in Tacticals.New.tclTHEN (change_in_hyp ~check:false None (make_change_arg t) (hyp0,InHypTypeOnly)) (tac avoid) else let c = List.nth argl (i-1) in match EConstr.kind sigma c with | Var id when not (List.exists (fun c -> occur_var env sigma id c) args') && not (List.exists (fun c -> occur_var env sigma id c) params') -> (* Based on the knowledge given by the user, all constraints on the variable are generalizable in the current environment so that it is clearable after destruction *) atomize_one (i-1) (c::args) (c::args') (Id.Set.add id avoid) | _ -> let c' = expand_projections env' sigma c in let dependent t = dependent sigma c t in if List.exists dependent params' || List.exists dependent args' then (* This is a case where the argument is constrained in a way which would require some kind of inversion; we follow the (old) discipline of not generalizing over this term, since we don't try to invert the constraint anyway. *) atomize_one (i-1) (c::args) (c'::args') avoid else (* We reason blindly on the term and do as if it were generalizable, ignoring the constraints coming from its structure *) let id = match EConstr.kind sigma c with | Var id -> id | _ -> let type_of = Tacmach.New.pf_unsafe_type_of gl in id_of_name_using_hdchar env sigma (type_of c) Anonymous in let x = fresh_id_in_env avoid id env in Tacticals.New.tclTHEN (letin_tac None (Name x) c None allHypsAndConcl) (atomize_one (i-1) (mkVar x::args) (mkVar x::args') (Id.Set.add x avoid)) in atomize_one (List.length argl) [] [] Id.Set.empty end (* [cook_sign] builds the lists [beforetoclear] (preceding the ind. var.) and [aftertoclear] (coming after the ind. var.) of hyps that must be erased, the lists of hyps to be generalize [decldeps] on the goal together with the places [(lstatus,rstatus)] where to re-intro them after induction. To know where to re-intro the dep hyp, we remember the name of the hypothesis [lhyp] after which (if the dep hyp is more recent than [hyp0]) or [rhyp] before which (if older than [hyp0]) its equivalent must be moved when the induction has been applied. Since computation of dependencies and [rhyp] is from more ancient (on the right) to more recent hyp (on the left) but the computation of [lhyp] progresses from the other way, [cook_hyp] is in two passes (an alternative would have been to write an higher-order algorithm). We use references to reduce the accumulation of arguments. To summarize, the situation looks like this Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat Left Right Induction hypothesis is H4 ([hyp0]) Variable parameters of (le O n) is the singleton list with "n" ([indvars]) The dependent hyps are H3 and H6 ([dephyps]) For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp]) because these names are among the hyp which are fixed through the induction For H6 the neighbours are None ([lhyp]) and H5 ([rhyp]) For H3, because on the right of H4, we remember rhyp (here H2) For H6, because on the left of H4, we remember lhyp (here None) For H4, we remember lhyp (here H5) The right neighbour is then translated into the left neighbour because move_hyp tactic needs the name of the hyp _after_ which we move the hyp to move. But, say in the 2nd subgoal of the hypotheses, the goal will be (m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^ both go where H4 was goes where goes where H3 was H6 was We have to intro and move m and the recursive hyp first, but then where to move H3 ??? Only the hyp on its right is relevant, but we have to translate it into the name of the hyp on the left Note: this case where some hyp(s) in [dephyps] has(have) the same left neighbour as [hyp0] is the only problematic case with right neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2 would have posed no problem. But for uniformity, we decided to use the right hyp for all hyps on the right of H4. Other solutions are welcome PC 9 fev 06: Adapted to accept multi argument principle with no main arg hyp. hyp0 is now optional, meaning that it is possible that there is no main induction hypotheses. In this case, we consider the last "parameter" (in [indvars]) as the limit between "left" and "right", BUT it must be included in indhyps. Other solutions are still welcome *) exception Shunt of Id.t move_location let cook_sign hyp0_opt inhyps indvars env sigma = (* First phase from L to R: get [toclear], [decldep] and [statuslist] for the hypotheses before (= more ancient than) hyp0 (see above) *) let toclear = ref [] in let avoid = ref Id.Set.empty in let decldeps = ref [] in let ldeps = ref [] in let rstatus = ref [] in let lstatus = ref [] in let before = ref true in let maindep = ref false in let seek_deps env decl rhyp = let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then begin before:=false; (* Note that if there was no main induction hypotheses, then hyp is one of indvars too *) toclear := hyp::!toclear; MoveFirst (* fake value *) end else if Id.Set.mem hyp indvars then begin (* The variables in indvars are such that they don't occur any more after generalization, so declare them to clear. *) toclear := hyp::!toclear; rhyp end else let dephyp0 = List.is_empty inhyps && (Option.cata (fun id -> occur_var_in_decl env sigma id decl) false hyp0_opt) in let depother = List.is_empty inhyps && (Id.Set.exists (fun id -> occur_var_in_decl env sigma id decl) indvars || List.exists (fun decl' -> occur_var_in_decl env sigma (NamedDecl.get_id decl') decl) !decldeps) in if not (List.is_empty inhyps) && Id.List.mem hyp inhyps || dephyp0 || depother then begin decldeps := decl::!decldeps; avoid := Id.Set.add hyp !avoid; maindep := dephyp0 || !maindep; if !before then begin toclear := hyp::!toclear; rstatus := (hyp,rhyp)::!rstatus end else begin toclear := hyp::!toclear; ldeps := hyp::!ldeps (* status computed in 2nd phase *) end; MoveBefore hyp end else MoveBefore hyp in let _ = fold_named_context seek_deps env ~init:MoveFirst in (* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *) let compute_lstatus lhyp decl = let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then raise (Shunt lhyp); if Id.List.mem hyp !ldeps then begin lstatus := (hyp,lhyp)::!lstatus; lhyp end else if Id.List.mem hyp !toclear then lhyp else MoveAfter hyp in try let _ = fold_named_context_reverse compute_lstatus ~init:MoveLast env in raise (Shunt MoveLast) (* ?? FIXME *) with Shunt lhyp0 -> let lhyp0 = match lhyp0 with | MoveLast -> None | MoveAfter hyp -> Some hyp | _ -> assert false in let statuslists = (!lstatus,List.rev !rstatus) in let recargdests = AfterFixedPosition (if Option.is_empty hyp0_opt then None else lhyp0) in (statuslists, (recargdests,None), !toclear, !decldeps, !avoid, !maindep) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional argument added if even if HI principle generated by functional present above induction, only if HI does not exist [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...).