1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** This module is about the low-level declaration of logical objects *) open Pp open Util open Names open Declarations open Entries open Safe_typing open Libobject open Lib (* object_kind , id *) exception AlreadyDeclared of (string option * Id.t) let _ = CErrors.register_handler (function | AlreadyDeclared (kind, id) -> seq [ Pp.pr_opt_no_spc (fun s -> str s ++ spc ()) kind ; Id.print id; str " already exists."] | _ -> raise CErrors.Unhandled) module NamedDecl = Context.Named.Declaration type import_status = ImportDefaultBehavior | ImportNeedQualified (** Monomorphic universes need to survive sections. *) let name_instance inst = let map lvl = match Univ.Level.name lvl with | None -> (* Having Prop/Set/Var as section universes makes no sense *) assert false | Some na -> try let qid = Nametab.shortest_qualid_of_universe na in Name (Libnames.qualid_basename qid) with Not_found -> (* Best-effort naming from the string representation of the level. See univNames.ml for a similar hack. *) Name (Id.of_string_soft (Univ.Level.to_string lvl)) in Array.map map (Univ.Instance.to_array inst) let declare_universe_context ~poly ctx = if poly then let uctx = Univ.ContextSet.to_context ctx in let nas = name_instance (Univ.UContext.instance uctx) in Global.push_section_context (nas, uctx) else Global.push_context_set false ctx (** Declaration of constants and parameters *) type constant_obj = { cst_kind : Decls.logical_kind; cst_locl : import_status; } type 'a proof_entry = { proof_entry_body : 'a Entries.const_entry_body; (* List of section variables *) proof_entry_secctx : Id.Set.t option; (* State id on which the completion of type checking is reported *) proof_entry_feedback : Stateid.t option; proof_entry_type : Constr.types option; proof_entry_universes : Entries.universes_entry; proof_entry_opaque : bool; proof_entry_inline_code : bool; } type 'a constant_entry = | DefinitionEntry of 'a proof_entry | ParameterEntry of parameter_entry | PrimitiveEntry of primitive_entry (* At load-time, the segment starting from the module name to the discharge *) (* section (if Remark or Fact) is needed to access a construction *) let load_constant i ((sp,kn), obj) = if Nametab.exists_cci sp then raise (AlreadyDeclared (None, Libnames.basename sp)); let con = Global.constant_of_delta_kn kn in Nametab.push (Nametab.Until i) sp (GlobRef.ConstRef con); Dumpglob.add_constant_kind con obj.cst_kind (* Opening means making the name without its module qualification available *) let open_constant i ((sp,kn), obj) = (* Never open a local definition *) match obj.cst_locl with | ImportNeedQualified -> () | ImportDefaultBehavior -> let con = Global.constant_of_delta_kn kn in Nametab.push (Nametab.Exactly i) sp (GlobRef.ConstRef con) let exists_name id = Decls.variable_exists id || Global.exists_objlabel (Label.of_id id) let check_exists id = if exists_name id then raise (AlreadyDeclared (None, id)) let cache_constant ((sp,kn), obj) = (* Invariant: the constant must exist in the logical environment, except when redefining it when exiting a section. See [discharge_constant]. *) let kn' = if Global.exists_objlabel (Label.of_id (Libnames.basename sp)) then Constant.make1 kn else CErrors.anomaly Pp.(str"Missing constant " ++ Id.print(Libnames.basename sp) ++ str".") in assert (Constant.equal kn' (Constant.make1 kn)); Nametab.push (Nametab.Until 1) sp (GlobRef.ConstRef (Constant.make1 kn)); Dumpglob.add_constant_kind (Constant.make1 kn) obj.cst_kind let discharge_constant ((sp, kn), obj) = Some obj (* Hack to reduce the size of .vo: we keep only what load/open needs *) let dummy_constant cst = { cst_kind = cst.cst_kind; cst_locl = cst.cst_locl; } let classify_constant cst = Substitute (dummy_constant cst) let (inConstant : constant_obj -> obj) = declare_object { (default_object "CONSTANT") with cache_function = cache_constant; load_function = load_constant; open_function = open_constant; classify_function = classify_constant; subst_function = ident_subst_function; discharge_function = discharge_constant } let declare_scheme = ref (fun _ _ -> assert false) let set_declare_scheme f = declare_scheme := f let update_tables c = Impargs.declare_constant_implicits c; Notation.declare_ref_arguments_scope Evd.empty (GlobRef.ConstRef c) let register_constant kn kind local = let o = inConstant { cst_kind = kind; cst_locl = local; } in let id = Label.to_id (Constant.label kn) in let _ = add_leaf id o in update_tables kn let register_side_effect (c, role) = let () = register_constant c Decls.