1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (************************************************************************) (* EqDecide *) (* A tactic for deciding propositional equality on inductive types *) (* by Eduardo Gimenez *) (************************************************************************) open Util open Names open Namegen open Constr open Context open EConstr open Declarations open Tactics open Tacticals.New open Auto open Constr_matching open Hipattern open Proofview.Notations open Tacmach.New open Tactypes (* This file contains the implementation of the tactics ``Decide Equality'' and ``Compare''. They can be used to decide the propositional equality of two objects that belongs to a small inductive datatype --i.e., an inductive set such that all the arguments of its constructors are non-functional sets. The procedure for proving (x,y:R){x=y}+{~x=y} can be scketched as follows: 1. Eliminate x and then y. 2. Try discrimination to solve those goals where x and y has been introduced by different constructors. 3. If x and y have been introduced by the same constructor, then analyse one by one the corresponding pairs of arguments. If they are equal, rewrite one into the other. If they are not, derive a contradiction from the injectiveness of the constructor. 4. Once all the arguments have been rewritten, solve the remaining half of the disjunction by reflexivity. Eduardo Gimenez (30/3/98). *) let clear_last = Proofview.tclEVARMAP >>= fun sigma -> (onLastHyp (fun c -> (clear [destVar sigma c]))) let choose_eq eqonleft = if eqonleft then left_with_bindings false NoBindings else right_with_bindings false NoBindings let choose_noteq eqonleft = if eqonleft then right_with_bindings false NoBindings else left_with_bindings false NoBindings (* A surgical generalize which selects the right occurrences by hand *) (* This prevents issues where c2 is also a subterm of c1 (see e.g. #5449) *) let generalize_right mk typ c1 c2 = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in Refine.refine ~typecheck:false begin fun sigma -> let na = Name (next_name_away_with_default "x" Anonymous (Termops.vars_of_env env)) in let r = Retyping.relevance_of_type env sigma typ in let newconcl = mkProd (make_annot na r, typ, mk typ c1 (mkRel 1)) in let (sigma, x) = Evarutil.new_evar env sigma ~principal:true newconcl in (sigma, mkApp (x, [|c2|])) end end let mkBranches (eqonleft,mk,c1,c2,typ) = tclTHENLIST [generalize_right mk typ c1 c2; Simple.elim c1; intros; onLastHyp Simple.case; clear_last; intros] let inj_flags = Some { Equality.keep_proof_equalities = true; (* necessary *) Equality.injection_in_context = true; (* does not matter here *) Equality.injection_pattern_l2r_order = true; (* does not matter here *) } let discrHyp id = let c env sigma = (sigma, (mkVar id, NoBindings)) in let tac c = Equality.discr_tac false (Some (None, ElimOnConstr c)) in Tacticals.New.tclDELAYEDWITHHOLES false c tac let solveNoteqBranch side = tclTHEN (choose_noteq side) (tclTHEN introf (onLastHypId (fun id -> discrHyp id))) (* Constructs the type {c1=c2}+{~c1=c2} *) let mkDecideEqGoal eqonleft (op,eq,neg) rectype c1 c2 = let equality = mkApp(eq, [|rectype; c1; c2|]) in let disequality = mkApp(neg, [|equality|]) in if eqonleft then mkApp(op, [|equality; disequality |]) else mkApp(op, [|disequality; equality |]) (* Constructs the type (x1,x2:R){x1=x2}+{~x1=x2} *) let idx = Id.of_string "x" let idy = Id.of_string "y" let mkGenDecideEqGoal rectype ops g = let hypnames = pf_ids_set_of_hyps g in let xname = next_ident_away idx hypnames and yname = next_ident_away idy hypnames in (mkNamedProd (make_annot xname Sorts.Relevant) rectype (mkNamedProd (make_annot yname Sorts.Relevant) rectype (mkDecideEqGoal true ops rectype (mkVar xname) (mkVar yname)))) let rec rewrite_and_clear hyps = match hyps with | [] -> Proofview.tclUNIT () | id :: hyps -> tclTHENLIST [ Equality.rewriteLR (mkVar id); clear [id]; rewrite_and_clear hyps; ] let eqCase tac = tclTHEN intro (onLastHypId tac) let injHyp id = let c env sigma = (sigma, (mkVar id, NoBindings)) in let tac c = Equality.injClause inj_flags None false (Some (None, ElimOnConstr c)) in