*) (* [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimc: constr with_bindings option; elimt: types; indref: GlobRef.t option; params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (* number of parameters *) predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (* Number of predicates *) branches: rel_context; (* branchr,...,branch1 *) nbranches: int; (* Number of branches *) args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (* number of arguments *) indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (* Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (* true if HI appears at the end of conclusion *) farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *) } let empty_scheme = { elimc = None; elimt = mkProp; indref = None; params = []; nparams = 0; predicates = []; npredicates = 0; branches = []; nbranches = 0; args = []; nargs = 0; indarg = None; concl = mkProp; indarg_in_concl = false; farg_in_concl = false; } let make_base n id = if Int.equal n 0 || Int.equal n 1 then id else (* This extends the name to accept new digits if it already ends with *) (* digits *) Id.of_string (atompart_of_id (make_ident (Id.to_string id) (Some 0))) (* Builds two different names from an optional inductive type and a number, also deals with a list of names to avoid. If the inductive type is None, then hyprecname is IHi where i is a number. *) let make_up_names n ind_opt cname = let is_hyp = String.equal (atompart_of_id cname) "H" in let base = Id.to_string (make_base n cname) in let ind_prefix = "IH" in let base_ind = if is_hyp then match ind_opt with | None -> Id.of_string ind_prefix | Some ind_id -> add_prefix ind_prefix (Nametab.basename_of_global ind_id) else add_prefix ind_prefix cname in let hyprecname = make_base n base_ind in let avoid = if Int.equal n 1 (* Only one recursive argument *) || Int.equal n 0 then Id.Set.empty else (* Forbid to use cname, cname0, hyprecname and hyprecname0 *) (* in order to get names such as f1, f2, ... *) let avoid = Id.Set.add (make_ident (Id.to_string hyprecname) None) (Id.Set.singleton (make_ident (Id.to_string hyprecname) (Some 0))) in if not (String.equal (atompart_of_id cname) "H") then Id.Set.add (make_ident base (Some 0)) (Id.Set.add (make_ident base None) avoid) else avoid in Id.of_string base, hyprecname, avoid let error_ind_scheme s = let s = if not (String.is_empty s) then s^" " else s in user_err ~hdr:"Tactics" (str "Cannot recognize " ++ str s ++ str "an induction scheme.") let coq_eq sigma = Evarutil.new_global sigma Coqlib.(lib_ref "core.eq.type") let coq_eq_refl sigma = Evarutil.new_global sigma Coqlib.(lib_ref "core.eq.refl") let coq_heq_ref = lazy (Coqlib.lib_ref "core.JMeq.type") let coq_heq sigma = Evarutil.new_global sigma (Lazy.force coq_heq_ref) let coq_heq_refl sigma = Evarutil.new_global sigma (Coqlib.lib_ref "core.JMeq.refl") (* let coq_heq_refl = lazy (glob (lib_ref "core.JMeq.refl")) *) let mkEq sigma t x y = let sigma, eq = coq_eq sigma in sigma, mkApp (eq, [| t; x; y |]) let mkRefl sigma t x = let sigma, refl = coq_eq_refl sigma in sigma, mkApp (refl, [| t; x |]) let mkHEq sigma t x u y = let sigma, c = coq_heq sigma in sigma, mkApp (c,[| t; x; u; y |]) let mkHRefl sigma t x = let sigma, c = coq_heq_refl sigma in sigma, mkApp (c, [| t; x |]) let lift_togethern n l = let l', _ = List.fold_right (fun x (acc, n) -> (lift n x :: acc, succ n)) l ([], n) in l' let lift_list l = List.map (lift 1) l let ids_of_constr sigma ?(all=false) vars c = let rec aux vars c = match EConstr.kind sigma c with | Var id -> Id.Set.add id vars | App (f, args) -> (match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in Array.fold_left_from (if all then 0 else mib.Declarations.mind_nparams) aux vars args | _ -> EConstr.fold sigma aux vars c) | _ -> EConstr.fold sigma aux vars c in aux vars c let decompose_indapp sigma f args = match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Global.lookup_inductive ind in let first = mib.Declarations.mind_nparams_rec in let pars, args = Array.chop first args in mkApp (f, pars), args | _ -> f, args let mk_term_eq homogeneous env sigma ty t ty' t' = if homogeneous then let sigma, eq = mkEq sigma ty t t' in let sigma, refl = mkRefl sigma ty' t' in sigma, (eq, refl) else let sigma, heq = mkHEq sigma ty t ty' t' in let sigma, hrefl = mkHRefl sigma ty' t' in sigma, (heq, hrefl) let make_abstract_generalize env id typ concl dep ctx body c eqs args refls = let open Context.Rel.Declaration in Refine.refine ~typecheck:false begin fun sigma -> let eqslen = List.length eqs in (* Abstract by the "generalized" hypothesis equality proof if necessary. *) let sigma, abshypeq, abshypt = if dep then let ty = lift 1 c in let homogeneous = Reductionops.is_conv env sigma ty typ in let sigma, (eq, refl) = mk_term_eq homogeneous (push_rel_context ctx env) sigma ty (mkRel 1) typ (mkVar id) in sigma, mkProd (make_annot Anonymous Sorts.Relevant, eq, lift 1 concl), [| refl |] else sigma, concl, [||] in (* Abstract by equalities *) let eqs = lift_togethern 1 eqs in (* lift together and past genarg *) let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq) (List.map (fun x -> LocalAssum (make_annot Anonymous Sorts.Relevant, x)) eqs) in let r = Sorts.Relevant in (* TODO relevance *) let decl = match body with | None -> LocalAssum (make_annot (Name id) r, c) | Some body -> LocalDef (make_annot (Name id) r, body, c) in (* Abstract by the "generalized" hypothesis. *) let genarg = mkProd_or_LetIn decl abseqs in (* Abstract by the extension of the context *) let genctyp = it_mkProd_or_LetIn genarg ctx in (* The goal will become this product. *) let (sigma, genc) = Evarutil.new_evar env sigma ~principal:true genctyp in (* Apply the old arguments giving the proper instantiation of the hyp *) let instc = mkApp (genc, Array.of_list args) in (* Then apply to the original instantiated hyp. *) let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in (* Apply the reflexivity proofs on the indices. *) let appeqs = mkApp (instc, Array.of_list refls) in (* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *) (sigma, mkApp (appeqs, abshypt)) end let hyps_of_vars env sigma sign nogen hyps = if Id.Set.is_empty hyps then [] else let (_,lh) = Context.Named.fold_inside (fun (hs,hl) d -> let x = NamedDecl.get_id d in if Id.Set.mem x nogen then (hs,hl) else if Id.Set.mem x hs then (hs,x::hl) else let xvars = global_vars_set_of_decl env sigma d in if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then (Id.Set.add x hs, x :: hl) else (hs, hl)) ~init:(hyps,[]) sign in lh exception Seen let linear sigma vars args = let seen = ref vars in try Array.iter (fun i -> let rels = ids_of_constr sigma ~all:true Id.Set.empty i in let seen' = Id.Set.fold (fun id acc -> if Id.Set.mem id acc then raise Seen else Id.Set.add id acc) rels !seen in seen := seen') args; true with Seen -> false let is_defined_variable env id = env |> lookup_named id |> is_local_def let abstract_args gl generalize_vars dep id defined f args = let open Tacmach.New in let open Context.Rel.Declaration in let sigma = ref (Tacmach.New.project gl) in let env = Tacmach.New.pf_env gl in let concl = Tacmach.New.pf_concl gl in let dep = dep || local_occur_var !sigma id concl in let avoid = ref Id.Set.empty in let get_id name = let id = new_fresh_id !