1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Constr
open Termops
open Evd
open EConstr
open Refiner
open Logic
open Reduction
open Clenv

(* This function put casts around metavariables whose type could not be
 * inferred by the refiner, that is head of applications, predicates and
 * subject of Cases.
 * Does check that the casted type is closed. Anyway, the refiner would
 * fail in this case... *)

let clenv_cast_meta clenv =
  let rec crec u =
    match EConstr.kind clenv.evd u with
      | App _ | Case _ -> crec_hd u
      | Cast (c,_,_) when isMeta clenv.evd c -> u
      | Proj (p, c) -> mkProj (p, crec_hd c)
      | _  -> EConstr.map clenv.evd crec u

  and crec_hd u =
    match EConstr.kind clenv.evd (strip_outer_cast clenv.evd u) with
      | Meta mv ->
          (try
            let b = Typing.meta_type clenv.evd mv in
            assert (not (occur_meta clenv.evd b));
            if occur_meta clenv.evd b then u
            else mkCast (mkMeta mv, DEFAULTcast, b)
          with Not_found -> u)
      | App(f,args) -> mkApp (crec_hd f, Array.map crec args)
      | Case(ci,p,c,br) ->
          mkCase (ci, crec_hd p, crec_hd c, Array.map crec br)
      | Proj (p, c) -> mkProj (p, crec_hd c)
      | _ -> u
  in
  crec

let clenv_value_cast_meta clenv =
    clenv_cast_meta clenv (clenv_value clenv)

let clenv_pose_dependent_evars ?(with_evars=false) clenv =
  let dep_mvs = clenv_dependent clenv in
  let env, sigma = clenv.env, clenv.evd in
  if not (List.is_empty dep_mvs) && not with_evars then
    raise
      (RefinerError (env, sigma, UnresolvedBindings (List.map (meta_name clenv.evd) dep_mvs)));
  clenv_pose_metas_as_evars clenv dep_mvs

let clenv_refine ?(with_evars=false) ?(with_classes=true) clenv =
  (* ppedrot: a Goal.enter here breaks things, because the tactic below may
     solve goals by side effects, while the compatibility layer keeps those
     useless goals. That deserves a FIXME. *)
  Proofview.V82.tactic begin fun gl ->
  let clenv, evars = clenv_pose_dependent_evars ~with_evars clenv in
  let evd' =
    if with_classes then
      let evd' =
        Typeclasses.resolve_typeclasses ~filter:Typeclasses.all_evars
          ~fail:(not with_evars) clenv.env clenv.evd
      in
      Typeclasses.make_unresolvables (fun x -> List.mem_f Evar.equal x evars) evd'
    else clenv.evd
  in
  let clenv = { clenv with evd = evd' } in
  tclTHEN
    (tclEVARS (Evd.clear_metas evd'))
    (refiner ~check:false EConstr.Unsafe.(to_constr (clenv_cast_meta clenv (clenv_value clenv)))) gl
  end

let clenv_pose_dependent_evars ?(with_evars=false) clenv =
  fst (clenv_pose_dependent_evars ~with_evars clenv)

open Unification

let dft = default_unify_flags

let res_pf ?with_evars ?(with_classes=true) ?(flags=dft ()) clenv =
  Proofview.Goal.enter begin fun gl ->
    let clenv = clenv_unique_resolver ~flags clenv gl in
    clenv_refine ?with_evars ~with_classes clenv
  end

(* [unifyTerms] et [unify] ne semble pas gérer les Meta, en
   particulier ne semblent pas vérifier que des instances différentes
   d'une même Meta sont compatibles. D'ailleurs le "fst" jette les metas
   provenant de w_Unify. (Utilisé seulement dans prolog.ml) *)

let fail_quick_core_unif_flags = {
  modulo_conv_on_closed_terms = Some TransparentState.full;
  use_metas_eagerly_in_conv_on_closed_terms = false;
  use_evars_eagerly_in_conv_on_closed_terms = false;
  modulo_delta = TransparentState.empty;
  modulo_delta_types = TransparentState.full;
  check_applied_meta_types = false;
  use_pattern_unification = false;
  use_meta_bound_pattern_unification = true; (* ? *)
  allowed_evars = AllowAll;
  restrict_conv_on_strict_subterms = false; (* ? *)
  modulo_betaiota = false;
  modulo_eta = true;
}

let fail_quick_unif_flags = {
  core_unify_flags = fail_quick_core_unif_flags;
  merge_unify_flags = fail_quick_core_unif_flags;
  subterm_unify_flags = fail_quick_core_unif_flags;
  allow_K_in_toplevel_higher_order_unification = false;
  resolve_evars = false
}

(* let unifyTerms m n = walking (fun wc -> fst (w_Unify CONV m n [] wc)) *)
let unify ?(flags=fail_quick_unif_flags) m =
  Proofview.Goal.enter begin fun gl ->
    let env = Tacmach.New.pf_env gl in
    let n = Tacmach.New.pf_concl gl in
    let evd = clear_metas (Tacmach.New.project gl) in
    try
      let evd' = w_unify env evd CONV ~flags m n in
        Proofview.Unsafe.tclEVARSADVANCE evd'
    with e when CErrors.noncritical e -> Proofview.tclZERO e
  end