1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Constr
open EConstr
open Names
open Pattern

(* Discrimination nets with bounded depth.
   See the module dn.ml for further explanations.
   Eduardo (5/8/97). *)

let dnet_depth = ref 8

type term_label =
| GRLabel of GlobRef.t
| ProdLabel
| LambdaLabel
| SortLabel

let compare_term_label t1 t2 = match t1, t2 with
| GRLabel gr1, GRLabel gr2 -> GlobRef.Ordered.compare gr1 gr2
| _ -> pervasives_compare t1 t2 (** OK *)

type 'res lookup_res = 'res Dn.lookup_res = Label of 'res | Nothing | Everything

let decomp_pat =
  let rec decrec acc = function
    | PApp (f,args) -> decrec (Array.to_list args @ acc) f
    | PProj (p, c) -> (PRef (GlobRef.ConstRef (Projection.constant p)), c :: acc)
    | c -> (c,acc)
  in
  decrec []

let decomp sigma t =
  let rec decrec acc c = match EConstr.kind sigma c with
    | App (f,l) -> decrec (Array.fold_right (fun a l -> a::l) l acc) f
    | Proj (p, c) -> (mkConst (Projection.constant p), c :: acc)
    | Cast (c1,_,_) -> decrec acc c1
    | _ -> (c,acc)
  in
    decrec [] t

let constr_val_discr sigma t =
  let open GlobRef in
  let c, l = decomp sigma t in
    match EConstr.kind sigma c with
    | Ind (ind_sp,u) -> Label(GRLabel (IndRef ind_sp),l)
    | Construct (cstr_sp,u) -> Label(GRLabel (ConstructRef cstr_sp),l)
    | Var id -> Label(GRLabel (VarRef id),l)
    | Const _ -> Everything
    | _ -> Nothing

let constr_pat_discr t =
  if not (Patternops.occur_meta_pattern t) then
    None
  else
    let open GlobRef in
    match decomp_pat t with
    | PRef ((IndRef _) as ref), args
    | PRef ((ConstructRef _ ) as ref), args -> Some (GRLabel ref,args)
    | PRef ((VarRef v) as ref), args -> Some(GRLabel ref,args)
    | _ -> None

let constr_val_discr_st sigma ts t =
  let c, l = decomp sigma t in
  let open GlobRef in
    match EConstr.kind sigma c with
    | Const (c,u) -> if TransparentState.is_transparent_constant ts c then Everything else Label(GRLabel (ConstRef c),l)
    | Ind (ind_sp,u) -> Label(GRLabel (IndRef ind_sp),l)
    | Construct (cstr_sp,u) -> Label(GRLabel (ConstructRef cstr_sp),l)
    | Var id when not (TransparentState.is_transparent_variable ts id) -> Label(GRLabel (VarRef id),l)
    | Prod (n, d, c) -> Label(ProdLabel, [d; c])
    | Lambda (n, d, c) ->
      if List.is_empty l then 
        Label(LambdaLabel, [d; c] @ l)
      else Everything
    | Sort _ -> Label(SortLabel, [])
    | Evar _ -> Everything
    | _ -> Nothing

let constr_pat_discr_st ts t =
  let open GlobRef in
  match decomp_pat t with
  | PRef ((IndRef _) as ref), args
  | PRef ((ConstructRef _ ) as ref), args -> Some (GRLabel ref,args)
  | PRef ((VarRef v) as ref), args when not (TransparentState.is_transparent_variable ts v) ->
      Some(GRLabel ref,args)
  | PVar v, args when not (TransparentState.is_transparent_variable ts v) ->
      Some(GRLabel (VarRef v),args)
  | PRef ((ConstRef c) as ref), args when not (TransparentState.is_transparent_constant ts c) ->
      Some (GRLabel ref, args)
  | PProd (_, d, c), [] -> Some (ProdLabel, [d ; c])
  | PLambda (_, d, c), [] -> Some (LambdaLabel, [d ; c])
  | PSort s, [] -> Some (SortLabel, [])
  | _ -> None

let bounded_constr_pat_discr_st st (t,depth) =
  if Int.equal depth 0 then
    None
  else
    match constr_pat_discr_st st t with
      | None -> None
      | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l)

let bounded_constr_val_discr_st sigma st (t,depth) =
  if Int.equal depth 0 then
    Nothing
  else
    match constr_val_discr_st sigma st t with
      | Label (c,l) -> Label(c,List.map (fun c -> (c,depth-1)) l)
      | Nothing -> Nothing
      | Everything -> Everything

let bounded_constr_pat_discr (t,depth) =
  if Int.equal depth 0 then
    None
  else
    match constr_pat_discr t with
      | None -> None
      | Some (c,l) -> Some(c,List.map (fun c -> (c,depth-1)) l)

let bounded_constr_val_discr sigma (t,depth) =
  if Int.equal depth 0 then
    Nothing
  else
    match constr_val_discr sigma t with
      | Label (c,l) -> Label(c,List.map (fun c -> (c,depth-1)) l)
      | Nothing -> Nothing
      | Everything -> Everything

module Make =
  functor (Z : Map.OrderedType) ->
struct

 module Y = struct
    type t = term_label
    let compare = compare_term_label
 end

 module Dn = Dn.Make(Y)(Z)

 type t = Dn.t

  let empty = Dn.empty

  let add = function
    | None ->
        (fun dn (c,v) ->
           Dn.add dn bounded_constr_pat_discr ((c,!dnet_depth),v))
    | Some st ->
        (fun dn (c,v) ->
           Dn.add dn (bounded_constr_pat_discr_st st) ((c,!dnet_depth),v))

  let rmv = function
    | None ->
        (fun dn (c,v) ->
           Dn.rmv dn bounded_constr_pat_discr ((c,!dnet_depth),v))
    | Some st ->
        (fun dn (c,v) ->
         Dn.rmv dn (bounded_constr_pat_discr_st st) ((c,!dnet_depth),v))

  let lookup sigma = function
    | None ->
        (fun dn t ->
             Dn.lookup dn (bounded_constr_val_discr sigma) (t,!dnet_depth))
    | Some st ->
        (fun dn t ->
             Dn.lookup dn (bounded_constr_val_discr_st sigma st) (t,!dnet_depth))

  let app f dn = Dn.app f dn

end