1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Termops open EConstr open Inductiveops open Hipattern open Tacmach.New open Tacticals.New open Tactics open Proofview.Notations module NamedDecl = Context.Named.Declaration (* Supposed to be called without as clause *) let introElimAssumsThen tac ba = assert (ba.Tacticals.branchnames == []); let introElimAssums = tclDO ba.Tacticals.nassums intro in (tclTHEN introElimAssums (elim_on_ba tac ba)) (* Supposed to be called with a non-recursive scheme *) let introCaseAssumsThen with_evars tac ba = let n1 = List.length ba.Tacticals.branchsign in let n2 = List.length ba.Tacticals.branchnames in let (l1,l2),l3 = if n1 < n2 then List.chop n1 ba.Tacticals.branchnames, [] else (ba.Tacticals.branchnames, []), List.make (n1-n2) false in let introCaseAssums = tclTHEN (intro_patterns with_evars l1) (intros_clearing l3) in (tclTHEN introCaseAssums (case_on_ba (tac l2) ba)) (* The following tactic Decompose repeatedly applies the elimination(s) rule(s) of the types satisfying the predicate ``recognizer'' onto a certain hypothesis. For example : Require Elim. Require Le. Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}. Intros y H. Decompose [sig and] H;EAuto. Qed. Another example : Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C. Intros A B C H; Decompose [and or] H; Assumption. Qed. *) let elimHypThen tac id = elimination_then tac (mkVar id) let rec general_decompose_on_hyp recognizer = ifOnHyp recognizer (general_decompose_aux recognizer) (fun _ -> Proofview.tclUNIT()) and general_decompose_aux recognizer id = elimHypThen (introElimAssumsThen (fun bas -> tclTHEN (clear [id]) (tclMAP (general_decompose_on_hyp recognizer) (ids_of_named_context bas.Tacticals.assums)))) id (* We should add a COMPLETE to be sure that the created hypothesis doesn't stay if no elimination is possible *) (* Best strategies but loss of compatibility *) let tmphyp_name = Id.of_string "_TmpHyp" let up_to_delta = ref false (* true *) let general_decompose recognizer c = Proofview.Goal.enter begin fun gl -> let type_of = pf_unsafe_type_of gl in let env = pf_env gl in let sigma = project gl in let typc = type_of c in tclTHENS (cut typc) [ tclTHEN (intro_using tmphyp_name) (onLastHypId (ifOnHyp (recognizer env sigma) (general_decompose_aux (recognizer env sigma)) (fun id -> clear [id]))); exact_no_check c ] end let head_in indl t gl = let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in try let ity,_ = if !up_to_delta then find_mrectype env sigma t else extract_mrectype sigma t in List.exists (fun i -> eq_ind (fst i) (fst ity)) indl with Not_found -> false let decompose_these c l = Proofview.Goal.enter begin fun gl -> let indl = List.map (fun x -> x, Univ.Instance.empty) l in general_decompose (fun env sigma (_,t) -> head_in indl t gl) c end let decompose_and c = general_decompose (fun env sigma (_,t) -> is_record env sigma t) c let decompose_or c = general_decompose (fun env sigma (_,t) -> is_disjunction env sigma t) c let h_decompose l c = decompose_these c l let h_decompose_or = decompose_or let h_decompose_and = decompose_and (* The tactic Double performs a double induction *) let simple_elimination c = elimination_then (fun _ -> tclIDTAC) c let induction_trailer abs_i abs_j bargs = tclTHEN (tclDO (abs_j - abs_i) intro) (onLastHypId (fun id -> Proofview.Goal.enter begin fun gl -> let idty = pf_unsafe_type_of gl (mkVar id) in let fvty = global_vars (pf_env gl) (project gl) idty in let possible_bring_hyps = (List.tl (nLastDecls gl (abs_j - abs_i))) @ bargs.Tacticals.assums in let (hyps,_) = List.fold_left (fun (bring_ids,leave_ids) d -> let cid = NamedDecl.get_id d in if not (List.mem cid leave_ids) then (d::bring_ids,leave_ids) else (bring_ids,cid::leave_ids)) ([],fvty) possible_bring_hyps in let ids = List.rev (ids_of_named_context hyps) in (tclTHENLIST [revert ids; simple_elimination (mkVar id)]) end )) let double_ind h1 h2 = Proofview.Goal.enter begin fun gl -> let abs_i = depth_of_quantified_hypothesis true h1 gl in let abs_j = depth_of_quantified_hypothesis true h2 gl in let abs = if abs_i < abs_j then Proofview.tclUNIT (abs_i,abs_j) else if abs_i > abs_j then Proofview.tclUNIT (abs_j,abs_i) else tclZEROMSG (Pp.str "Both hypotheses are the same.") in abs >>= fun (abs_i,abs_j) -> (tclTHEN (tclDO abs_i intro) (onLastHypId (fun id -> elimination_then (introElimAssumsThen (induction_trailer abs_i abs_j)) (mkVar id)))) end let h_double_induction = double_ind