(IsProof Theorem) ImportDefaultBehavior in match role with | None -> () | Some (Evd.Schema (ind, kind)) -> !declare_scheme kind [|ind,c|] let record_aux env s_ty s_bo = let open Environ in let in_ty = keep_hyps env s_ty in let v = String.concat " " (CList.map_filter (fun decl -> let id = NamedDecl.get_id decl in if List.exists (NamedDecl.get_id %> Id.equal id) in_ty then None else Some (Id.to_string id)) (keep_hyps env s_bo)) in Aux_file.record_in_aux "context_used" v let default_univ_entry = Monomorphic_entry Univ.ContextSet.empty let definition_entry ?fix_exn ?(opaque=false) ?(inline=false) ?types ?(univs=default_univ_entry) ?(eff=Evd.empty_side_effects) body = { proof_entry_body = Future.from_val ?fix_exn ((body,Univ.ContextSet.empty), eff); proof_entry_secctx = None; proof_entry_type = types; proof_entry_universes = univs; proof_entry_opaque = opaque; proof_entry_feedback = None; proof_entry_inline_code = inline} let pure_definition_entry ?fix_exn ?(opaque=false) ?(inline=false) ?types ?(univs=default_univ_entry) body = { proof_entry_body = Future.from_val ?fix_exn ((body,Univ.ContextSet.empty), ()); proof_entry_secctx = None; proof_entry_type = types; proof_entry_universes = univs; proof_entry_opaque = opaque; proof_entry_feedback = None; proof_entry_inline_code = inline} let delayed_definition_entry ?(opaque=false) ?(inline=false) ?feedback_id ?section_vars ?(univs=default_univ_entry) ?types body = { proof_entry_body = body ; proof_entry_secctx = section_vars ; proof_entry_type = types ; proof_entry_universes = univs ; proof_entry_opaque = opaque ; proof_entry_feedback = feedback_id ; proof_entry_inline_code = inline } let cast_proof_entry e = let (body, ctx), () = Future.force e.proof_entry_body in let univs = if Univ.ContextSet.is_empty ctx then e.proof_entry_universes else match e.proof_entry_universes with | Monomorphic_entry ctx' -> (* This can actually happen, try compiling EqdepFacts for instance *) Monomorphic_entry (Univ.ContextSet.union ctx' ctx) | Polymorphic_entry _ -> CErrors.anomaly Pp.(str "Local universes in non-opaque polymorphic definition."); in { const_entry_body = body; const_entry_secctx = e.proof_entry_secctx; const_entry_feedback = e.proof_entry_feedback; const_entry_type = e.proof_entry_type; const_entry_universes = univs; const_entry_inline_code = e.proof_entry_inline_code; } type ('a, 'b) effect_entry = | EffectEntry : (private_constants, private_constants Entries.const_entry_body) effect_entry | PureEntry : (unit, Constr.constr) effect_entry let cast_opaque_proof_entry (type a b) (entry : (a, b) effect_entry) (e : a proof_entry) : b opaque_entry = let typ = match e.proof_entry_type with | None -> assert false | Some typ -> typ in let secctx = match e.proof_entry_secctx with | None -> let open Environ in let env = Global.env () in let hyp_typ, hyp_def = if List.is_empty (Environ.named_context env) then Id.Set.empty, Id.Set.empty else let ids_typ = global_vars_set env typ in let pf, env = match entry with | PureEntry -> let (pf, _), () = Future.force e.proof_entry_body in pf, env | EffectEntry -> let (pf, _), eff = Future.force e.proof_entry_body in let env = Safe_typing.push_private_constants env eff in pf, env in let vars = global_vars_set env pf in ids_typ, vars in let () = if Aux_file.recording () then record_aux env hyp_typ hyp_def in Environ.really_needed env (Id.Set.union hyp_typ hyp_def) | Some hyps -> hyps in let (body, univs : b * _) = match entry with | PureEntry -> let (body, uctx), () = Future.force e.proof_entry_body in let univs = match e.proof_entry_universes with | Monomorphic_entry uctx' -> Monomorphic_entry (Univ.ContextSet.union uctx uctx') | Polymorphic_entry _ -> assert (Univ.ContextSet.is_empty uctx); e.proof_entry_universes in body, univs | EffectEntry -> e.proof_entry_body, e.proof_entry_universes in { opaque_entry_body = body; opaque_entry_secctx = secctx; opaque_entry_feedback = e.proof_entry_feedback; opaque_entry_type = typ; opaque_entry_universes = univs; } let get_roles export eff = let map c = let role = try Some (Cmap.find c eff.Evd.seff_roles) with Not_found -> None in (c, role) in List.map map export let feedback_axiom () = Feedback.