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") gl in avoid := Id.Set.add id !avoid; id in (* Build application generalized w.r.t. the argument plus the necessary eqs. From env |- c : forall G, T and args : G we build (T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize) eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *) *) let aux (prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars, env) arg = let name, ty_relevance, ty, arity = let rel, c = Reductionops.splay_prod_n env !sigma 1 prod in let decl = List.hd rel in RelDecl.get_name decl, RelDecl.get_relevance decl, RelDecl.get_type decl, c in let argty = Tacmach.New.pf_unsafe_type_of gl arg in let sigma', ty = Evarsolve.refresh_universes (Some true) env !sigma ty in let () = sigma := sigma' in let lenctx = List.length ctx in let liftargty = lift lenctx argty in let leq = constr_cmp !sigma Reduction.CUMUL liftargty ty in match EConstr.kind !sigma arg with | Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) -> (subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls, Id.Set.add id nongenvars, Id.Set.remove id vars, env) | _ -> let name = get_id name in let decl = LocalAssum (make_annot (Name name) ty_relevance, ty) in let ctx = decl :: ctx in let c' = mkApp (lift 1 c, [|mkRel 1|]) in let args = arg :: args in let liftarg = lift (List.length ctx) arg in let eq, refl = if leq then let sigma', eq = mkEq !sigma (lift 1 ty) (mkRel 1) liftarg in let sigma', refl = mkRefl sigma' (lift (-lenctx) ty) arg in sigma := sigma'; eq, refl else let sigma', eq = mkHEq !sigma (lift 1 ty) (mkRel 1) liftargty liftarg in let sigma', refl = mkHRefl sigma' argty arg in sigma := sigma'; eq, refl in let eqs = eq :: lift_list eqs in let refls = refl :: refls in let argvars = ids_of_constr !sigma vars arg in (arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, nongenvars, Id.Set.union argvars vars, env) in let f', args' = decompose_indapp !sigma f args in let dogen, f', args' = let parvars = ids_of_constr !sigma ~all:true Id.Set.empty f' in if not (linear !sigma parvars args') then true, f, args else match Array.findi (fun i x -> not (isVar !sigma x) || is_defined_variable env (destVar !sigma x)) args' with | None -> false, f', args' | Some nonvar -> let before, after = Array.chop nonvar args' in true, mkApp (f', before), after in if dogen then let tyf' = Tacmach.New.pf_unsafe_type_of gl f' in let arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars, env = Array.fold_left aux (tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty,env) args' in let args, refls = List.rev args, List.rev refls in let vars = if generalize_vars then let nogen = Id.Set.add id nogen in hyps_of_vars (pf_env gl) (project gl) (Proofview.Goal.hyps gl) nogen vars else [] in let body, c' = if defined then Some c', Retyping.get_type_of ctxenv !sigma c' else None, c' in let typ = Tacmach.New.pf_get_hyp_typ id gl in let tac = make_abstract_generalize (pf_env gl) id typ concl dep ctx body c' eqs args refls in let tac = Proofview.Unsafe.tclEVARS !sigma <*> tac in Some (tac, dep, succ (List.length ctx), vars) else None let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> Coqlib.(check_required_library jmeq_module_name); let sigma = Tacmach.New.project gl in let (f, args, def, id, oldid) = let oldid = Tacmach.New.pf_get_new_id id gl in match Tacmach.New.pf_get_hyp id gl with | LocalAssum (_,t) -> let f, args = decompose_app sigma t in (f, args, false, id, oldid) | LocalDef (_,t,_) -> let f, args = decompose_app sigma t in (f, args, true, id, oldid) in if List.is_empty args then Proofview.tclUNIT () else let args = Array.of_list args in let newc = abstract_args gl generalize_vars force_dep id def f args in match newc with | None -> Proofview.tclUNIT () | Some (tac, dep, n, vars) -> let tac = if dep then Tacticals.New.tclTHENLIST [ tac; rename_hyp [(id, oldid)]; Tacticals.New.tclDO n intro; generalize_dep ~with_let:true (mkVar oldid)] else Tacticals.New.tclTHENLIST [ tac; clear [id]; Tacticals.New.tclDO n intro] in if List.is_empty vars then tac else Tacticals.New.tclTHEN tac (Tacticals.New.tclFIRST [revert vars ; Tacticals.New.tclMAP (fun id -> Tacticals.New.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars]) end let compare_upto_variables sigma x y = let rec compare x y = if (isVar sigma x || isRel sigma x) && (isVar sigma y || isRel sigma y) then true else compare_constr sigma compare x y in compare x y let specialize_eqs id = let open Context.Rel.Declaration in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let ty = Tacmach.New.pf_get_hyp_typ id gl in let evars = ref (Proofview.Goal.sigma gl) in let unif env evars c1 c2 = compare_upto_variables !evars c1 c2 && (match Evarconv.unify_delay env !evars c1 c2 with | sigma -> evars := sigma; true | exception Evarconv.UnableToUnify _ -> false) in let rec aux in_eqs ctx acc ty = match EConstr.kind !evars ty with | Prod (na, t, b) -> (match EConstr.kind !evars t with | App (eq, [| eqty; x; y |]) when EConstr.is_global !evars Coqlib.(lib_ref "core.eq.type") eq -> let c = if noccur_between !evars 1 (List.length ctx) x then y else x in let pt = mkApp (eq, [| eqty; c; c |]) in let ind = destInd !evars eq in let p = mkApp (mkConstructUi (ind,0), [| eqty; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | App (heq, [| eqty; x; eqty'; y |]) when EConstr.is_global !evars (Lazy.force coq_heq_ref) heq -> let eqt, c = if noccur_between !evars 1 (List.length ctx) x then eqty', y else eqty, x in let pt = mkApp (heq, [| eqt; c; eqt; c |]) in let ind = destInd !evars heq in let p = mkApp (mkConstructUi (ind,0), [| eqt; c |]) in if unif (push_rel_context ctx env) evars pt t then aux true ctx (mkApp (acc, [| p |])) (subst1 p b) else acc, in_eqs, ctx, ty | _ -> if in_eqs then acc, in_eqs, ctx, ty else let sigma, e = Evarutil.new_evar (push_rel_context ctx env) !evars t in evars := sigma; aux false (LocalDef (na,e,t) :: ctx) (mkApp (lift 1 acc, [| mkRel 1 |])) b) | t -> acc, in_eqs, ctx, ty in let acc, worked, ctx, ty = aux false [] (mkVar id) ty in let ctx' = nf_rel_context_evar !evars ctx in let ctx'' = List.map (function | LocalDef (n,k,t) when isEvar !evars k -> LocalAssum (n,t) | decl -> decl) ctx' in let ty' = it_mkProd_or_LetIn ty ctx'' in let acc' = it_mkLambda_or_LetIn acc ctx'' in let ty' = Tacred.whd_simpl env !evars ty' and acc' = Tacred.whd_simpl env !evars acc' in let ty' = Evarutil.nf_evar !evars ty' in if worked then Tacticals.New.tclTHENFIRST (internal_cut true id ty') (exact_no_check ((* refresh_universes_strict *) acc')) else Tacticals.New.tclFAIL 0 (str "Nothing to do in hypothesis " ++ Id.print id) end let specialize_eqs id = Proofview.Goal.enter begin fun gl -> let msg = str "Specialization not allowed on dependent hypotheses" in Proofview.tclOR (clear [id]) (fun _ -> Tacticals.New.tclZEROMSG msg) >>= fun () -> specialize_eqs id end let occur_rel sigma n c = let res = not (noccurn sigma n c) in res (* This function splits the products of the induction scheme [elimt] into four parts: - branches, easily detectable (they are not referred by rels in the subterm) - what was found before branches (acc1) that is: parameters and predicates - what was found after branches (acc3) that is: args and indarg if any if there is no branch, we try to fill in acc3 with args/indargs. We also return the conclusion. *) let decompose_paramspred_branch_args sigma elimt = let open Context.Rel.Declaration in let rec cut_noccur elimt acc2 = match EConstr.kind sigma elimt with | Prod(nme,tpe,elimt') -> let hd_tpe,_ = decompose_app sigma (snd (decompose_prod_assum sigma tpe)) in if not (occur_rel sigma 1 elimt') && isRel sigma hd_tpe then cut_noccur elimt' (LocalAssum (nme,tpe)::acc2) else let acc3,ccl = decompose_prod_assum sigma elimt in acc2 , acc3 , ccl | App(_, _) | Rel _ -> acc2 , [] , elimt | _ -> error_ind_scheme "" in let rec cut_occur elimt acc1 = match EConstr.kind sigma elimt with | Prod(nme,tpe,c) when occur_rel sigma 1 c -> cut_occur c (LocalAssum (nme,tpe)::acc1) | Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl | App(_, _) | Rel _ -> acc1,[],[],elimt | _ -> error_ind_scheme "" in let acc1, acc2 , acc3, ccl = cut_occur elimt [] in (* Particular treatment when dealing with a dependent empty type elim scheme: if there is no branch, then acc1 contains all hyps which is wrong (acc1 should contain parameters and predicate only). This happens for an empty type (See for example Empty_set_ind, as False would actually be ok). Then we must find the predicate of the conclusion to separate params_pred from args. We suppose