1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* File created by Hugo Herbelin, Nov 2009 *) (* This file builds schemes related to equality inductive types, especially for dependent rewrite, rewriting on arbitrary equality types and congruence on arbitrary equality types *) (* However, the choices made lack uniformity, as we have to make a compromise between several constraints and ideal requirements: - Having the extended schemes working conservatively over the existing non-dependent schemes eq_rect and eq_rect_r. There is in particular a problem with the dependent rewriting schemes in hypotheses for which the inductive types cannot be in last position of the scheme as it is the general rule in Coq. This has an effect on the order of generated goals (side-conditions of the lemma after or before the main goal). The non-dependent case can be fixed but to the price of a lost of uniformity wrt side-conditions in the dependent and non-dependent cases. - Having schemes general enough to support non-symmetric equality type like eq_true. - Having schemes that avoid introducing beta-expansions blocked by "match" so as to please the guard condition, but this introduces some tricky things involving involutivity of symmetry that I don't how to avoid. The result below is a compromise with dependent left-to-right rewriting in conclusion (l2r_dep) using the tricky involutivity of symmetry and dependent left-to-right rewriting in hypotheses (r2l_forward_dep), that one wants to be used for non-symmetric equality and that introduces blocked beta-expansions. One may wonder whether these extensions are worth to be done regarding the price we have to pay and regarding the rare situations where they are needed. However, I believe it meets a natural expectation of the user. *) open CErrors open Util open Names open Term open Constr open Context open Vars open Declarations open Environ open Inductive open Termops open Namegen open Inductiveops open Ind_tables open Indrec open Context.Rel.Declaration module RelDecl = Context.Rel.Declaration let hid = Id.of_string "H" let xid = Id.of_string "X" let default_id_of_sort = function InSProp | InProp | InSet -> hid | InType -> xid let fresh env id = next_global_ident_away id Id.Set.empty let with_context_set ctx (b, ctx') = (b, Univ.ContextSet.union ctx ctx') let build_dependent_inductive ind (mib,mip) = let realargs,_ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in applist (mkIndU ind, Context.Rel.to_extended_list mkRel mip.mind_nrealdecls mib.mind_params_ctxt @ Context.Rel.to_extended_list mkRel 0 realargs) let named_hd env t na = named_hd env (Evd.from_env env) (EConstr.of_constr t) na let name_assumption env = function | LocalAssum (na,t) -> LocalAssum (map_annot (named_hd env t) na, t) | LocalDef (na,c,t) -> LocalDef (map_annot (named_hd env c) na, c, t) let name_context env hyps = snd (List.fold_left (fun (env,hyps) d -> let d' = name_assumption env d in (push_rel d' env, d' :: hyps)) (env,[]) (List.rev hyps)) let my_it_mkLambda_or_LetIn s c = it_mkLambda_or_LetIn c s let my_it_mkProd_or_LetIn s c = Term.it_mkProd_or_LetIn c s let my_it_mkLambda_or_LetIn_name s c = let env = Global.env () in let mkLambda_or_LetIn_name d b = mkLambda_or_LetIn (name_assumption env d) b in List.fold_left (fun c d -> mkLambda_or_LetIn_name d c) c s let get_coq_eq ctx = try let eq = Globnames.destIndRef (Coqlib.lib_ref "core.eq.type") in (* Do not force the lazy if they are not defined *) let eq, ctx = with_context_set ctx (UnivGen.fresh_inductive_instance (Global.env ()) eq) in mkIndU eq, mkConstructUi (eq,1), ctx with Not_found -> user_err Pp.(str "eq not found.") let univ_of_eq env eq = let open EConstr in let eq = of_constr eq in let sigma = Evd.from_env env in match kind sigma (Retyping.get_type_of env sigma eq) with | Prod (_,t,_) -> (match kind sigma t with Sort k -> (match ESorts.kind sigma k with Type u -> u | _ -> assert false) | _ -> assert false) | _ -> assert false (**********************************************************************) (* Check if an inductive type [ind] has the form *) (* *) (* I q1..qm,p1..pn a1..an with one constructor *) (* C : I q1..qm,p1..pn p1..pn *) (* *) (* in which case, a symmetry lemma is definable *) (**********************************************************************) let error msg = user_err Pp.