1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(***********************************************************************)
(*                                                                     *)
(*      This module defines proof facilities relevant to the           *)
(*      toplevel. In particular it defines the global proof            *)
(*      environment.                                                   *)
(*                                                                     *)
(***********************************************************************)

open Util
open Names
open Context

module NamedDecl = Context.Named.Declaration

(*** Proof Global Environment ***)

type proof_object =
  { name : Names.Id.t
  ; entries : Evd.side_effects Declare.proof_entry list
  ; poly : bool
  ; universes: UState.t
  ; udecl : UState.universe_decl
  }

type opacity_flag = Opaque | Transparent

type t =
  { endline_tactic : Genarg.glob_generic_argument option
  ; section_vars : Id.Set.t option
  ; proof : Proof.t
  ; udecl: UState.universe_decl
  (** Initial universe declarations *)
  ; initial_euctx : UState.t
  (** The initial universe context (for the statement) *)
  }

(*** Proof Global manipulation ***)

let get_proof ps = ps.proof
let get_proof_name ps = (Proof.data ps.proof).Proof.name

let get_initial_euctx ps = ps.initial_euctx

let map_proof f p = { p with proof = f p.proof }
let map_fold_proof f p = let proof, res = f p.proof in { p with proof }, res

let map_fold_proof_endline f ps =
  let et =
    match ps.endline_tactic with
    | None -> Proofview.tclUNIT ()
    | Some tac ->
      let open Geninterp in
      let {Proof.poly} = Proof.data ps.proof in
      let ist = { lfun = Id.Map.empty; poly; extra = TacStore.empty } in
      let Genarg.GenArg (Genarg.Glbwit tag, tac) = tac in
      let tac = Geninterp.interp tag ist tac in
      Ftactic.run tac (fun _ -> Proofview.tclUNIT ())
  in
  let (newpr,ret) = f et ps.proof in
  let ps = { ps with proof = newpr } in
  ps, ret

let compact_the_proof pf = map_proof Proof.compact pf

(* Sets the tactic to be used when a tactic line is closed with [...] *)
let set_endline_tactic tac ps =
  { ps with endline_tactic = Some tac }

(** [start_proof ~name ~udecl ~poly sigma goals] starts a proof of
   name [name] with goals [goals] (a list of pairs of environment and
   conclusion). The proof is started in the evar map [sigma] (which
   can typically contain universe constraints), and with universe
   bindings [udecl]. *)
let start_proof ~name ~udecl ~poly sigma goals =
  let proof = Proof.start ~name ~poly sigma goals in
  let initial_euctx = Evd.evar_universe_context Proof.((data proof).sigma) in
  { proof
  ; endline_tactic = None
  ; section_vars = None
  ; udecl
  ; initial_euctx
  }

let start_dependent_proof ~name ~udecl ~poly goals =
  let proof = Proof.dependent_start ~name ~poly goals in
  let initial_euctx = Evd.evar_universe_context Proof.((data proof).sigma) in
  { proof
  ; endline_tactic = None
  ; section_vars = None
  ; udecl
  ; initial_euctx
  }

let get_used_variables pf = pf.section_vars
let get_universe_decl pf = pf.udecl

let set_used_variables ps l =
  let open Context.Named.Declaration in
  let env = Global.env () in
  let ids = List.fold_right Id.Set.add l Id.Set.empty in
  let ctx = Environ.keep_hyps env ids in
  let ctx_set =
    List.fold_right Id.Set.add (List.map NamedDecl.get_id ctx) Id.Set.empty in
  let vars_of = Environ.global_vars_set in
  let aux env entry (ctx, all_safe as orig) =
    match entry with
    | LocalAssum ({binder_name=x},_) ->
       if Id.Set.mem x all_safe then orig
       else (ctx, all_safe)
    | LocalDef ({binder_name=x},bo, ty) as decl ->
       if Id.Set.mem x all_safe then orig else
       let vars = Id.Set.union (vars_of env bo) (vars_of env ty) in
       if Id.Set.subset vars all_safe
       then (decl :: ctx, Id.Set.add x all_safe)
       else (ctx, all_safe) in
  let ctx, _ =
    Environ.fold_named_context aux env ~init:(ctx,ctx_set) in
  if not (Option.is_empty ps.section_vars) then
    CErrors.user_err Pp.(str "Used section variables can be declared only once");
  (* EJGA: This is always empty thus we should modify the type *)
  (ctx, []), { ps with section_vars = Some (Context.Named.to_vars ctx) }