Tacticals.New.tclDELAYEDWITHHOLES false c tac let diseqCase hyps eqonleft = let diseq = Id.of_string "diseq" in let absurd = Id.of_string "absurd" in (tclTHEN (intro_using diseq) (tclTHEN (choose_noteq eqonleft) (tclTHEN (rewrite_and_clear (List.rev hyps)) (tclTHEN (red_in_concl) (tclTHEN (intro_using absurd) (tclTHEN (Simple.apply (mkVar diseq)) (tclTHEN (injHyp absurd) (full_trivial [])))))))) open Proofview.Notations (* spiwack: a PatternMatchingFailure wrapper around [Hipattern]. *) let match_eqdec env sigma c = try let (eqonleft,_,c1,c2,ty) = match_eqdec env sigma c in let (op,eq1,noteq,eq2) = match EConstr.kind sigma c with | App (op,[|ty1;ty2|]) -> let ty1, ty2 = if eqonleft then ty1, ty2 else ty2, ty1 in (match EConstr.kind sigma ty1, EConstr.kind sigma ty2 with | App (eq1,_), App (noteq,[|neq|]) -> (match EConstr.kind sigma neq with | App (eq2,_) -> op,eq1,noteq,eq2 | _ -> assert false) | _ -> assert false) | _ -> assert false in let mk t x y = let eq = mkApp (eq1,[|t;x;y|]) in let neq = mkApp (noteq,[|mkApp (eq2,[|t;x;y|])|]) in if eqonleft then mkApp (op,[|eq;neq|]) else mkApp (op,[|neq;eq|]) in Proofview.tclUNIT (eqonleft,mk,c1,c2,ty) with PatternMatchingFailure -> Proofview.tclZERO PatternMatchingFailure (* /spiwack *) let rec solveArg hyps eqonleft mk largs rargs = match largs, rargs with | [], [] -> tclTHENLIST [ choose_eq eqonleft; rewrite_and_clear (List.rev hyps); intros_reflexivity; ] | a1 :: largs, a2 :: rargs -> Proofview.Goal.enter begin fun gl -> let rectype = pf_unsafe_type_of gl a1 in let decide = mk rectype a1 a2 in let tac hyp = solveArg (hyp :: hyps) eqonleft mk largs rargs in let subtacs = if eqonleft then [eqCase tac;diseqCase hyps eqonleft;default_auto] else [diseqCase hyps eqonleft;eqCase tac;default_auto] in (tclTHENS (elim_type decide) subtacs) end | _ -> invalid_arg "List.fold_right2" let solveEqBranch rectype = Proofview.tclORELSE begin Proofview.Goal.enter begin fun gl -> let concl = pf_concl gl in let env = Proofview.Goal.env gl in let sigma = project gl in match_eqdec env sigma concl >>= fun (eqonleft,mk,lhs,rhs,_) -> let (mib,mip) = Global.lookup_inductive rectype in let nparams = mib.mind_nparams in let getargs l = List.skipn nparams (snd (decompose_app sigma l)) in let rargs = getargs rhs and largs = getargs lhs in solveArg [] eqonleft mk largs rargs end end begin function (e, info) -> match e with | PatternMatchingFailure -> Tacticals.New.tclZEROMSG (Pp.str"Unexpected conclusion!") | e -> Proofview.tclZERO ~info e end (* The tactic Decide Equality *) let hd_app sigma c = match EConstr.kind sigma c with | App (h,_) -> h | _ -> c let decideGralEquality = Proofview.tclORELSE begin Proofview.Goal.enter begin fun gl -> let concl = pf_concl gl in let env = Proofview.Goal.env gl in let sigma = project gl in match_eqdec env sigma concl >>= fun (eqonleft,mk,c1,c2,typ as data) -> let headtyp = hd_app sigma (pf_compute gl typ) in begin match EConstr.kind sigma headtyp with | Ind (mi,_) -> Proofview.tclUNIT mi | _ -> tclZEROMSG (Pp.str"This decision procedure only works for inductive objects.") end >>= fun rectype -> (tclTHEN (mkBranches data) (tclORELSE (solveNoteqBranch eqonleft) (solveEqBranch rectype))) end end begin function (e, info) -> match e with | PatternMatchingFailure -> Tacticals.New.tclZEROMSG (Pp.str"The goal must be of the form {x<>y}+{x=y} or {x=y}+{x<>y}.") | e -> Proofview.tclZERO ~info e end let decideEqualityGoal = tclTHEN intros decideGralEquality let decideEquality rectype ops = Proofview.Goal.enter begin fun gl -> let decide = mkGenDecideEqGoal rectype ops gl in (tclTHENS (cut decide) [default_auto;decideEqualityGoal]) end (* The tactic Compare *) let compare c1 c2 = let open Coqlib in pf_constr_of_global (lib_ref "core.sumbool.type") >>= fun opc -> pf_constr_of_global (lib_ref "core.eq.type") >>= fun eqc -> pf_constr_of_global (lib_ref "core.not.type") >>= fun notc -> Proofview.Goal.enter begin fun gl -> let rectype = pf_unsafe_type_of gl c1 in let ops = (opc,eqc,notc) in let decide = mkDecideEqGoal true ops rectype c1 c2 in (tclTHENS (cut decide) [(tclTHEN intro (tclTHEN (onLastHyp simplest_case) clear_last)); decideEquality rectype ops]) end