(str msg) let get_sym_eq_data env (ind,u) = let (mib,mip as specif) = lookup_mind_specif env ind in if not (Int.equal (Array.length mib.mind_packets) 1) || not (Int.equal (Array.length mip.mind_nf_lc) 1) then error "Not an inductive type with a single constructor."; let arityctxt = Vars.subst_instance_context u mip.mind_arity_ctxt in let realsign,_ = List.chop mip.mind_nrealdecls arityctxt in if List.exists is_local_def realsign then error "Inductive equalities with local definitions in arity not supported."; let constrsign,ccl = mip.mind_nf_lc.(0) in let _,constrargs = decompose_app ccl in if not (Int.equal (Context.Rel.length constrsign) (Context.Rel.length mib.mind_params_ctxt)) then error "Constructor must have no arguments"; (* This can be relaxed... *) let params,constrargs = List.chop mib.mind_nparams constrargs in if mip.mind_nrealargs > mib.mind_nparams then error "Constructors arguments must repeat the parameters."; let _,params2 = List.chop (mib.mind_nparams-mip.mind_nrealargs) params in let paramsctxt = Vars.subst_instance_context u mib.mind_params_ctxt in let paramsctxt1,_ = List.chop (mib.mind_nparams-mip.mind_nrealargs) paramsctxt in if not (List.equal Constr.equal params2 constrargs) then error "Constructors arguments must repeat the parameters."; (* nrealargs_ctxt and nrealargs are the same here *) (specif,mip.mind_nrealargs,realsign,paramsctxt,paramsctxt1) (**********************************************************************) (* Check if an inductive type [ind] has the form *) (* *) (* I q1..qm a1..an with one constructor *) (* C : I q1..qm b1..bn *) (* *) (* in which case it expresses the equalities ai=bi, but not in a way *) (* such that symmetry is a priori definable *) (**********************************************************************) let get_non_sym_eq_data env (ind,u) = let (mib,mip as specif) = lookup_mind_specif env ind in if not (Int.equal (Array.length mib.mind_packets) 1) || not (Int.equal (Array.length mip.mind_nf_lc) 1) then error "Not an inductive type with a single constructor."; let arityctxt = Vars.subst_instance_context u mip.mind_arity_ctxt in let realsign,_ = List.chop mip.mind_nrealdecls arityctxt in if List.exists is_local_def realsign then error "Inductive equalities with local definitions in arity not supported"; let constrsign,ccl = mip.mind_nf_lc.(0) in let _,constrargs = decompose_app ccl in if not (Int.equal (Context.Rel.length constrsign) (Context.Rel.length mib.mind_params_ctxt)) then error "Constructor must have no arguments"; let _,constrargs = List.chop mib.mind_nparams constrargs in let constrargs = List.map (Vars.subst_instance_constr u) constrargs in let paramsctxt = Vars.subst_instance_context u mib.mind_params_ctxt in (specif,constrargs,realsign,paramsctxt,mip.mind_nrealargs) (**********************************************************************) (* Build the symmetry lemma associated to an inductive type *) (* I q1..qm,p1..pn a1..an with one constructor *) (* C : I q1..qm,p1..pn p1..pn *) (* *) (* sym := fun q1..qn p1..pn a1..an (H:I q1..qm p1..pn a1..an) => *) (* match H in I _.._ a1..an return I q1..qm a1..an p1..pn with *) (* C => C *) (* end *) (* : forall q1..qm p1..pn a1..an I q1..qm p1..pn a1..an -> *) (* I q1..qm a1..an p1..pn *) (* *) (**********************************************************************) let build_sym_scheme env ind = let (ind,u as indu), ctx = UnivGen.fresh_inductive_instance env ind in let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 = get_sym_eq_data env indu in let cstr n = mkApp (mkConstructUi(indu,1),Context.Rel.to_extended_vect mkRel n mib.mind_params_ctxt) in let inds = snd (mind_arity mip) in let varH = fresh env (default_id_of_sort inds) in let applied_ind = build_dependent_inductive indu specif in let indr = Sorts.relevance_of_sort_family inds in let realsign_ind = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind))::realsign) in let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info (Global.env()) ind rci RegularStyle in let c = (my_it_mkLambda_or_LetIn paramsctxt (my_it_mkLambda_or_LetIn_name realsign_ind (mkCase (ci, my_it_mkLambda_or_LetIn_name (lift_rel_context (nrealargs+1) realsign_ind) (mkApp (mkIndU indu,Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+2) paramsctxt1; rel_vect 1 nrealargs; rel_vect (2*nrealargs+2) nrealargs])), mkRel 1 (* varH *), [|cstr (nrealargs+1)|])))) in c, UState.of_context_set ctx let sym_scheme_kind = declare_individual_scheme_object "_sym_internal" (fun _ ind -> let c, ctx = build_sym_scheme (Global.env() (* side-effect! *)) ind in (c, ctx), Evd.empty_side_effects) (**********************************************************************) (* Build the involutivity of symmetry for an inductive type *) (* I q1..qm,p1..pn a1..an with one constructor *) (* C : I q1..qm,p1..pn p1..pn *) (* *) (* inv := fun q1..qn p1..pn a1..an (H:I q1..qm p1..pn a1..an) => *) (* match H in I _.._ a1..an return *) (* sym q1..qm p1..pn a1..an (sym q1..qm a1..an p1..pn H) = H *) (* with *) (* C => refl_equal C *) (* end *) (* : forall q1..qm p1..pn a1..an (H:I q1..qm a1..an p1..pn), *) (* sym q1..qm p1..pn a1..an (sym q1..qm a1..an p1..pn H) = H *) (* *) (**********************************************************************) let const_of_scheme kind env ind ctx = let sym_scheme, eff = (find_scheme kind ind) in let sym, ctx = with_context_set ctx (UnivGen.fresh_constant_instance (Global.env()) sym_scheme) in mkConstU sym, ctx, eff let build_sym_involutive_scheme env ind = let (ind,u as indu), ctx = UnivGen.fresh_inductive_instance env ind in let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 = get_sym_eq_data env indu in let eq,eqrefl,ctx = get_coq_eq ctx in let sym, ctx, eff = const_of_scheme sym_scheme_kind env ind ctx in let cstr n = mkApp (mkConstructUi (indu,1),Context.Rel.to_extended_vect mkRel n paramsctxt) in let inds = snd (mind_arity mip) in let indr = Sorts.relevance_of_sort_family inds in let varH = fresh env (default_id_of_sort inds) in let applied_ind = build_dependent_inductive indu specif in let applied_ind_C = mkApp (mkIndU indu, Array.append (Context.Rel.to_extended_vect mkRel (nrealargs+1) mib.mind_params_ctxt) (rel_vect (nrealargs+1) nrealargs)) in let realsign_ind = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind))::realsign) in let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info (Global.env()) ind rci RegularStyle in let c = (my_it_mkLambda_or_LetIn paramsctxt (my_it_mkLambda_or_LetIn_name realsign_ind (mkCase (ci, my_it_mkLambda_or_LetIn_name (lift_rel_context (nrealargs+1) realsign_ind) (mkApp (eq,[| mkApp (mkIndU indu, Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+2) paramsctxt1; rel_vect (2*nrealargs+2) nrealargs; rel_vect 1 nrealargs]); mkApp (sym,Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+2) paramsctxt1; rel_vect 1 nrealargs; rel_vect (2*nrealargs+2) nrealargs; [|mkApp (sym,Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+2) paramsctxt1; rel_vect (2*nrealargs+2) nrealargs; rel_vect 1 nrealargs; [|mkRel 1|]])|]]); mkRel 1|])), mkRel 1 (* varH *), [|mkApp(eqrefl,[|applied_ind_C;cstr (nrealargs+1)|])|])))) in (c, UState.of_context_set ctx), eff let sym_involutive_scheme_kind = declare_individual_scheme_object "_sym_involutive" (fun _ ind -> build_sym_involutive_scheme (Global.env() (* side-effect! *)) ind) (**********************************************************************) (* Build the left-to-right rewriting lemma for conclusion associated *) (* to an inductive type I q1..qm,p1..pn a1..an with one constructor *) (* C : I q1..qm,p1..pn p1..pn *) (* (symmetric equality in non-dependent and dependent cases) *) (* *) (* We could have defined the scheme in one match over a generalized *) (* type but this behaves badly wrt the guard condition, so we use *) (* symmetry instead; with commutative-cuts-aware guard condition a *) (* proof in the style of l2r_forward is also possible (see below) *) (* *) (* rew := fun q1..qm p1..pn a1..an *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *) (* (HC:P a1..an C) *) (* (H:I q1..qm p1..pn a1..an) => *) (* match sym_involutive q1..qm p1..pn a1..an H as Heq *) (* in _ = H return P p1..pn H *) (* with *) (* refl => *) (* match sym q1..qm p1..pn a1..an H as H *) (* in I _.._ p1..pn *) (* return P p1..pn (sym q1..qm a1..an p1..pn H) *) (* with *) (* C => HC *) (* end *) (* end *) (* : forall q1..qn p1..pn