let get_open_goals ps =
  let Proof.{ goals; stack; shelf } = Proof.data ps.proof in
  List.length goals +
  List.fold_left (+) 0
    (List.map (fun (l1,l2) -> List.length l1 + List.length l2) stack) +
  List.length shelf

type closed_proof_output = (Constr.t * Evd.side_effects) list * UState.t

let private_poly_univs =
  let b = ref true in
  let _ = Goptions.(declare_bool_option {
      optdepr = false;
      optname = "use private polymorphic universes for Qed constants";
      optkey = ["Private";"Polymorphic";"Universes"];
      optread = (fun () -> !b);
      optwrite = ((:=) b);
    })
  in
  fun () -> !b

let close_proof ~opaque ~keep_body_ucst_separate ?feedback_id ~now
                (fpl : closed_proof_output Future.computation) ps =
  let { section_vars; proof; udecl; initial_euctx } = ps in
  let Proof.{ name; poly; entry } = Proof.data proof in
  let opaque = match opaque with Opaque -> true | Transparent -> false in
  let constrain_variables ctx =
    UState.constrain_variables (fst (UState.context_set initial_euctx)) ctx
  in
  let fpl, univs = Future.split2 fpl in
  let universes = if poly || now then Future.force univs else initial_euctx in
  (* Because of dependent subgoals at the beginning of proofs, we could
     have existential variables in the initial types of goals, we need to
     normalise them for the kernel. *)
  let subst_evar k =
    let { Proof.sigma } = Proof.data proof in
    Evd.existential_opt_value0 sigma k in
  let nf = UnivSubst.nf_evars_and_universes_opt_subst subst_evar
    (UState.subst universes) in

  let make_body =
    if poly || now then
      let make_body t (c, eff) =
        let body = c in
        let allow_deferred =
          not poly && (keep_body_ucst_separate ||
          not (Safe_typing.empty_private_constants = eff.Evd.seff_private))
        in
        let typ = if allow_deferred then t else nf t in
        let used_univs_body = Vars.universes_of_constr body in
        let used_univs_typ = Vars.universes_of_constr typ in
        if allow_deferred then
          let initunivs = UState.univ_entry ~poly initial_euctx in
          let ctx = constrain_variables universes in
          (* For vi2vo compilation proofs are computed now but we need to
             complement the univ constraints of the typ with the ones of
             the body.  So we keep the two sets distinct. *)
          let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
          let ctx_body = UState.restrict ctx used_univs in
          let univs = UState.check_mono_univ_decl ctx_body udecl in
          (initunivs, typ), ((body, univs), eff)
        else if poly && opaque && private_poly_univs () then
          let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
          let universes = UState.restrict universes used_univs in
          let typus = UState.restrict universes used_univs_typ in
          let udecl = UState.check_univ_decl ~poly typus udecl in
          let ubody = Univ.ContextSet.diff
              (UState.context_set universes)
              (UState.context_set typus)
          in
          (udecl, typ), ((body, ubody), eff)
        else
          (* Since the proof is computed now, we can simply have 1 set of
             constraints in which we merge the ones for the body and the ones
             for the typ. We recheck the declaration after restricting with
             the actually used universes.
             TODO: check if restrict is really necessary now. *)
          let used_univs = Univ.LSet.union used_univs_body used_univs_typ in
          let ctx = UState.restrict universes used_univs in
          let univs = UState.check_univ_decl ~poly ctx udecl in
          (univs, typ), ((body, Univ.ContextSet.empty), eff)
      in
       fun t p -> Future.split2 (Future.chain p (make_body t))
    else
      fun t p ->
        (* Already checked the univ_decl for the type universes when starting the proof. *)
        let univctx = UState.univ_entry ~poly:false universes in
        let t = nf t in
        Future.from_val (univctx, t),
        Future.chain p (fun (pt,eff) ->
          (* Deferred proof, we already checked the universe declaration with
             the initial universes, ensure that the final universes respect
             the declaration as well. If the declaration is non-extensible,
             this will prevent the body from adding universes and constraints. *)
          let univs = Future.force univs in
          let univs = constrain_variables univs in
          let used_univs = Univ.LSet.union
              (Vars.universes_of_constr t)
              (Vars.universes_of_constr pt)
          in
          let univs = UState.restrict univs used_univs in
          let univs = UState.check_mono_univ_decl univs udecl in
          (pt,univs),eff)
  in
  let entry_fn p (_, t) =
    let t = EConstr.Unsafe.to_constr t in
    let univstyp, body = make_body t p in
    let univs, typ = Future.force univstyp in
    Declare.delayed_definition_entry ~opaque ?feedback_id ?section_vars ~univs ~types:typ body
  in
  let entries = Future.map2 entry_fn fpl (Proofview.initial_goals entry) in
  { name; entries; poly; universes; udecl }