there is only one predicate here. *) match acc2 with | [] -> let hyps,ccl = decompose_prod_assum sigma elimt in let hd_ccl_pred,_ = decompose_app sigma ccl in begin match EConstr.kind sigma hd_ccl_pred with | Rel i -> let acc3,acc1 = List.chop (i-1) hyps in acc1 , [] , acc3 , ccl | _ -> error_ind_scheme "" end | _ -> acc1, acc2 , acc3, ccl let exchange_hd_app sigma subst_hd t = let hd,args= decompose_app sigma t in mkApp (subst_hd,Array.of_list args) (* Builds an elim_scheme from its type and calling form (const+binding). We first separate branches. We obtain branches, hyps before (params + preds), hyps after (args <+ indarg if present>) and conclusion. Then we proceed as follows: - separate parameters and predicates in params_preds. For that we build: forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^ optional opt Free rels appearing in this term are parameters (branches should not appear, and the only predicate would have been Qi but we replaced it by DUMMY). We guess this heuristic catches all params. TODO: generalize to the case where args are merged with branches (?) and/or where several predicates are cited in the conclusion. - finish to fill in the elim_scheme: indarg/farg/args and finally indref. *) let compute_elim_sig sigma ?elimc elimt = let open Context.Rel.Declaration in let params_preds,branches,args_indargs,conclusion = decompose_paramspred_branch_args sigma elimt in let ccl = exchange_hd_app sigma (mkVar (Id.of_string "__QI_DUMMY__")) conclusion in let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in let nparams = Int.Set.cardinal (free_rels sigma concl_with_args) in let preds,params = List.chop (List.length params_preds - nparams) params_preds in (* A first approximation, further analysis will tweak it *) let res = ref { empty_scheme with (* This fields are ok: *) elimc = elimc; elimt = elimt; concl = conclusion; predicates = preds; npredicates = List.length preds; branches = branches; nbranches = List.length branches; farg_in_concl = isApp sigma ccl && isApp sigma (last_arg sigma ccl); params = params; nparams = nparams; (* all other fields are unsure at this point. Including these:*) args = args_indargs; nargs = List.length args_indargs; } in try (* Order of tests below is important. Each of them exits if successful. *) (* 1- First see if (f x...) is in the conclusion. *) if !res.farg_in_concl then begin res := { !res with indarg = None; indarg_in_concl = false; farg_in_concl = true }; raise Exit end; (* 2- If no args_indargs (=!res.nargs at this point) then no indarg *) if Int.equal !res.nargs 0 then raise Exit; (* 3- Look at last arg: is it the indarg? *) ignore ( match List.hd args_indargs with | LocalDef (hiname,_,hi) -> error_ind_scheme "" | LocalAssum (hiname,hi) -> let hi_ind, hi_args = decompose_app sigma hi in let hi_is_ind = (* hi est d'un type globalisable *) match EConstr.kind sigma hi_ind with | Ind (mind,_) -> true | Var _ -> true | Const _ -> true | Construct _ -> true | _ -> false in let hi_args_enough = (* hi a le bon nbre d'arguments *) Int.equal (List.length hi_args) (List.length params + !res.nargs -1) in (* FIXME: Ces deux tests ne sont pas suffisants. *) if not (hi_is_ind && hi_args_enough) then raise Exit (* No indarg *) else (* Last arg is the indarg *) res := {!res with indarg = Some (List.hd !res.args); indarg_in_concl = occur_rel sigma 1 ccl; args = List.tl !res.args; nargs = !res.nargs - 1; }; raise Exit); raise Exit(* exit anyway *) with Exit -> (* Ending by computing indref: *) match !res.indarg with | None -> !res (* No indref *) | Some (LocalDef _) -> error_ind_scheme "" | Some (LocalAssum (_,ind)) -> let indhd,indargs = decompose_app sigma ind in try {!res with indref = Some (fst (Termops.global_of_constr sigma indhd)) } with e when CErrors.noncritical e -> error "Cannot find the inductive type of the inductive scheme." let compute_scheme_signature evd scheme names_info ind_type_guess = let open Context.Rel.Declaration in let f,l = decompose_app evd scheme.concl in (* Vérifier que les arguments de Qi sont bien les xi. *) let cond, check_concl = match scheme.indarg with | Some (LocalDef _) -> error "Strange letin, cannot recognize an induction scheme." | None -> (* Non standard scheme *) let cond hd = EConstr.eq_constr evd hd ind_type_guess && not scheme.farg_in_concl in (cond, fun _ _ -> ()) | Some (LocalAssum (_,ind)) -> (* Standard scheme from an inductive type *) let indhd,indargs = decompose_app evd ind in let cond hd = EConstr.eq_constr evd hd indhd in let check_concl is_pred p = (* Check again conclusion *) let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f == IndArg in let ind_is_ok = List.equal (fun c1 c2 -> EConstr.eq_constr evd c1 c2) (List.lastn scheme.nargs indargs) (Context.Rel.to_extended_list mkRel 0 scheme.args) in if not (ccl_arg_ok && ind_is_ok) then error_ind_scheme "the conclusion of" in (cond, check_concl) in let is_pred n c = let hd = fst (decompose_app evd c) in match EConstr.kind evd hd with | Rel q when n < q && q <= n+scheme.npredicates -> IndArg | _ when cond hd -> RecArg | _ -> OtherArg in let rec check_branch p c = match EConstr.kind evd c with | Prod (_,t,c) -> (is_pred p t, true, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | LetIn (_,_,_,c) -> (OtherArg, false, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | _ when is_pred p c == IndArg -> [] | _ -> raise Exit in let rec find_branches p lbrch = match lbrch with | LocalAssum (_,t) :: brs -> (try let lchck_brch = check_branch p t in let n = List.fold_left (fun n (b,_,_) -> if b == RecArg then n+1 else n) 0 lchck_brch in let recvarname, hyprecname, avoid = make_up_names n scheme.indref names_info in let namesign = List.map (fun (b,is_assum,dep) -> (b,is_assum,dep,if b == IndArg then hyprecname else recvarname)) lchck_brch in (avoid,namesign) :: find_branches (p+1) brs with Exit-> error_ind_scheme "the branches of") | LocalDef _ :: _ -> error_ind_scheme "the branches of" | [] -> check_concl is_pred p; [] in Array.of_list (find_branches 0 (List.rev scheme.branches)) (* Check that the elimination scheme has a form similar to the elimination schemes built by Coq. Schemes may have the standard form computed from an inductive type OR (feb. 2006) a non standard form. That is: with no main induction argument and with an optional extra final argument of the form (f x y ...) in the conclusion. In the non standard case, naming of generated hypos is slightly different. *) let compute_elim_signature (evd,(elimc,elimt),ind_type_guess) names_info = let scheme = compute_elim_sig evd ~elimc:elimc elimt in evd, (compute_scheme_signature evd scheme names_info ind_type_guess, scheme) let guess_elim isrec dep s hyp0 gl = let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let (mind, u), _ = Tacmach.New.pf_reduce_to_quantified_ind gl tmptyp0 in let env = Tacmach.New.pf_env gl in let sigma = Tacmach.New.project gl in let sigma, elimc = if isrec && not (is_nonrec mind) then let gr = lookup_eliminator env mind s in Evd.fresh_global env sigma gr else let u = EInstance.kind sigma u in if dep then let (sigma, ind) = build_case_analysis_scheme env sigma (mind, u) true s in let ind = EConstr.of_constr ind in (sigma, ind) else let (sigma, ind) = build_case_analysis_scheme_default env sigma (mind, u) s in let ind = EConstr.of_constr ind in (sigma, ind) in let elimt = Typing.unsafe_type_of env sigma elimc in sigma, ((elimc, NoBindings), elimt), mkIndU (mind, u) let given_elim hyp0 (elimc,lbind as e) gl = let sigma = Tacmach.New.project gl in let tmptyp0 = Tacmach.New.pf_get_hyp_typ hyp0 gl in let ind_type_guess,_ = decompose_app sigma (snd (decompose_prod sigma tmptyp0)) in let elimt = Tacmach.New.pf_unsafe_type_of gl elimc in Tacmach.New.project gl, (e, elimt), ind_type_guess type scheme_signature = (Id.Set.t * (elim_arg_kind * bool * bool * Id.t) list) array type eliminator_source = | ElimUsing of (eliminator * EConstr.types) * scheme_signature | ElimOver of bool * Id.t let find_induction_type isrec elim hyp0 gl = let sigma = Tacmach.New.project gl in let scheme,elim = match elim with | None -> let sort = Tacticals.New.elimination_sort_of_goal gl in let _, (elimc,elimt),_ = guess_elim isrec false sort hyp0 gl in let scheme = compute_elim_sig sigma ~elimc elimt in (* We drop the scheme waiting to know if it is dependent *) scheme, ElimOver (isrec,hyp0) | Some e -> let evd, (elimc,elimt),ind_guess = given_elim hyp0 e gl in let scheme = compute_elim_sig sigma ~elimc elimt in if Option.is_empty scheme.indarg then error "Cannot find induction type"; let indsign = compute_scheme_signature evd scheme hyp0 ind_guess in let elim = ({ elimindex = Some(-1); elimbody = elimc },elimt) in scheme, ElimUsing (elim,indsign) in match scheme.indref with | None -> error_ind_scheme "" | Some ref -> ref, scheme.nparams, elim let get_elim_signature elim hyp0 gl = compute_elim_signature (given_elim hyp0 elim gl) hyp0 let is_functional_induction elimc gl = let sigma = Tacmach.New.project gl in let scheme = compute_elim_sig sigma ~elimc (Tacmach.New.pf_unsafe_type_of gl (fst elimc)) in (* The test is not safe: with non-functional induction on non-standard induction scheme, this may fail *) Option.is_empty scheme.indarg (* Wait the last moment to guess the eliminator so as to know if we need a dependent one or not *) let get_eliminator elim dep s gl = match elim with | ElimUsing (elim,indsign) -> Tacmach.New.project gl, (* bugged, should be computed *) true, elim, indsign | ElimOver (isrec,id) -> let evd, (elimc,elimt),_ as elims = guess_elim isrec dep s id gl in let _, (l, s) = compute_elim_signature elims id in evd, isrec, ({ elimindex = None; elimbody = elimc }, elimt), l (* Instantiate all meta variables of elimclause using lid, some elts of lid are parameters (first ones), the other are arguments. Returns the clause obtained. *) let recolle_clenv i params args elimclause gl = let _,arr = destApp elimclause.evd elimclause.templval.rebus in let lindmv = Array.map (fun x -> match EConstr.kind elimclause.evd x with | Meta mv -> mv | _ -> user_err ~hdr:"elimination_clause" (str "The type of the elimination clause is not well-formed.")) arr in let k = match i with -1 -> Array.length lindmv - List.length args | _ -> i in (* parameters correspond to first elts of lid. *) let clauses_params = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(i)) 0 params in let clauses_args = List.map_i (fun i id -> mkVar id , pf_get_hyp_typ id gl, lindmv.(k+i)) 0 args in let clauses = clauses_params@clauses_args in (* iteration of clenv_fchain with all infos we have. *) List.fold_right (fun e acc -> let x,y,i = e in (* from_n (Some 0) means that x should be taken "as is" without trying to unify (which would lead to trying to apply it to evars if y is a product). *) let indclause = mk_clenv_from_n gl (Some 0) (x,y) in let elimclause' = clenv_fchain ~with_univs:false i acc indclause in elimclause') (List.rev clauses) elimclause (* Unification of the goal and the principle applied to meta variables: (elimc ?i ?j ?k...?l). This solves partly meta variables (and may produce new ones). Then refine with the resulting term with holes. *) let induction_tac with_evars params indvars elim = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let ({ elimindex=i;elimbody=(elimc,lbindelimc) },elimt) = elim in let i = match i with None -> index_of_ind_arg sigma elimt | Some i -> i in (* elimclause contains this: (elimc ?i ?j ?k...?l) *) let elimc = contract_letin_in_lam_header sigma elimc in let elimc = mkCast (elimc, DEFAULTcast, elimt) in let elimclause = Tacmach.New.pf_apply make_clenv_binding gl (elimc,elimt) lbindelimc in (* elimclause' is built from elimclause by instantiating all args and params. *) let elimclause' = recolle_clenv i params indvars elimclause gl in (* one last resolution (useless?) *) let resolved = clenv_unique_resolver ~flags:(elim_flags ()) elimclause' gl in Clenvtac.clenv_refine ~with_evars resolved end (* Apply induction "in place" taking into account dependent hypotheses from the context, replacing the main hypothesis on which induction applies with the induction hypotheses *) let apply_induction_in_context with_evars hyp0 inhyps elim indvars names induct_tac = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Tacmach.New.pf_concl gl in let statuslists,lhyp0,toclear,deps,avoid,dep_in_hyps = cook_sign hyp0 inhyps indvars env sigma in let dep_in_concl = Option.cata (fun id -> occur_var env sigma id concl) false hyp0 in let dep = dep_in_hyps || dep_in_concl in let tmpcl = it_mkNamedProd_or_LetIn concl deps in let s = Retyping.get_sort_family_of env sigma tmpcl in let deps_cstr = List.fold_left (fun a decl -> if NamedDecl.is_local_assum decl then (mkVar (NamedDecl.get_id decl))::a else a) [] deps in let (sigma, isrec, elim, indsign) = get_eliminator elim dep s gl in let branchletsigns = let f (_,is_not_let,_,_) = is_not_let in Array.map (fun (_,l) -> List.map f l) indsign in let names = compute_induction_names branchletsigns names in Array.iter (check_name_unicity env toclear []) names; let tac = (if isrec then Tacticals.New.tclTHENFIRSTn else Tacticals.New.tclTHENLASTn) (Tacticals.New.tclTHENLIST [ (* Generalize dependent hyps (but not args) *) if deps = [] then Proofview.tclUNIT () else apply_type ~typecheck:false tmpcl deps_cstr; (* side-conditions in elim (resp case) schemes come last (resp first) *) induct_tac elim; Tacticals.New.tclMAP expand_hyp toclear; ]) (Array.map2 (induct_discharge with_evars lhyp0 avoid (re_intro_dependent_hypotheses statuslists)) indsign names) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end let induction_with_atomization_of_ind_arg isrec with_evars elim names hyp0 inhyps = Proofview.Goal.enter begin fun gl -> let elim_info = find_induction_type isrec elim hyp0 gl in atomize_param_of_ind_then elim_info hyp0 (fun indvars -> apply_induction_in_context with_evars (Some hyp0) inhyps (pi3 elim_info) indvars names (fun elim -> induction_tac with_evars [] [hyp0] elim)) end let msg_not_right_number_induction_arguments scheme = str"Not the right number of induction arguments (expected " ++ pr_enum (fun x -> x) [ if scheme.farg_in_concl then str "the function name" else mt(); if scheme.nparams != 0 then int scheme.nparams ++ str (String.plural scheme.nparams " parameter") else mt (); if scheme.nargs != 0 then int scheme.nargs ++ str (String.plural scheme.nargs " argument") else mt ()] ++ str ")." (* Induction on a list of induction arguments. Analyze the elim scheme (which is mandatory for multiple ind args), check that all parameters and arguments are given (mandatory too). Main differences with induction_from_context is that there is no main induction argument. On the other hand, all args and params must be given, so we help a bit the unifier by making the "pattern" by hand before calling induction_tac *) let induction_without_atomization isrec with_evars elim names lid = Proofview.Goal.enter begin fun gl -> let sigma, (indsign,scheme) = get_elim_signature elim (List.hd lid) gl in let nargs_indarg_farg = scheme.nargs + (if scheme.farg_in_concl then 1 else 0) in if not (Int.equal (List.length lid) (scheme.nparams + nargs_indarg_farg)) then Tacticals.New.tclZEROMSG (msg_not_right_number_induction_arguments scheme) else let indvars,lid_params = List.chop nargs_indarg_farg lid in (* terms to patternify we must patternify indarg or farg if present in concl *) let realindvars = List.rev (if scheme.farg_in_concl then List.tl indvars else indvars) in let lidcstr = List.map mkVar (List.rev indvars) in let params = List.rev lid_params in let indvars = (* Temporary hack for compatibility, while waiting for better analysis of the form of induction schemes: a scheme like gt_wf_rec was taken as a functional scheme with no parameters, but by chance, because of the addition of at least hyp0 for cook_sign, it behaved as if there was a real induction arg. *) if List.is_empty indvars then Id.Set.singleton (List.hd lid_params) else Id.Set.of_list indvars in let induct_tac elim = Tacticals.New.tclTHENLIST [ (* pattern to make the predicate appear. *) reduce (Pattern (List.map inj_with_occurrences lidcstr)) onConcl; (* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all possible holes using arguments given by the user (but the functional one). *) (* FIXME: Tester ca avec un principe dependant et non-dependant *) induction_tac with_evars params realindvars elim; ] in let elim = ElimUsing (({ elimindex = Some (-1); elimbody = Option.get scheme.elimc }, scheme.elimt), indsign) in apply_induction_in_context with_evars None [] elim indvars names induct_tac end (* assume that no occurrences are selected *) let clear_unselected_context id inhyps cls = Proofview.Goal.enter begin fun gl -> if occur_var (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id (Tacmach.New.pf_concl gl) && cls.concl_occs == NoOccurrences then user_err (str "Conclusion must be mentioned: it depends on " ++ Id.print id ++ str "."); match cls.onhyps with | Some hyps -> let to_erase d = let id' = NamedDecl.get_id d in if Id.List.mem id' inhyps then (* if selected, do not erase *) None else (* erase if not selected and dependent on id or selected hyps *) let test id = occur_var_in_decl (Tacmach.New.pf_env gl) (Tacmach.New.project gl) id d in if List.exists test (id::inhyps) then Some id' else None in let ids = List.map_filter to_erase (Proofview.Goal.hyps gl) in clear ids | None -> Proofview.tclUNIT () end let use_bindings env sigma elim must_be_closed (c,lbind) typ = let typ = if elim == None then (* w/o an scheme, the term has to be applied at least until obtaining an inductive type (even though the arity might be known only by pattern-matching, as in the case of a term of the form "nat_rect ?A ?o ?s n", with ?A to be inferred by matching. *) let sign,t = splay_prod env sigma typ in it_mkProd t sign else (* Otherwise, we exclude the case of an induction argument in an explicitly functional type. Henceforth, we can complete the pattern until it has as type an atomic type (even though this atomic type can hide a functional type, for which the "using" clause has a scheme). *) typ in let rec find_clause typ = try let indclause = make_clenv_binding env sigma (c,typ) lbind in if must_be_closed && occur_meta indclause.evd (clenv_value indclause) then error "Need a fully applied argument."; (* We lose the possibility of coercions in with-bindings *) pose_all_metas_as_evars env indclause.evd (clenv_value indclause) with e when catchable_exception e -> try find_clause (try_red_product env sigma typ) with Redelimination -> raise e in find_clause typ let check_expected_type env sigma (elimc,bl) elimt = (* Compute the expected template type of the term in case a using clause is given *) let sign,_ = splay_prod env sigma elimt in let n = List.length sign in if n == 0 then error "Scheme cannot be applied."; let sigma,cl = make_evar_clause env sigma ~len:(n - 1) elimt in let sigma = solve_evar_clause env sigma true cl bl in let (_,u,_) = destProd sigma cl.cl_concl in fun t -> match Evarconv.unify_leq_delay env sigma t u with | _sigma -> true | exception Evarconv.UnableToUnify _ -> false let check_enough_applied env sigma elim = (* A heuristic to decide whether the induction arg is enough applied *) match elim with | None -> (* No eliminator given *) fun u -> let t,_ = decompose_app sigma (whd_all env sigma u) in isInd sigma t | Some elimc -> let elimt = Retyping.get_type_of env sigma (fst elimc) in let scheme = compute_elim_sig sigma ~elimc elimt in match scheme.indref with | None -> (* in the absence of information, do not assume it may be partially applied *) fun _ -> true | Some _ -> (* Last argument is supposed to be the induction argument *) check_expected_type env sigma elimc elimt let guard_no_unifiable = Proofview.guard_no_unifiable >>= function | None -> Proofview.tclUNIT () | Some l -> Proofview.tclENV >>= function env -> Proofview.tclEVARMAP >>= function sigma -> Proofview.tclZERO (RefinerError (env, sigma, UnresolvedBindings l)) let pose_induction_arg_then isrec with_evars (is_arg_pure_hyp,from_prefix) elim id ((pending,(c0,lbind)),(eqname,names)) t0 inhyps cls tac = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check = check_enough_applied env sigma elim in let (sigma', c) = use_bindings env sigma elim false (c0,lbind) t0 in let abs = AbstractPattern (from_prefix,check,Name id,(pending,c),cls,false) in let (id,sign,_,lastlhyp,ccl,res) = make_abstraction env sigma' ccl abs in match res with | None -> (* pattern not found *) let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in (* we restart using bindings after having tried type-class resolution etc. on the term given by the user *) let flags = tactic_infer_flags (with_evars && (* do not give a success semantics to edestruct on an open term yet *) false) in let (sigma, c0) = finish_evar_resolution ~flags env sigma (pending,c0) in let tac = (if isrec then (* Historically, induction has side conditions last *) Tacticals.New.tclTHENFIRST else (* and destruct has side conditions first *) Tacticals.New.tclTHENLAST) (Tacticals.New.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> let b = not with_evars && with_eq != None in let (sigma, c) = use_bindings env sigma elim b (c0,lbind) t0 in let t = Retyping.get_type_of env sigma c in mkletin_goal env sigma with_eq false (id,lastlhyp,ccl,c) (Some t) end; if with_evars then Proofview.shelve_unifiable else guard_no_unifiable; if is_arg_pure_hyp then Proofview.tclEVARMAP >>= fun sigma -> Tacticals.New.tclTRY (clear [destVar sigma c0]) else Proofview.tclUNIT (); if isrec then Proofview.cycle (-1) else Proofview.tclUNIT () ]) (tac inhyps) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac | Some (sigma', c) -> (* pattern found *) (* TODO: if ind has predicate parameters, use JMeq instead of eq *) let env = reset_with_named_context sign env in let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in let tac = Tacticals.New.