(feedback AddedAxiom) let is_unsafe_typing_flags () = let flags = Environ.typing_flags (Global.env()) in not (flags.check_universes && flags.check_guarded && flags.check_positive) let define_constant ~name cd = (* Logically define the constant and its subproofs, no libobject tampering *) let export, decl, unsafe = match cd with | DefinitionEntry de -> (* We deal with side effects *) if not de.proof_entry_opaque then (* This globally defines the side-effects in the environment. *) let body, eff = Future.force de.proof_entry_body in let body, export = Global.export_private_constants (body, eff.Evd.seff_private) in let export = get_roles export eff in let de = { de with proof_entry_body = Future.from_val (body, ()) } in let cd = Entries.DefinitionEntry (cast_proof_entry de) in export, ConstantEntry cd, false else let map (body, eff) = body, eff.Evd.seff_private in let body = Future.chain de.proof_entry_body map in let de = { de with proof_entry_body = body } in let de = cast_opaque_proof_entry EffectEntry de in [], OpaqueEntry de, false | ParameterEntry e -> [], ConstantEntry (Entries.ParameterEntry e), not (Lib.is_modtype_strict()) | PrimitiveEntry e -> [], ConstantEntry (Entries.PrimitiveEntry e), false in let kn = Global.add_constant name decl in if unsafe || is_unsafe_typing_flags() then feedback_axiom(); kn, export let declare_constant ?(local = ImportDefaultBehavior) ~name ~kind cd = let () = check_exists name in let kn, export = define_constant ~name cd in (* Register the libobjects attached to the constants and its subproofs *) let () = List.iter register_side_effect export in let () = register_constant kn kind local in kn let declare_private_constant ?role ?(local = ImportDefaultBehavior) ~name ~kind de = let kn, eff = let de = if not de.proof_entry_opaque then DefinitionEff (cast_proof_entry de) else let de = cast_opaque_proof_entry PureEntry de in OpaqueEff de in Global.add_private_constant name de in let () = register_constant kn kind local in let seff_roles = match role with | None -> Cmap.empty | Some r -> Cmap.singleton kn r in let eff = { Evd.seff_private = eff; Evd.seff_roles; } in kn, eff let inline_private_constants ~univs env ce = let body, eff = Future.force ce.proof_entry_body in let cb, ctx = Safe_typing.inline_private_constants env (body, eff.Evd.seff_private) in let univs = UState.merge ~sideff:true Evd.univ_rigid univs ctx in cb, univs (** Declaration of section variables and local definitions *) type variable_declaration = | SectionLocalDef of Evd.side_effects proof_entry | SectionLocalAssum of { typ:Constr.types; impl:Glob_term.binding_kind; } (* This object is only for things which iterate over objects to find variables (only Prettyp.print_context AFAICT) *) let inVariable : unit -> obj = declare_object { (default_object "VARIABLE") with classify_function = (fun () -> Dispose)} let declare_variable ~name ~kind d = (* Constr raisonne sur les noms courts *) if Decls.variable_exists name then raise (AlreadyDeclared (None, name)); let impl,opaque = match d with (* Fails if not well-typed *) | SectionLocalAssum {typ;impl} -> let () = Global.push_named_assum (name,typ) in impl, true | SectionLocalDef (de) -> (* The body should already have been forced upstream because it is a section-local definition, but it's not enforced by typing *) let (body, eff) = Future.force de.proof_entry_body in let ((body, uctx), export) = Global.export_private_constants (body, eff.Evd.seff_private) in let eff = get_roles export eff in let () = List.iter register_side_effect eff in let poly, univs = match de.proof_entry_universes with | Monomorphic_entry uctx -> false, uctx | Polymorphic_entry (_, uctx) -> true, Univ.ContextSet.of_context uctx in let univs = Univ.ContextSet.union uctx univs in (* We must declare the universe constraints before type-checking the term. *) let () = declare_universe_context ~poly univs in let se = { secdef_body = body; secdef_secctx = de.proof_entry_secctx; secdef_feedback = de.proof_entry_feedback; secdef_type = de.proof_entry_type; } in let () = Global.push_named_def (name, se) in Glob_term.Explicit, de.proof_entry_opaque in Nametab.push (Nametab.Until 1) (Libnames.make_path DirPath.empty name) (GlobRef.VarRef name); Decls.(add_variable_data name {opaque;kind}); ignore(add_leaf name (inVariable ()) : Libobject.object_name); Impargs.declare_var_implicits ~impl name; Notation.declare_ref_arguments_scope Evd.empty (GlobRef.VarRef name) (* Declaration messages *) let pr_rank i = pr_nth (i+1) let fixpoint_message indexes l = Flags.if_verbose Feedback.msg_info (match l with | [] -> CErrors.anomaly (Pp.str "no recursive definition.") | [id] -> Id.print id ++ str " is recursively defined" ++ (match indexes with | Some [|i|] -> str " (decreasing on "++pr_rank i++str " argument)" | _ -> mt ()) | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++ spc () ++ str "are recursively defined" ++ match indexes with | Some a -> spc () ++ str "(decreasing respectively on " ++ prvect_with_sep pr_comma pr_rank a ++ str " arguments)" | None -> mt ())) let cofixpoint_message l = Flags.if_verbose Feedback.msg_info (match l with | [] -> CErrors.anomaly (Pp.str "No corecursive definition.") | [id] -> Id.print id ++ str " is corecursively defined" | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++ spc () ++ str "are corecursively defined")) let recursive_message isfix i l = (if isfix then fixpoint_message i else cofixpoint_message) l let definition_message id = Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is defined") let assumption_message id = (* Changing "assumed" to "declared", "assuming" referring more to the type of the object than to the name of the object (see discussion on coqdev: "Chapter 4 of the Reference Manual", 8/10/2015) *) Flags.if_verbose Feedback.msg_info (Id.print id ++ str " is declared") module Internal = struct let map_entry_body ~f entry = { entry with proof_entry_body = Future.chain entry.proof_entry_body f } let map_entry_type ~f entry = { entry with proof_entry_type = f entry.proof_entry_type } let set_opacity ~opaque entry = { entry with proof_entry_opaque = opaque } let get_fix_exn entry = Future.fix_exn_of entry.proof_entry_body let rec decompose len c t accu = let open Constr in let open Context.Rel.Declaration in if len = 0 then (c, t, accu) else match kind c, kind t with | Lambda (na, u, c), Prod (_, _, t) -> decompose (pred len) c t (LocalAssum (na, u) :: accu) | LetIn (na, b, u, c), LetIn (_, _, _, t) -> decompose (pred len) c t (LocalDef (na, b, u) :: accu) | _ -> assert false let rec shrink ctx sign c t accu = let open Constr in let open Vars in match ctx, sign with | [], [] -> (c, t, accu) | p :: ctx, decl :: sign -> if noccurn 1 c && noccurn 1 t then let c = subst1 mkProp c in let t = subst1 mkProp t in shrink ctx sign c t accu else let c = Term.mkLambda_or_LetIn p c in let t = Term.mkProd_or_LetIn p t in let accu = if Context.Rel.Declaration.is_local_assum p then mkVar (NamedDecl.get_id decl) :: accu else accu in shrink ctx sign c t accu | _ -> assert false let shrink_entry sign const = let typ = match const.proof_entry_type with | None -> assert false | Some t -> t in (* The body has been forced by the call to [build_constant_by_tactic] *) let () = assert (Future.is_over const.proof_entry_body) in let ((body, uctx), eff) = Future.force const.proof_entry_body in let (body, typ, ctx) = decompose (List.length sign) body typ [] in let (body, typ, args) = shrink ctx sign body typ [] in { const with proof_entry_body = Future.from_val ((body, uctx), eff) ; proof_entry_type = Some typ }, args end