let return_proof ?(allow_partial=false) ps =
 let { proof } = ps in
 if allow_partial then begin
  let proofs = Proof.partial_proof proof in
  let Proof.{sigma=evd} = Proof.data proof in
  let eff = Evd.eval_side_effects evd in
  (* ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
     side-effects... This may explain why one need to uniquize side-effects
     thereafter... *)
  let proofs = List.map (fun c -> EConstr.Unsafe.to_constr c, eff) proofs in
    proofs, Evd.evar_universe_context evd
 end else
  let Proof.{name=pid;entry} = Proof.data proof in
  let initial_goals = Proofview.initial_goals entry in
  let evd = Proof.return ~pid proof in
  let eff = Evd.eval_side_effects evd in
  let evd = Evd.minimize_universes evd in
  let proof_opt c =
    match EConstr.to_constr_opt evd c with
    | Some p -> p
    | None -> CErrors.user_err Pp.(str "Some unresolved existential variables remain")
  in
  (* ppedrot: FIXME, this is surely wrong. There is no reason to duplicate
     side-effects... This may explain why one need to uniquize side-effects
     thereafter... *)
  (* EJGA: actually side-effects de-duplication and this codepath is
     unrelated. Duplicated side-effects arise from incorrect scheme
     generation code, the main bulk of it was mostly fixed by #9836
     but duplication can still happen because of rewriting schemes I
     think; however the code below is mostly untested, the only
     code-paths that generate several proof entries are derive and
     equations and so far there is no code in the CI that will
     actually call those and do a side-effect, TTBOMK *)
  let proofs =
    List.map (fun (c, _) -> (proof_opt c, eff)) initial_goals in
    proofs, Evd.evar_universe_context evd

let close_future_proof ~opaque ~feedback_id ps proof =
  close_proof ~opaque ~keep_body_ucst_separate:true ~feedback_id ~now:false proof ps

let close_proof ~opaque ~keep_body_ucst_separate fix_exn ps =
  close_proof ~opaque ~keep_body_ucst_separate ~now:true
    (Future.from_val ~fix_exn (return_proof ps)) ps

let update_global_env =
  map_proof (fun p ->
      let { Proof.sigma } = Proof.data p in
      let tac = Proofview.Unsafe.tclEVARS (Evd.update_sigma_env sigma (Global.env ())) in
      let p, (status,info), _ = Proof.run_tactic (Global.env ()) tac p in
      p)