1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Nameops open Constr open Vars open Termops open Environ open Reductionops open Inductiveops open Typing open Type_errors open Retyping module NamedDecl = Context.Named.Declaration type refiner_error = (* Errors raised by the refiner *) | BadType of constr * constr * constr | UnresolvedBindings of Name.t list | CannotApply of constr * constr | NotWellTyped of constr | NonLinearProof of constr | MetaInType of EConstr.constr (* Errors raised by the tactics *) | IntroNeedsProduct | DoesNotOccurIn of constr * Id.t | NoSuchHyp of Id.t exception RefinerError of Environ.env * Evd.evar_map * refiner_error open Pretype_errors (** FIXME: this is quite brittle. Why not accept any PretypeError? *) let is_typing_error = function | UnexpectedType (_, _) | NotProduct _ | VarNotFound _ | TypingError _ -> true | _ -> false let is_unification_error = function | CannotUnify _ | CannotUnifyLocal _| CannotGeneralize _ | NoOccurrenceFound _ | CannotUnifyBindingType _ | ActualTypeNotCoercible _ | UnifOccurCheck _ | CannotFindWellTypedAbstraction _ | WrongAbstractionType _ | UnsolvableImplicit _| AbstractionOverMeta _ | UnsatisfiableConstraints _ -> true | _ -> false let catchable_exception = function | CErrors.UserError _ | TypeError _ | Proof.OpenProof _ (* abstract will call close_proof inside a tactic *) | RefinerError _ | Indrec.RecursionSchemeError _ | Nametab.GlobalizationError _ (* reduction errors *) | Tacred.ReductionTacticError _ -> true (* unification and typing errors *) | PretypeError(_,_, e) -> is_unification_error e || is_typing_error e | _ -> false let error_no_such_hypothesis env sigma id = raise (RefinerError (env, sigma, NoSuchHyp id)) (* Tells if the refiner should check that the submitted rules do not produce invalid subgoals *) let check = ref false let with_check = Flags.with_option check let check_typability env sigma c = if !check then let _ = unsafe_type_of env sigma (EConstr.of_constr c) in () (************************************************************************) (************************************************************************) (* Implementation of the structural rules (moving and deleting hypotheses around) *) (* The ClearBody tactic *) (* Reordering of the context *) (* faire le minimum d'echanges pour que l'ordre donne soit un *) (* sous-ordre du resultat. Par exemple, 2 hyps non mentionnee ne sont *) (* pas echangees. Choix: les hyps mentionnees ne peuvent qu'etre *) (* reculees par rapport aux autres (faire le contraire!) *) let mt_q = (Id.Map.empty,[]) let push_val y = function (_,[] as q) -> q | (m, (x,l)::q) -> (m, (x,Id.Set.add y l)::q) let push_item x v (m,l) = (Id.Map.add x v m, (x,Id.Set.empty)::l) let mem_q x (m,_) = Id.Map.mem x m let find_q x (m,q) = let v = Id.Map.find x m in let m' = Id.Map.remove x m in let rec find accs acc = function [] -> raise Not_found | [(x',l)] -> if Id.equal x x' then ((v,Id.Set.union accs l),(m',List.rev acc)) else raise Not_found | (x',l as i)::((x'',l'')::q as itl) -> if Id.equal x x' then ((v,Id.Set.union accs l), (m',List.rev acc@(x'',Id.Set.add x (Id.Set.union l l''))::q)) else find (Id.Set.union l accs) (i::acc) itl in find Id.Set.empty [] q let occur_vars_in_decl env sigma hyps d = if Id.Set.is_empty hyps then false else let ohyps = global_vars_set_of_decl env sigma d in Id.Set.exists (fun h -> Id.Set.mem h ohyps) hyps let reorder_context env sigma sign ord = let ords = List.fold_right Id.Set.add ord Id.Set.empty in if not (Int.equal (List.length ord) (Id.Set.cardinal ords)) then user_err Pp.