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> mkletin_goal env sigma with_eq true (id,lastlhyp,ccl,c) None end; (tac inhyps) ] in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma') tac end let has_generic_occurrences_but_goal cls id env sigma ccl = clause_with_generic_context_selection cls && (* TODO: whd_evar of goal *) (cls.concl_occs != NoOccurrences || not (occur_var env sigma id ccl)) let induction_gen clear_flag isrec with_evars elim ((_pending,(c,lbind)),(eqname,names) as arg) cls = let inhyps = match cls with | Some {onhyps=Some hyps} -> List.map (fun ((_,id),_) -> id) hyps | _ -> [] in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let evd = Proofview.Goal.sigma gl in let ccl = Proofview.Goal.concl gl in let cls = Option.default allHypsAndConcl cls in let t = typ_of env evd c in let is_arg_pure_hyp = isVar evd c && not (mem_named_context_val (destVar evd c) (Global.named_context_val ())) && lbind == NoBindings && not with_evars && Option.is_empty eqname && clear_flag == None && has_generic_occurrences_but_goal cls (destVar evd c) env evd ccl in let enough_applied = check_enough_applied env evd elim t in if is_arg_pure_hyp && enough_applied then (* First case: induction on a variable already in an inductive type and with maximal abstraction over the variable. This is a situation where the induction argument is a clearable variable of the goal w/o occurrence selection and w/o equality kept: no need to generalize *) let id = destVar evd c in Tacticals.New.tclTHEN (clear_unselected_context id inhyps cls) (induction_with_atomization_of_ind_arg isrec with_evars elim names id inhyps) else (* Otherwise, we look for the pattern, possibly adding missing arguments and declaring the induction argument as a new local variable *) let id = (* Type not the right one if partially applied but anyway for internal use*) let avoid = match eqname with | Some {CAst.v=IntroIdentifier id} -> Id.Set.singleton id | _ -> Id.Set.empty in let x = id_of_name_using_hdchar env evd t Anonymous in new_fresh_id avoid x gl in let info_arg = (is_arg_pure_hyp, not enough_applied) in pose_induction_arg_then isrec with_evars info_arg elim id arg t inhyps cls (induction_with_atomization_of_ind_arg isrec with_evars elim names id) end (* Induction on a list of arguments. First make induction arguments atomic (using letins), then do induction. The specificity here is that all arguments and parameters of the scheme are given (mandatory for the moment), so we don't need to deal with parameters of the inductive type as in induction_gen. *) let induction_gen_l isrec with_evars elim names lc = let newlc = ref [] in let lc = List.map (function | (c,None) -> c | (c,Some{CAst.loc;v=eqname}) -> user_err ?loc (str "Do not know what to do with " ++ Miscprint.pr_intro_pattern_naming eqname)) lc in let rec atomize_list l = match l with | [] -> Proofview.tclUNIT () | c::l' -> Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when not (mem_named_context_val id (Global.named_context_val ())) && not with_evars -> let () = newlc:= id::!newlc in atomize_list l' | _ -> Proofview.Goal.enter begin fun gl -> let type_of = Tacmach.New.pf_unsafe_type_of gl in let sigma = Tacmach.New.project gl in Proofview.tclENV >>= fun env -> let x = id_of_name_using_hdchar env sigma (type_of c) Anonymous in let id = new_fresh_id Id.Set.empty x gl in let newl' = List.map (fun r -> replace_term sigma c (mkVar id) r) l' in let () = newlc:=id::!newlc in Tacticals.New.tclTHEN (letin_tac None (Name id) c None allHypsAndConcl) (atomize_list newl') end in Tacticals.New.tclTHENLIST [ (atomize_list lc); (Proofview.tclUNIT () >>= fun () -> (* ensure newlc has been computed *) induction_without_atomization isrec with_evars elim names !newlc) ] (* Induction either over a term, over a quantified premisse, or over several quantified premisses (like with functional induction principles). TODO: really unify induction with one and induction with several args *) let induction_destruct isrec with_evars (lc,elim) = match lc with | [] -> assert false (* ensured by syntax, but if called inside caml? *) | [c,(eqname,names as allnames),cls] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | Some elim when is_functional_induction elim gl -> (* Standard induction on non-standard induction schemes *) (* will be removable when is_functional_induction will be more clever *) if not (Option.is_empty cls) then error "'in' clause not supported here."; let _,c = force_destruction_arg false env sigma c in onInductionArg (fun _clear_flag c -> induction_gen_l isrec with_evars elim names [with_no_bindings c,eqname]) c | _ -> (* standard induction *) onOpenInductionArg env sigma (fun clear_flag c -> induction_gen clear_flag isrec with_evars elim (c,allnames) cls) c end | _ -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in match elim with | None -> (* Several arguments, without "using" clause *) (* TODO: Do as if the arguments after the first one were called with *) (* "destruct", but selecting occurrences on the initial copy of *) (* the goal *) let (a,b,cl) = List.hd lc in let l = List.tl lc in (* TODO *) Tacticals.New.tclTHEN (onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag isrec with_evars None (a,b) cl) a) (Tacticals.New.tclMAP (fun (a,b,cl) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag false with_evars None (a,b) cl) a end) l) | Some elim -> (* Several induction hyps with induction scheme *) let lc = List.map (on_pi1 (fun c -> snd (force_destruction_arg false env sigma c))) lc in let newlc = List.map (fun (x,(eqn,names),cls) -> if cls != None then error "'in' clause not yet supported here."; match x with (* FIXME: should we deal with ElimOnIdent? *) | _clear_flag,ElimOnConstr x -> if eqn <> None then error "'eqn' clause not supported here."; (with_no_bindings x,names) | _ -> error "Don't know where to find some argument.") lc in (* Check that "as", if any, is given only on the last argument *) let names,rest = List.sep_last (List.map snd newlc) in if List.exists (fun n -> not (Option.is_empty n)) rest then error "'as' clause with multiple arguments and 'using' clause can only occur last."; let newlc = List.map (fun (x,_) -> (x,None)) newlc in induction_gen_l isrec with_evars elim names newlc end let induction ev clr c l e = induction_gen clr true ev e ((Evd.empty,(c,NoBindings)),(None,l)) None let destruct ev clr c l e = induction_gen clr false ev e ((Evd.empty,(c,NoBindings)),(None,l)) None (* * Eliminations giving the type instead of the proof. * These tactics use the default elimination constant and * no substitutions at all. * May be they should be integrated into Elim ... *) let elim_scheme_type elim t = Proofview.Goal.enter begin fun gl -> let clause = mk_clenv_type_of gl elim in match EConstr.kind clause.evd (last_arg clause.evd clause.templval.rebus) with | Meta mv -> let clause' = (* t is inductive, then CUMUL or CONV is irrelevant *) clenv_unify ~flags:(elim_flags ()) Reduction.CUMUL t (clenv_meta_type clause mv) clause in Clenvtac.res_pf clause' ~flags:(elim_flags ()) ~with_evars:false | _ -> anomaly (Pp.str "elim_scheme_type.") end let elim_type t = Proofview.Goal.enter begin fun gl -> let (ind,t) = Tacmach.New.pf_apply reduce_to_atomic_ind gl t in let evd, elimc = find_ind_eliminator (fst ind) (Tacticals.New.elimination_sort_of_goal gl) gl in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (elim_scheme_type elimc t) end let case_type t = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Tacmach.New.pf_env gl in let ((ind, u), t) = reduce_to_atomic_ind env sigma t in let u = EInstance.kind sigma u in let s = Tacticals.New.elimination_sort_of_goal gl in let (evd, elimc) = build_case_analysis_scheme_default env sigma (ind, u) s in let elimc = EConstr.of_constr elimc in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (elim_scheme_type elimc t) end (************************************************) (* Tactics related with logic connectives *) (************************************************) (* Reflexivity tactics *) let (forward_setoid_reflexivity, setoid_reflexivity) = Hook.make () let maybe_betadeltaiota_concl allowred gl = let concl = Tacmach.New.pf_concl gl in let sigma = Tacmach.New.project gl in if not allowred then concl else let env = Proofview.Goal.env gl in whd_all env sigma concl let reflexivity_red allowred = Proofview.Goal.enter begin fun gl -> (* PL: usual reflexivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let