a1..an *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind), *) (* P a1..an C -> *) (* forall (H:I q1..qm p1..pn a1..an), P p1..pn H *) (* *) (* where A1..An are the common types of p1..pn and a1..an *) (* *) (* Note: the symmetry is needed in the dependent case since the *) (* dependency is on the inner arguments (the indices in C) and these *) (* inner arguments need to be visible as parameters to be able to *) (* abstract over them in P. *) (**********************************************************************) (**********************************************************************) (* For information, the alternative proof of dependent l2r_rew scheme *) (* that would use commutative cuts is the following *) (* *) (* rew := fun q1..qm p1..pn a1..an *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *) (* (HC:P a1..an C) *) (* (H:I q1..qm p1..pn a1..an) => *) (* match H in I .._.. a1..an return *) (* forall p1..pn, I q1..qm p1..pn a1..an -> kind), *) (* P a1..an C -> P p1..pn H *) (* with *) (* C => fun P HC => HC *) (* end P HC *) (* : forall q1..qn p1..pn a1..an *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind), *) (* P a1..an C -> *) (* forall (H:I q1..qm p1..pn a1..an), P p1..pn H *) (* *) (**********************************************************************) let build_l2r_rew_scheme dep env ind kind = let (ind,u as indu), ctx = UnivGen.fresh_inductive_instance env ind in let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 = get_sym_eq_data env indu in let sym, ctx, eff = const_of_scheme sym_scheme_kind env ind ctx in let sym_involutive, ctx, eff' = const_of_scheme sym_involutive_scheme_kind env ind ctx in let eq,eqrefl,ctx = get_coq_eq ctx in let cstr n p = mkApp (mkConstructUi(indu,1), Array.concat [Context.Rel.to_extended_vect mkRel n paramsctxt1; rel_vect p nrealargs]) in let inds = snd (mind_arity mip) in let indr = Sorts.relevance_of_sort_family inds in let varH = fresh env (default_id_of_sort inds) in let varHC = fresh env (Id.of_string "HC") in let varP = fresh env (Id.of_string "P") in let applied_ind = build_dependent_inductive indu specif in let applied_ind_P = mkApp (mkIndU indu, Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs) paramsctxt1; rel_vect 0 nrealargs; rel_vect nrealargs nrealargs]) in let applied_ind_G = mkApp (mkIndU indu, Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+3) paramsctxt1; rel_vect (nrealargs+3) nrealargs; rel_vect 0 nrealargs]) in let realsign_P = lift_rel_context nrealargs realsign in let realsign_ind_P = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind_P))::realsign_P) in let realsign_ind_G = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind_G)):: lift_rel_context (nrealargs+3) realsign) in let applied_sym_C n = mkApp(sym, Array.append (Context.Rel.to_extended_vect mkRel n mip.mind_arity_ctxt) [|mkVar varH|]) in let applied_sym_G = mkApp(sym, Array.concat [Context.Rel.to_extended_vect mkRel (nrealargs*3+4) paramsctxt1; rel_vect (nrealargs+4) nrealargs; rel_vect 1 nrealargs; [|mkRel 1|]]) in let s, ctx' = UnivGen.fresh_sort_in_family kind in let ctx = Univ.ContextSet.union ctx ctx' in let s = mkSort s in let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info (Global.env()) ind rci RegularStyle in let cieq = make_case_info (Global.env()) (fst (destInd eq)) rci RegularStyle in let applied_PC = mkApp (mkVar varP,Array.append (Context.Rel.to_extended_vect mkRel 1 realsign) (if dep then [|cstr (2*nrealargs+1) 1|] else [||])) in let applied_PG = mkApp (mkVar varP,Array.append (rel_vect 1 nrealargs) (if dep then [|applied_sym_G|] else [||])) in let applied_PR = mkApp (mkVar varP,Array.append (rel_vect (nrealargs+5) nrealargs) (if dep then [|mkRel 2|] else [||])) in let applied_sym_sym = mkApp (sym,Array.concat [Context.Rel.to_extended_vect mkRel (2*nrealargs+4) paramsctxt1; rel_vect 4 nrealargs; rel_vect (nrealargs+4) nrealargs; [|mkApp (sym,Array.concat [Context.Rel.to_extended_vect mkRel (2*nrealargs+4) paramsctxt1; rel_vect (nrealargs+4) nrealargs; rel_vect 4 nrealargs; [|mkRel 2|]])|]]) in let main_body = mkCase (ci, my_it_mkLambda_or_LetIn_name realsign_ind_G applied_PG, applied_sym_C 3, [|mkVar varHC|]) in let c = (my_it_mkLambda_or_LetIn paramsctxt (my_it_mkLambda_or_LetIn_name