(str "Order list has duplicates"); let rec step ord expected ctxt_head moved_hyps ctxt_tail = match ord with | [] -> List.rev ctxt_tail @ ctxt_head | top::ord' when mem_q top moved_hyps -> let ((d,h),mh) = find_q top moved_hyps in if occur_vars_in_decl env sigma h d then user_err ~hdr:"reorder_context" (str "Cannot move declaration " ++ Id.print top ++ spc() ++ str "before " ++ pr_sequence Id.print (Id.Set.elements (Id.Set.inter h (global_vars_set_of_decl env sigma d)))); step ord' expected ctxt_head mh (d::ctxt_tail) | _ -> (match ctxt_head with | [] -> error_no_such_hypothesis env sigma (List.hd ord) | d :: ctxt -> let x = NamedDecl.get_id d in if Id.Set.mem x expected then step ord (Id.Set.remove x expected) ctxt (push_item x d moved_hyps) ctxt_tail else step ord expected ctxt (push_val x moved_hyps) (d::ctxt_tail)) in step ord ords sign mt_q [] let reorder_val_context env sigma sign ord = match ord with | [] | [_] -> (* Single variable-free definitions need not be reordered *) sign | _ :: _ :: _ -> let open EConstr in val_of_named_context (reorder_context env sigma (named_context_of_val sign) ord) let check_decl_position env sigma sign d = let open EConstr in let x = NamedDecl.get_id d in let needed = global_vars_set_of_decl env sigma d in let deps = dependency_closure env sigma (named_context_of_val sign) needed in if Id.List.mem x deps then user_err ~hdr:"Logic.check_decl_position" (str "Cannot create self-referring hypothesis " ++ Id.print x); x::deps (* Auxiliary functions for primitive MOVE tactic * * [move_hyp with_dep toleft (left,(hfrom,typfrom),right) hto] moves * hyp [hfrom] at location [hto] which belongs to the hyps on the * left side [left] of the full signature if [toleft=true] or to the hyps * on the right side [right] if [toleft=false]. * If [with_dep] then dependent hypotheses are moved accordingly. *) (** Move destination for hypothesis *) type 'id move_location = | MoveAfter of 'id | MoveBefore of 'id | MoveFirst | MoveLast (** can be seen as "no move" when doing intro *) (** Printing of [move_location] *) let pr_move_location pr_id = function | MoveAfter id -> brk(1,1) ++ str "after " ++ pr_id id | MoveBefore id -> brk(1,1) ++ str "before " ++ pr_id id | MoveFirst -> str " at top" | MoveLast -> str " at bottom" let move_location_eq m1 m2 = match m1, m2 with | MoveAfter id1, MoveAfter id2 -> Id.equal id1 id2 | MoveBefore id1, MoveBefore id2 -> Id.equal id1 id2 | MoveLast, MoveLast -> true | MoveFirst, MoveFirst -> true | _ -> false let split_sign env sigma hfrom hto l = let rec splitrec left toleft = function | [] -> error_no_such_hypothesis env sigma hfrom | d :: right -> let hyp = NamedDecl.get_id d in if Id.equal hyp hfrom then (left,right,d, toleft || move_location_eq hto MoveLast) else let is_toleft = match hto with | MoveAfter h' | MoveBefore h' -> Id.equal hyp h' | _ -> false in splitrec (d::left) (toleft || is_toleft) right in splitrec [] false l let hyp_of_move_location = function | MoveAfter id -> id | MoveBefore id -> id | _ -> assert false let move_hyp env sigma toleft (left,declfrom,right) hto = let test_dep d d2 = if toleft then occur_var_in_decl env sigma (NamedDecl.get_id d2) d else occur_var_in_decl env sigma (NamedDecl.get_id d) d2 in let rec moverec first middle = function | [] -> if match hto with MoveFirst | MoveLast -> false | _ -> true then error_no_such_hypothesis env sigma (hyp_of_move_location hto); List.rev first @ List.rev middle | d :: _ as right when move_location_eq hto (MoveBefore (NamedDecl.get_id d)) -> List.rev first @ List.rev middle @ right | d :: right -> let hyp = NamedDecl.get_id d in let (first',middle') = if List.exists (test_dep d) middle then if not (move_location_eq hto (MoveAfter hyp)) then (first, d::middle) else user_err ~hdr:"move_hyp" (str "Cannot move " ++ Id.print (NamedDecl.get_id declfrom) ++ pr_move_location Id.print hto ++ str (if toleft then ": it occurs in the type of " else ": it depends on ") ++ Id.print hyp ++ str ".") else (d::first, middle) in if move_location_eq hto (MoveAfter hyp) then List.rev first' @ List.rev middle' @ right else moverec first' middle' right in let open EConstr in if toleft then let right = List.fold_right push_named_context_val right empty_named_context_val in List.fold_left (fun sign d -> push_named_context_val d sign) right (moverec [] [declfrom] left) else let right = List.fold_right push_named_context_val (moverec [] [declfrom] right) empty_named_context_val in List.fold_left (fun sign d -> push_named_context_val d sign) right left let move_hyp_in_named_context env sigma hfrom hto sign = let open EConstr in let (left,right,declfrom,toleft) = split_sign env sigma hfrom hto (named_context_of_val sign) in move_hyp env sigma toleft (left,declfrom,right) hto let insert_decl_in_named_context env sigma decl hto sign = let open EConstr in move_hyp env sigma false ([],decl,named_context_of_val sign) hto (**********************************************************************) (************************************************************************) (************************************************************************) (* Implementation of the logical rules *) (* Will only be used on terms given to the Refine rule which have meta variables only in Application and Case *) let error_unsupported_deep_meta c = user_err (strbrk "Application of lemmas whose beta-iota normal " ++ strbrk "form contains metavariables deep inside the term is not " ++ strbrk "supported; try \"refine\" instead.") let collect_meta_variables c = let rec collrec deep acc c = match kind c with | Meta mv -> if deep then error_unsupported_deep_meta () else mv::acc | Cast(c,_,_) -> collrec deep acc c | Case(ci,p,c,br) -> (* Hack assuming only two situations: the legacy one that branches, if with Metas, are Meta, and the new one with eta-let-expanded branches *) let br = Array.map2 (fun n b -> try snd (Term.decompose_lam_n_decls n b) with UserError _ -> b) ci.ci_cstr_ndecls br in Array.fold_left (collrec deep) (Constr.fold (collrec deep) (Constr.fold (collrec deep) acc p) c) br | App _ -> Constr.fold (collrec deep) acc c | Proj (_, c) -> collrec deep acc c | _ -> Constr.fold (collrec true) acc c in List.rev (collrec false [] c) let check_meta_variables env sigma c = if not (List.distinct_f Int.compare (collect_meta_variables c)) then raise (RefinerError (env, sigma, NonLinearProof c)) let check_conv_leq_goal env sigma arg ty conclty = if !check then let ans = Reductionops.infer_conv env sigma (EConstr.of_constr ty) (EConstr.of_constr conclty) in match ans with | Some evm -> evm | None -> raise (RefinerError (env, sigma, BadType (arg,ty,conclty))) else sigma exception Stop of EConstr.t list let meta_free_prefix sigma a = try let a = Array.map EConstr.of_constr a in let _ = Array.fold_left (fun acc a -> if occur_meta sigma a then raise (Stop acc) else a :: acc) [] a in a with Stop acc -> Array.rev_of_list acc let goal_type_of env sigma c = if !check then let (sigma,t) = type_of env sigma (EConstr.of_constr c) in (sigma, EConstr.Unsafe.to_constr t) else (sigma, EConstr.Unsafe.to_constr (Retyping.get_type_of env sigma (EConstr.of_constr c))) let rec mk_refgoals sigma goal goalacc conclty trm = let env = Goal.V82.env sigma goal in let hyps = Goal.V82.hyps sigma goal in let mk_goal hyps concl = Goal.V82.mk_goal sigma hyps concl in if (not !check) && not (occur_meta sigma (EConstr.of_constr trm)) then let t'ty = Retyping.get_type_of env sigma (EConstr.of_constr trm) in let t'ty = EConstr.Unsafe.to_constr t'ty in let sigma = check_conv_leq_goal env sigma trm t'ty conclty in (goalacc,t'ty,sigma,trm) else match kind trm with | Meta _ -> let conclty = nf_betaiota env sigma (EConstr.of_constr conclty) in if !check && occur_meta sigma conclty then raise (RefinerError (env, sigma, MetaInType conclty)); let (gl,ev,sigma) = mk_goal hyps conclty in let ev = EConstr.Unsafe.to_constr ev in let conclty = EConstr.Unsafe.to_constr conclty in gl::goalacc, conclty, sigma, ev | Cast (t,k, ty) -> check_typability env sigma ty; let sigma = check_conv_leq_goal env sigma trm ty conclty in let res = mk_refgoals sigma goal goalacc ty t in (* we keep the casts (in particular VMcast and NATIVEcast) except when they are annotating metas *) if isMeta t then begin assert (k != VMcast && k != NATIVEcast); res end else let (gls,cty,sigma,ans) = res in let ans = if ans == t then trm else mkCast(ans,k,ty) in (gls,cty,sigma,ans) | App (f,l) -> let (acc',hdty,sigma,applicand) = if Termops.is_template_polymorphic_ind env sigma (EConstr.of_constr f) then let ty = (* Template polymorphism of definitions and inductive types *) let firstmeta = Array.findi (fun i x -> occur_meta sigma (EConstr.of_constr x)) l in let args, _ = Option.cata (fun i -> CArray.chop i l) (l, [||]) firstmeta in type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) (Array.map EConstr.of_constr args) in let ty = EConstr.Unsafe.to_constr ty in goalacc, ty, sigma, f else mk_hdgoals sigma goal goalacc f in let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in let sigma = check_conv_leq_goal env sigma trm conclty' conclty in let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in (acc'',conclty',sigma, ans) | Proj (p,c) -> let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in let c = mkProj (p, c') in let ty = get_type_of env sigma (EConstr.of_constr c) in let ty = EConstr.Unsafe.to_constr ty in (acc',ty,sigma,c) | Case (ci,p,c,lf) -> let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in let sigma = check_conv_leq_goal env sigma trm conclty' conclty in let (acc'',sigma,rbranches) = treat_case sigma goal ci lbrty lf acc' in let lf' = Array.rev_of_list rbranches in let ans = if p' == p && c' == c && Array.equal (==) lf' lf then trm else mkCase (ci,p',c',lf') in (acc'',conclty',sigma, ans) | _ -> if occur_meta sigma (EConstr.of_constr trm) then anomaly (Pp.str "refiner called with a meta in non app/case subterm."); let (sigma, t'ty) = goal_type_of env sigma trm in let sigma = check_conv_leq_goal env sigma trm t'ty conclty in (goalacc,t'ty,sigma, trm) (* Same as mkREFGOALS but without knowing the type of the term. Therefore, * Metas should be casted. *) and mk_hdgoals sigma goal goalacc trm = let env = Goal.V82.env sigma goal in let hyps = Goal.V82.hyps sigma goal in let mk_goal hyps concl = Goal.V82.mk_goal sigma hyps concl in match kind trm with | Cast (c,_, ty) when isMeta c -> check_typability env sigma ty; let (gl,ev,sigma) = mk_goal hyps (nf_betaiota env sigma (EConstr.of_constr ty)) in let ev = EConstr.Unsafe.to_constr ev in gl::goalacc,ty,sigma,ev | Cast (t,_, ty) -> check_typability env sigma ty; mk_refgoals sigma goal goalacc ty t | App (f,l) -> let (acc',hdty,sigma,applicand) = if Termops.is_template_polymorphic_ind env sigma (EConstr.of_constr f) then let l' = meta_free_prefix sigma l in (goalacc,EConstr.Unsafe.to_constr (type_of_global_reference_knowing_parameters env sigma (EConstr.of_constr f) l'),sigma,f) else mk_hdgoals sigma goal goalacc f in let ((acc'',conclty',sigma), args) = mk_arggoals sigma goal acc' hdty l in let ans = if applicand == f && args == l then trm else mkApp (applicand, args) in (acc'',conclty',sigma, ans) | Case (ci,p,c,lf) -> let (acc',lbrty,conclty',sigma,p',c') = mk_casegoals sigma goal goalacc p c in let (acc'',sigma,rbranches) = treat_case sigma goal ci lbrty lf acc' in let lf' = Array.rev_of_list rbranches in let ans = if p' == p && c' == c && Array.equal (==) lf' lf then trm else mkCase (ci,p',c',lf') in (acc'',conclty',sigma, ans) | Proj (p,c) -> let (acc',cty,sigma,c') = mk_hdgoals sigma goal goalacc c in let c = mkProj (p, c') in let ty = get_type_of env sigma (EConstr.of_constr c) in let ty = EConstr.Unsafe.to_constr ty in (acc',ty,sigma,c) | _ -> if !check && occur_meta sigma (EConstr.of_constr trm) then anomaly (Pp.str "refine called with a dependent meta."); let (sigma, ty) = goal_type_of env sigma trm in goalacc, ty, sigma, trm and mk_arggoals sigma goal goalacc funty allargs = let foldmap (goalacc, funty, sigma) harg = let t = whd_all (Goal.V82.env sigma goal) sigma (EConstr.of_constr funty) in let t = EConstr.Unsafe.to_constr t in let rec collapse t = match kind t with | LetIn (_, c1, _, b) -> collapse (subst1 c1 b) | _ -> t in let t = collapse t in match kind t with | Prod (_, c1, b) -> let (acc, hargty, sigma, arg) = mk_refgoals sigma goal goalacc c1 harg in (acc, subst1 harg b, sigma), arg | _ -> let env = Goal.V82.env sigma goal in raise (RefinerError (env,sigma,CannotApply (t, harg))) in Array.Smart.fold_left_map foldmap (goalacc, funty, sigma) allargs and mk_casegoals sigma goal goalacc p c = let env = Goal.V82.env sigma goal in let (acc',ct,sigma,c') = mk_hdgoals sigma goal goalacc c in let ct = EConstr.of_constr ct in let (acc'',pt,sigma,p') = mk_hdgoals sigma goal acc' p in let ((ind, u), spec) = try Tacred.find_hnf_rectype env sigma ct with Not_found -> anomaly (Pp.str "mk_casegoals.") in let indspec = ((ind, EConstr.EInstance.kind sigma u), spec) in let (lbrty,conclty) = type_case_branches_with_names env sigma indspec p c in (acc'',lbrty,conclty,sigma,p',c') and treat_case sigma goal ci lbrty lf acc' = let rec strip_outer_cast c = match kind c with | Cast (c,_,_) -> strip_outer_cast c | _ -> c in let decompose_app_vect c = match kind c with | App (f,cl) -> (f, cl) | _ -> (c,[||]) in let env = Goal.V82.env sigma goal in Array.fold_left3 (fun (lacc,sigma,bacc) ty fi l -> if isMeta (strip_outer_cast fi) then (* Support for non-eta-let-expanded Meta as found in *) (* destruct/case with an non eta-let expanded elimination scheme *) let (r,_,s,fi') = mk_refgoals sigma goal lacc ty fi in r,s,(fi'::bacc) else (* Deal with a branch in expanded form of the form Case(ci,p,c,[|eta-let-exp(Meta);...;eta-let-exp(Meta)|]) as if it were not so, so as to preserve compatibility with when destruct/case generated schemes of the form Case(ci,p,c,[|Meta;...;Meta|]; CAUTION: it does not deal with the general case of eta-zeta reduced branches having a form different from Meta, as it would be theoretically the case with third-party code *) let n = List.length l in let ctx, body = Term.decompose_lam_n_decls n fi in let head, args = decompose_app_vect body in (* Strip cast because clenv_cast_meta adds a cast when the branch is eta-expanded but when not when the branch has the single-meta form [Meta] *) let head = strip_outer_cast head in if isMeta head then begin assert (args = Context.Rel.to_extended_vect mkRel 0 ctx); let head' = lift (-n) head in let (r,_,s,head'') = mk_refgoals sigma goal lacc ty head' in let fi' = it_mkLambda_or_LetIn (mkApp (head'',args)) ctx in (r,s,fi'::bacc) end else (* Supposed to be meta-free *) let sigma, t'ty = goal_type_of env sigma fi in let sigma = check_conv_leq_goal env sigma fi t'ty ty in (lacc,sigma,fi::bacc)) (acc',sigma,[]) lbrty lf ci.ci_pp_info.cstr_tags let convert_hyp ~check ~reorder env sigma d = let id = NamedDecl.get_id d in let b = NamedDecl.get_value d in let sign = Environ.named_context_val env in match lookup_named_ctxt id sign with | exception Not_found -> if check then error_no_such_hypothesis env sigma id else sign | d' -> let c = Option.map EConstr.of_constr (NamedDecl.get_value d') in if check && not (is_conv env sigma (NamedDecl.get_type d) (EConstr.of_constr (NamedDecl.get_type d'))) then user_err ~hdr:"Logic.convert_hyp" (str "Incorrect change of the type of " ++ Id.print id ++ str "."); if check && not (Option.equal (is_conv env sigma) b c) then user_err ~hdr:"Logic.convert_hyp" (str "Incorrect change of the body of "++ Id.print id ++ str "."); let sign' = apply_to_hyp sign id (fun _ _ _ -> EConstr.Unsafe.to_named_decl d) in if reorder then reorder_val_context env sigma sign' (check_decl_position env sigma sign d) else sign' (************************************************************************) (************************************************************************) (* Primitive tactics are handled here *) let prim_refiner r sigma goal = let env = Goal.V82.env sigma goal in let cl = Goal.V82.concl sigma goal in let cl = EConstr.Unsafe.to_constr cl in check_meta_variables env sigma r; let (sgl,cl',sigma,oterm) = mk_refgoals sigma goal [] cl r in let sgl = List.rev sgl in let sigma = Goal.V82.partial_solution env sigma goal (EConstr.of_constr oterm) in (sgl, sigma) let prim_refiner ~check r sigma goal = if check then with_check (prim_refiner r sigma) goal else prim_refiner r sigma goal