env = Tacmach.New.pf_env gl in let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match match_with_equality_type env sigma concl with | None -> Proofview.tclZERO NoEquationFound | Some _ -> one_constructor 1 NoBindings end let reflexivity = Proofview.tclORELSE (reflexivity_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_reflexivity | e -> Proofview.tclZERO ~info e end let intros_reflexivity = (Tacticals.New.tclTHEN intros reflexivity) (* Symmetry tactics *) (* This tactic first tries to apply a constant named sym_eq, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing (Cut b=a;Intro H;Case H;Constructor 1) *) let (forward_setoid_symmetry, setoid_symmetry) = Hook.make () (* This is probably not very useful any longer *) let prove_symmetry hdcncl eq_kind = let symc = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> mkApp(hdcncl,[|c2;c1|]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp(hdcncl,[|typ;c2;c1|]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp(hdcncl,[|t2;c2;t1;c1|]) in Tacticals.New.tclTHENFIRST (cut symc) (Tacticals.New.tclTHENLIST [ intro; Tacticals.New.onLastHyp simplest_case; one_constructor 1 NoBindings ]) let match_with_equation sigma c = Proofview.tclENV >>= fun env -> try let res = match_with_equation env sigma c in Proofview.tclUNIT res with NoEquationFound -> Proofview.tclZERO NoEquationFound let symmetry_red allowred = Proofview.Goal.enter begin fun gl -> (* PL: usual symmetry don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation sigma concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl ~check:false concl DEFAULTcast) (Tacticals.New.pf_constr_of_global eq_data.sym >>= apply) | None,eq,eq_kind -> prove_symmetry eq eq_kind end let symmetry = Proofview.tclORELSE (symmetry_red false) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry | e -> Proofview.tclZERO ~info e end let (forward_setoid_symmetry_in, setoid_symmetry_in) = Hook.make () let symmetry_in id = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.New.project gl in let ctype = Tacmach.New.pf_unsafe_type_of gl (mkVar id) in let sign,t = decompose_prod_assum sigma ctype in Proofview.tclORELSE begin match_with_equation sigma t >>= fun (_,hdcncl,eq) -> let symccl = match eq with | MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c2; c1 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp (hdcncl, [| typ; c2; c1 |]) | HeterogenousEq (t1,c1,t2,c2) -> mkApp (hdcncl, [| t2; c2; t1; c1 |]) in Tacticals.New.tclTHENS (cut (EConstr.it_mkProd_or_LetIn symccl sign)) [ intro_replacing id; Tacticals.New.tclTHENLIST [ intros; symmetry; apply (mkVar id); assumption ] ] end begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_symmetry_in id | e -> Proofview.tclZERO ~info e end end let intros_symmetry = Tacticals.New.onClause (function | None -> Tacticals.New.tclTHEN intros symmetry | Some id -> symmetry_in id) (* Transitivity tactics *) (* This tactic first tries to apply a constant named eq_trans, where eq is the name of the equality predicate. If this constant is not defined and the conclusion is a=b, it solves the goal doing Cut x1=x2; [Cut x2=x3; [Intros e1 e2; Case e2;Assumption | Idtac] | Idtac] --Eduardo (19/8/97) *) let (forward_setoid_transitivity, setoid_transitivity) = Hook.make () (* This is probably not very useful any longer *) let prove_transitivity hdcncl eq_kind t = Proofview.Goal.enter begin fun gl -> let (eq1,eq2) = match eq_kind with | MonomorphicLeibnizEq (c1,c2) -> mkApp (hdcncl, [| c1; t|]), mkApp (hdcncl, [| t; c2 |]) | PolymorphicLeibnizEq (typ,c1,c2) -> mkApp (hdcncl, [| typ; c1; t |]), mkApp (hdcncl, [| typ; t; c2 |]) | HeterogenousEq (typ1,c1,typ2,c2) -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let type_of = Typing.unsafe_type_of env sigma in let typt = type_of t in (mkApp(hdcncl, [| typ1; c1; typt ;t |]), mkApp(hdcncl, [| typt; t; typ2; c2 |])) in Tacticals.New.tclTHENFIRST (cut eq2) (Tacticals.New.tclTHENFIRST (cut eq1) (Tacticals.New.tclTHENLIST [ Tacticals.New.tclDO 2 intro; Tacticals.New.onLastHyp simplest_case; assumption ])) end let transitivity_red allowred t = Proofview.Goal.enter begin fun gl -> (* PL: usual transitivity don't perform any reduction when searching for an equality, but we may need to do some when called back from inside setoid_reflexivity (see Optimize cases in setoid_replace.ml). *) let sigma = Tacmach.New.project gl in let concl = maybe_betadeltaiota_concl allowred gl in match_with_equation sigma concl >>= fun with_eqn -> match with_eqn with | Some eq_data,_,_ -> Tacticals.New.tclTHEN (convert_concl ~check:false concl DEFAULTcast) (match t with | None -> Tacticals.New.pf_constr_of_global eq_data.trans >>= eapply | Some t -> Tacticals.New.pf_constr_of_global eq_data.trans >>= fun trans -> apply_list [trans; t]) | None,eq,eq_kind -> match t with | None -> Tacticals.New.tclZEROMSG (str"etransitivity not supported for this relation.") | Some t -> prove_transitivity eq eq_kind t end let transitivity_gen t = Proofview.tclORELSE (transitivity_red false t) begin function (e, info) -> match e with | NoEquationFound -> Hook.get forward_setoid_transitivity t | e -> Proofview.tclZERO ~info e end let etransitivity = transitivity_gen None let transitivity t = transitivity_gen (Some t) let intros_transitivity n = Tacticals.New.tclTHEN intros (transitivity_gen n) let constr_eq ~strict x y = let fail = Tacticals.New.tclFAIL 0 (str "Not equal") in let fail_universes = Tacticals.New.tclFAIL 0 (str "Not equal (due to universes)") in Proofview.Goal.enter begin fun gl -> let env = Tacmach.New.pf_env gl in let evd = Tacmach.New.project gl in match EConstr.eq_constr_universes env evd x y with | Some csts -> let csts = UnivProblem.to_constraints ~force_weak:false (Evd.universes evd) csts in if strict then if Evd.check_constraints evd csts then Proofview.tclUNIT () else fail_universes else (match Evd.add_constraints evd csts with | evd -> Proofview.Unsafe.tclEVARS evd | exception Univ.UniverseInconsistency _ -> fail_universes) | None -> fail end let unify ?(state=TransparentState.full) x y = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in try let core_flags = { (default_unify_flags ()).core_unify_flags with modulo_delta = state; modulo_conv_on_closed_terms = Some state} in (* What to do on merge and subterm flags?? *) let flags = { (default_unify_flags ()) with core_unify_flags = core_flags; merge_unify_flags = core_flags; subterm_unify_flags = { core_flags with modulo_delta = TransparentState.empty } } in let sigma = w_unify (Tacmach.New.pf_env gl) sigma Reduction.CONV ~flags x y in Proofview.Unsafe.tclEVARS sigma with e when CErrors.noncritical e -> Proofview.tclZERO (PretypeError (env, sigma, CannotUnify (x, y, None))) end module Simple = struct (** Simplified version of some of the above tactics *) let intro x = intro_move (Some x) MoveLast let apply c = apply_with_bindings_gen false false [None,(CAst.make (c,NoBindings))] let eapply c = apply_with_bindings_gen false true [None,(CAst.make (c,NoBindings))] let elim c = elim false None (c,NoBindings) None let case c = general_case_analysis false None (c,NoBindings) let apply_in id c = apply_in false false id [None,(CAst.make (c, NoBindings))] None end (** Tacticals defined directly in term of Proofview *) module New = struct open Genredexpr open Locus let reduce_after_refine = reduce (Lazy {rBeta=true;rMatch=true;rFix=true;rCofix=true; rZeta=false;rDelta=false;rConst=[]}) {onhyps = Some []; concl_occs = AllOccurrences } let refine ~typecheck c = Refine.refine ~typecheck c <*> reduce_after_refine end