realsign (mkNamedLambda (make_annot varP indr) (my_it_mkProd_or_LetIn (if dep then realsign_ind_P else realsign_P) s) (mkNamedLambda (make_annot varHC indr) applied_PC (mkNamedLambda (make_annot varH indr) (lift 2 applied_ind) (if dep then (* we need a coercion *) mkCase (cieq, mkLambda (make_annot (Name varH) indr,lift 3 applied_ind, mkLambda (make_annot Anonymous indr, mkApp (eq,[|lift 4 applied_ind;applied_sym_sym;mkRel 1|]), applied_PR)), mkApp (sym_involutive, Array.append (Context.Rel.to_extended_vect mkRel 3 mip.mind_arity_ctxt) [|mkVar varH|]), [|main_body|]) else main_body)))))) in (c, UState.of_context_set ctx), Evd.concat_side_effects eff' eff (**********************************************************************) (* Build the left-to-right rewriting lemma for hypotheses associated *) (* to an inductive type I q1..qm,p1..pn a1..an with one constructor *) (* C : I q1..qm,p1..pn p1..pn *) (* (symmetric equality in non dependent and dependent cases) *) (* *) (* rew := fun q1..qm p1..pn a1..an (H:I q1..qm p1..pn a1..an) *) (* match H in I _.._ a1..an *) (* return forall *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an -> kind) *) (* (HC:P p1..pn H) => *) (* P a1..an C *) (* with *) (* C => fun P HC => HC *) (* end *) (* : forall q1..qm p1..pn a1..an *) (* (H:I q1..qm p1..pn a1..an) *) (* (P:forall p1..pn, I q1..qm p1..pn a1..an ->kind), *) (* P p1..pn H -> P a1..an C *) (* *) (* Note: the symmetry is needed in the dependent case since the *) (* dependency is on the inner arguments (the indices in C) and these *) (* inner arguments need to be visible as parameters to be able to *) (* abstract over them in P. *) (**********************************************************************) let build_l2r_forward_rew_scheme dep env ind kind = let (ind,u as indu), ctx = UnivGen.fresh_inductive_instance env ind in let (mib,mip as specif),nrealargs,realsign,paramsctxt,paramsctxt1 = get_sym_eq_data env indu in let cstr n p = mkApp (mkConstructUi(indu,1), Array.concat [Context.Rel.to_extended_vect mkRel n paramsctxt1; rel_vect p nrealargs]) in let inds = snd (mind_arity mip) in let indr = Sorts.relevance_of_sort_family inds in let varH = fresh env (default_id_of_sort inds) in let varHC = fresh env (Id.of_string "HC") in let varP = fresh env (Id.of_string "P") in let applied_ind = build_dependent_inductive indu specif in let applied_ind_P = mkApp (mkIndU indu, Array.concat [Context.Rel.to_extended_vect mkRel (4*nrealargs+2) paramsctxt1; rel_vect 0 nrealargs; rel_vect (nrealargs+1) nrealargs]) in let applied_ind_P' = mkApp (mkIndU indu, Array.concat [Context.Rel.to_extended_vect mkRel (3*nrealargs+1) paramsctxt1; rel_vect 0 nrealargs; rel_vect (2*nrealargs+1) nrealargs]) in let realsign_P n = lift_rel_context (nrealargs*n+n) realsign in let realsign_ind = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind))::realsign) in let realsign_ind_P n aP = name_context env ((LocalAssum (make_annot (Name varH) indr,aP))::realsign_P n) in let s, ctx' = UnivGen.fresh_sort_in_family kind in let ctx = Univ.ContextSet.union ctx ctx' in let s = mkSort s in let rci = Sorts.Relevant in let ci = make_case_info (Global.env()) ind rci RegularStyle in let applied_PC = mkApp (mkVar varP,Array.append (rel_vect (nrealargs*2+3) nrealargs) (if dep then [|mkRel 2|] else [||])) in let applied_PC' = mkApp (mkVar varP,Array.append (rel_vect (nrealargs+2) nrealargs) (if dep then [|cstr (2*nrealargs+2) (nrealargs+2)|] else [||])) in let applied_PG = mkApp (mkVar varP,Array.append (rel_vect 3 nrealargs) (if dep then [|cstr (3*nrealargs+4) 3|] else [||])) in let c = (my_it_mkLambda_or_LetIn paramsctxt (my_it_mkLambda_or_LetIn_name realsign (mkNamedLambda (make_annot varH indr) applied_ind (mkCase (ci, my_it_mkLambda_or_LetIn_name (lift_rel_context (nrealargs+1) realsign_ind) (mkNamedProd (make_annot varP indr) (my_it_mkProd_or_LetIn (if dep then realsign_ind_P 2 applied_ind_P else realsign_P 2) s) (mkNamedProd (make_annot varHC indr) applied_PC applied_PG)), (mkVar varH), [|mkNamedLambda (make_annot varP indr) (my_it_mkProd_or_LetIn (if dep then realsign_ind_P 1 applied_ind_P' else realsign_P 2) s) (mkNamedLambda (make_annot varHC indr) applied_PC' (mkVar varHC))|]))))) in c, UState.of_context_set ctx (**********************************************************************) (* Build the right-to-left rewriting lemma for hypotheses associated *) (* to an inductive type I q1..qm a1..an with one constructor *) (* C : I q1..qm b1..bn *) (* (arbitrary equality in non-dependent and dependent cases) *) (* *) (* rew := fun q1..qm a1..an (H:I q1..qm a1..an) *) (* (P:forall a1..an, I q1..qm a1..an -> kind) *) (* (HC:P a1..an H) => *) (* match H in I _.._ a1..an return P a1..an H -> P b1..bn C *) (* with *) (* C => fun x => x *) (* end HC *) (* : forall q1..pm a1..an (H:I q1..qm a1..an) *) (* (P:forall a1..an, I q1..qm a1..an -> kind), *) (* P a1..an H -> P b1..bn C *) (* *) (* Note that the dependent elimination here is not a dependency *) (* in the conclusion of the scheme but a dependency in the premise of *) (* the scheme. This is unfortunately incompatible with the standard *) (* pattern for schemes in Coq which expects that the eliminated *) (* object is the last premise of the scheme. We then have no choice *) (* than following the more liberal pattern of having the eliminated *) (* object coming before the premises. *) (* *) (* Note that in the non-dependent case, this scheme (up to the order *) (* of premises) generalizes the (backward) l2r scheme above: same *) (* statement but no need for symmetry of the equality. *) (**********************************************************************) let build_r2l_forward_rew_scheme dep env ind kind = let (ind,u as indu), ctx = UnivGen.fresh_inductive_instance env ind in let ((mib,mip as specif),constrargs,realsign,paramsctxt,nrealargs) = get_non_sym_eq_data env indu in let cstr n = mkApp (mkConstructUi(indu,1),Context.Rel.to_extended_vect mkRel n mib.mind_params_ctxt) in let constrargs_cstr = constrargs@[cstr 0] in let inds = snd (mind_arity mip) in let indr = Sorts.relevance_of_sort_family inds in let varH = fresh env (default_id_of_sort inds) in let varHC = fresh env (Id.of_string "HC") in let varP = fresh env (Id.of_string "P") in let applied_ind = build_dependent_inductive indu specif in let realsign_ind = name_context env ((LocalAssum (make_annot (Name varH) indr,applied_ind))::realsign) in let s, ctx' = UnivGen.fresh_sort_in_family kind in let ctx = Univ.ContextSet.union ctx ctx' in let s = mkSort s in let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info (Global.env()) ind rci RegularStyle in let applied_PC = applist (mkVar varP,if dep then constrargs_cstr else constrargs) in let applied_PG = mkApp (mkVar varP, if dep then Context.Rel.to_extended_vect mkRel 0 realsign_ind else Context.Rel.to_extended_vect mkRel 1 realsign) in let c = (my_it_mkLambda_or_LetIn paramsctxt (my_it_mkLambda_or_LetIn_name realsign_ind (mkNamedLambda (make_annot varP indr) (my_it_mkProd_or_LetIn (lift_rel_context (nrealargs+1) (if dep then realsign_ind else realsign)) s) (mkNamedLambda (make_annot varHC indr) (lift 1 applied_PG) (mkApp (mkCase (ci, my_it_mkLambda_or_LetIn_name (lift_rel_context (nrealargs+3) realsign_ind) (mkArrow applied_PG indr (lift (2*nrealargs+5) applied_PC)), mkRel 3 (* varH *), [|mkLambda (make_annot (Name varHC) indr, lift (nrealargs+3) applied_PC, mkRel 1)|]), [|mkVar varHC|])))))) in c, UState.of_context_set ctx (**********************************************************************) (* This function "repairs" the non-dependent r2l forward rewriting *) (* scheme by making it comply with the standard pattern of schemes *) (* in Coq. Otherwise said, it turns a scheme of type *) (* *) (* forall q1..pm a1..an, I q1..qm a1..an -> *) (* forall (P: forall a1..an, kind), *) (* P a1..an -> P b1..bn *) (* *) (* into a scheme of type *) (* *) (* forall q1..pm (P:forall a1..an, kind), *) (* P a1..an -> forall a1..an, I q1..qm a1..an -> P b1..bn *) (* *) (**********************************************************************) let fix_r2l_forward_rew_scheme (c, ctx') = let env = Global.env () in let sigma = Evd.from_env env in let t = Retyping.get_type_of env sigma (EConstr.of_constr c) in let t = EConstr.Unsafe.to_constr t in let ctx,_ = decompose_prod_assum t in match ctx with | hp :: p :: ind :: indargs -> let c' = my_it_mkLambda_or_LetIn indargs (mkLambda_or_LetIn (RelDecl.map_constr (liftn (-1) 1) p) (mkLambda_or_LetIn (RelDecl.map_constr (liftn (-1) 2) hp) (mkLambda_or_LetIn (RelDecl.map_constr (lift 2) ind) (EConstr.Unsafe.to_constr (Reductionops.whd_beta sigma (EConstr.of_constr (applist (c, Context.Rel.to_extended_list mkRel 3 indargs @ [mkRel 1;mkRel 3;mkRel 2])))))))) in c', ctx' | _ -> anomaly (Pp.str "Ill-formed non-dependent left-to-right rewriting scheme.") (**********************************************************************) (* Build the right-to-left rewriting lemma for conclusion associated *) (* to an inductive type I q1..qm a1..an with one constructor *) (* C : I q1..qm b1..bn *) (* (arbitrary equality in non-dependent and dependent case) *) (* *) (* This is actually the standard case analysis scheme *) (* *) (* rew := fun q1..qm a1..an *) (* (P:forall a1..an, I q1..qm a1..an -> kind) *) (* (H:I q1..qm a1..an) *) (* (HC:P b1..bn C) => *) (* match H in I _.._ a1..an return P a1..an H with *) (* C => HC *) (* end *) (* : forall q1..pm a1..an *) (* (P:forall a1..an, I q1..qm a1..an -> kind) *) (* (H:I q1..qm a1..an), *) (* P b1..bn C -> P a1..an H *) (**********************************************************************) let build_r2l_rew_scheme dep env ind k = let sigma = Evd.from_env env in let (sigma, indu) = Evd.fresh_inductive_instance env sigma ind in let (sigma, c) = build_case_analysis_scheme env sigma indu dep k in c, Evd.evar_universe_context sigma (**********************************************************************) (* Register the rewriting schemes *) (**********************************************************************) (**********************************************************************) (* Dependent rewrite from left-to-right in conclusion *) (* (symmetrical equality type only) *) (* Gamma |- P p1..pn H ==> Gamma |- P a1..an C *) (* with H:I p1..pn a1..an in Gamma *) (**********************************************************************) let rew_l2r_dep_scheme_kind = declare_individual_scheme_object "_rew_r_dep" (fun _ ind -> build_l2r_rew_scheme true (Global.env()) ind InType) (**********************************************************************) (* Dependent rewrite from right-to-left in conclusion *) (* Gamma |- P a1..an H ==> Gamma |- P b1..bn C *) (* with H:I a1..an in Gamma (non symmetric case) *) (* or H:I b1..bn a1..an in Gamma (symmetric case) *) (**********************************************************************) let rew_r2l_dep_scheme_kind = declare_individual_scheme_object "_rew_dep" (fun _ ind -> build_r2l_rew_scheme true (Global.env()) ind InType,Evd.empty_side_effects) (**********************************************************************) (* Dependent rewrite from right-to-left in hypotheses *) (* Gamma, P a1..an H |- D ==> Gamma, P b1..bn C |- D *) (* with H:I a1..an in Gamma (non symmetric case) *) (* or H:I b1..bn a1..an in Gamma (symmetric case) *) (**********************************************************************) let rew_r2l_forward_dep_scheme_kind = declare_individual_scheme_object "_rew_fwd_dep" (fun _ ind -> build_r2l_forward_rew_scheme true (Global.env()) ind InType,Evd.empty_side_effects) (**********************************************************************) (* Dependent rewrite from left-to-right in hypotheses *) (* (symmetrical equality type only) *) (* Gamma, P p1..pn H |- D ==> Gamma, P a1..an C |- D *) (* with H:I p1..pn a1..an in Gamma *) (**********************************************************************) let rew_l2r_forward_dep_scheme_kind = declare_individual_scheme_object "_rew_fwd_r_dep" (fun _ ind -> build_l2r_forward_rew_scheme true (Global.env()) ind InType,Evd.empty_side_effects) (**********************************************************************) (* Non-dependent rewrite from either left-to-right in conclusion or *) (* right-to-left in hypotheses: both l2r_rew and r2l_forward_rew are *) (* potential candidates. Since l2r_rew needs a symmetrical equality, *) (* we adopt r2l_forward_rew (this one introduces a blocked beta- *) (* expansion but since the guard condition supports commutative cuts *) (* this is not a problem; we need though a fix to adjust it to the *) (* standard form of schemes in Coq) *) (**********************************************************************) let rew_l2r_scheme_kind = declare_individual_scheme_object "_rew_r" (fun _ ind -> fix_r2l_forward_rew_scheme (build_r2l_forward_rew_scheme false (Global.env()) ind InType), Evd.empty_side_effects) (**********************************************************************) (* Non-dependent rewrite from either right-to-left in conclusion or *) (* left-to-right in hypotheses: both r2l_rew and l2r_forward_rew but *) (* since r2l_rew works in the non-symmetric case as well as without *) (* introducing commutative cuts, we adopt it *) (**********************************************************************) let rew_r2l_scheme_kind = declare_individual_scheme_object "_rew" (fun _ ind -> build_r2l_rew_scheme false (Global.env()) ind InType, Evd.empty_side_effects) (* End of rewriting schemes *) (**********************************************************************) (* Build the congruence lemma associated to an inductive type *) (* I p1..pn a with one constructor C : I q1..qn b *) (* *) (* congr := fun p1..pn (B:Type) (f:A->B) a (H:I p1..pn a) => *) (* match H in I _.._ a' return f b = f a' with *) (* C => eq_refl (f b) *) (* end *) (* : forall p1..pn (B:Type) (f:A->B) a, I p1..pn a -> f b = f a *) (* *) (* where A is the common type of a and b *) (**********************************************************************) (* TODO: extend it to types with more than one index *) let build_congr env (eq,refl,ctx) ind = let (ind,u as indu), ctx = with_context_set ctx (UnivGen.fresh_inductive_instance env ind) in let (mib,mip) = lookup_mind_specif env ind in if not (Int.equal (Array.length mib.mind_packets) 1) || not (Int.equal (Array.length mip.mind_nf_lc) 1) then error "Not an inductive type with a single constructor."; if not (Int.equal mip.mind_nrealargs 1) then error "Expect an inductive type with one predicate parameter."; let i = 1 in let arityctxt = Vars.subst_instance_context u mip.mind_arity_ctxt in let paramsctxt = Vars.subst_instance_context u mib.mind_params_ctxt in let realsign,_ = List.chop mip.mind_nrealdecls arityctxt in if List.exists is_local_def realsign then error "Inductive equalities with local definitions in arity not supported."; let env_with_arity = push_rel_context arityctxt env in let ty, tyr = let decl = lookup_rel (mip.mind_nrealargs - i + 1) env_with_arity in RelDecl.get_type decl, RelDecl.get_relevance decl in let constrsign,ccl = mip.mind_nf_lc.(0) in let _,constrargs = decompose_app ccl in if not (Int.equal (Context.Rel.length constrsign) (Context.Rel.length mib.mind_params_ctxt)) then error "Constructor must have no arguments"; let b = List.nth constrargs (i + mib.mind_nparams - 1) in let varB = fresh env (Id.of_string "B") in let varH = fresh env (Id.of_string "H") in let varf = fresh env (Id.of_string "f") in let rci = Sorts.Relevant in (* TODO relevance *) let ci = make_case_info (Global.env()) ind rci RegularStyle in let uni, ctx = Univ.extend_in_context_set (UnivGen.new_global_univ ()) ctx in let ctx = (fst ctx, Univ.enforce_leq uni (univ_of_eq env eq) (snd ctx)) in let c = my_it_mkLambda_or_LetIn paramsctxt (mkNamedLambda (make_annot varB Sorts.Relevant) (mkType uni) (mkNamedLambda (make_annot varf Sorts.Relevant) (mkArrow (lift 1 ty) tyr (mkVar varB)) (my_it_mkLambda_or_LetIn_name (lift_rel_context 2 realsign) (mkNamedLambda (make_annot varH Sorts.Relevant) (applist (mkIndU indu, Context.Rel.to_extended_list mkRel (mip.mind_nrealargs+2) paramsctxt @ Context.Rel.to_extended_list mkRel 0 realsign)) (mkCase (ci, my_it_mkLambda_or_LetIn_name (lift_rel_context (mip.mind_nrealargs+3) realsign) (mkLambda (make_annot Anonymous Sorts.Relevant, applist (mkIndU indu, Context.Rel.to_extended_list mkRel (2*mip.mind_nrealdecls+3) paramsctxt @ Context.Rel.to_extended_list mkRel 0 realsign), mkApp (eq, [|mkVar varB; mkApp (mkVar varf, [|lift (2*mip.mind_nrealdecls+4) b|]); mkApp (mkVar varf, [|mkRel (mip.mind_nrealargs - i + 2)|])|]))), mkVar varH, [|mkApp (refl, [|mkVar varB; mkApp (mkVar varf, [|lift (mip.mind_nrealargs+3) b|])|])|])))))) in c, UState.of_context_set ctx let congr_scheme_kind = declare_individual_scheme_object "_congr" (fun _ ind -> (* May fail if equality is not defined *) build_congr (Global.env()) (get_coq_eq Univ.ContextSet.empty) ind, Evd.empty_side_effects)