1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Constr
open Context
open Pp
open Names
open Environ
open Declarations
open Libnames
open Goptions

(** Note: there is currently two modes for printing modules.
    - The "short" one, that just prints the names of the fields.
    - The "rich" one, that also tries to print the types of the fields.
    The short version used to be the default behavior, but now we print
    types by default. The following option allows changing this.
*)

module Tag =
struct

  let definition = "module.definition"
  let keyword    = "module.keyword"

end

let tag t s = Pp.tag t s
let tag_definition s = tag Tag.definition s
let tag_keyword s = tag Tag.keyword s

type short = OnlyNames | WithContents

let short = ref false

let () =
  declare_bool_option
    { optdepr  = false;
      optname  = "short module printing";
      optkey   = ["Short";"Module";"Printing"];
      optread  = (fun () -> !short) ;
      optwrite = ((:=) short) }

(** Each time we have to print a non-globally visible structure,
    we place its elements in a fake fresh namespace. *)

let mk_fake_top =
  let r = ref 0 in
  fun () -> incr r; Id.of_string ("FAKETOP"^(string_of_int !r))

let def s = tag_definition (str s)
let keyword s = tag_keyword (str s)

let get_new_id locals id =
  let rec get_id l id =
    let dir = DirPath.make [id] in
      if not (Nametab.exists_dir dir) then
        id
      else
        get_id (Id.Set.add id l) (Namegen.next_ident_away id l)
  in
  let avoid = List.fold_left (fun accu (_, id) -> Id.Set.add id accu) Id.Set.empty locals in
    get_id avoid id

(** Inductive declarations *)

open Reduction

let print_params env sigma params =
  if List.is_empty params then mt ()
  else Printer.pr_rel_context env sigma params ++ brk(1,2)

let print_constructors envpar sigma names types =
  let pc =
    prlist_with_sep (fun () -> brk(1,0) ++ str "| ")
      (fun (id,c) -> Id.print id ++ str " : " ++ Printer.pr_lconstr_env envpar sigma c)
      (Array.to_list (Array.map2 (fun n t -> (n,t)) names types))
  in
  hv 0 (str "  " ++ pc)

let build_ind_type env mip =
  Inductive.type_of_inductive env mip

let print_one_inductive env sigma mib ((_,i) as ind) =
  let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in
  let mip = mib.mind_packets.(i) in
  let params = Inductive.inductive_paramdecls (mib,u) in
  let nparamdecls = Context.Rel.length params in
  let args = Context.Rel.to_extended_list mkRel 0 params in
  let arity = hnf_prod_applist_assum env nparamdecls (build_ind_type env ((mib,mip),u)) args in
  let cstrtypes = Inductive.type_of_constructors (ind,u) (mib,mip) in
  let cstrtypes = Array.map (fun c -> hnf_prod_applist_assum env nparamdecls c args) cstrtypes in
  let envpar = push_rel_context params env in
  let inst =
    if Declareops.inductive_is_polymorphic mib then
      Printer.pr_universe_instance sigma u
    else mt ()
  in
  hov 0 (
    Id.print mip.mind_typename ++ inst ++ brk(1,4) ++ print_params env sigma params ++
    str ": " ++ Printer.pr_lconstr_env envpar sigma arity ++ str " :=") ++
  brk(0,2) ++ print_constructors envpar sigma mip.mind_consnames cstrtypes

let print_mutual_inductive env mind mib udecl =
  let inds = List.init (Array.length mib.mind_packets) (fun x -> (mind, x))
  in
  let keyword =
    let open Declarations in
    match mib.mind_finite with
    | Finite -> "Inductive"
    | BiFinite -> "Variant"
    | CoFinite -> "CoInductive"
  in
  let bl = UnivNames.universe_binders_with_opt_names
      (Declareops.inductive_polymorphic_context mib) udecl
  in
  let sigma = Evd.from_ctx (UState.of_binders bl) in
  hov 0 (def keyword ++ spc () ++
         prlist_with_sep (fun () -> fnl () ++ str"  with ")
           (print_one_inductive env sigma mib) inds ++
         Printer.pr_universes sigma ?variance:mib.mind_variance mib.mind_universes)

let get_fields =
  let rec prodec_rec l subst c =
    match kind c with
    | Prod (na,t,c) ->
        let id = match na.binder_name with Name id -> id | Anonymous -> Id.of_string "_" in
        prodec_rec ((id,true,Vars.substl subst t)::l) (mkVar id::subst) c
    | LetIn (na,b,_,c) ->
        let id = match na.binder_name with Name id -> id | Anonymous -> Id.of_string "_" in
        prodec_rec ((id,false,Vars.substl subst b)::l) (mkVar id::subst) c
    | _               -> List.rev l
  in
  prodec_rec [] []

let print_record env mind mib udecl =
  let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in
  let mip = mib.mind_packets.(0) in
  let params = Inductive.inductive_paramdecls (mib,u) in
  let nparamdecls = Context.Rel.length params in
  let args = Context.Rel.to_extended_list mkRel 0 params in
  let arity = hnf_prod_applist_assum env nparamdecls (build_ind_type env ((mib,mip),u)) args in
  let cstrtypes = Inductive.type_of_constructors ((mind,0),u) (mib,mip) in
  let cstrtype = hnf_prod_applist_assum env nparamdecls cstrtypes.(0) args in
  let fields = get_fields cstrtype in
  let envpar = push_rel_context params env in
  let bl = UnivNames.universe_binders_with_opt_names (Declareops.inductive_polymorphic_context mib)
      udecl
  in
  let sigma = Evd.from_ctx (UState.of_binders bl) in
  let keyword =
    let open Declarations in
    match mib.mind_finite with
    | BiFinite -> "Record"
    | Finite -> "Inductive"
    | CoFinite -> "CoInductive"
  in
  hov 0 (
    hov 0 (
      def keyword ++ spc () ++ Id.print mip.mind_typename ++ brk(1,4) ++
      print_params env sigma params ++
      str ": " ++ Printer.pr_lconstr_env envpar sigma arity ++ brk(1,2) ++
      str ":= " ++ Id.print mip.mind_consnames.(0)) ++
    brk(1,2) ++
    hv 2 (str "{ " ++
      prlist_with_sep (fun () -> str ";" ++ brk(2,0))
        (fun (id,b,c) ->
          Id.print id ++ str (if b then " : " else " := ") ++
          Printer.pr_lconstr_env envpar sigma c) fields) ++ str" }" ++
    Printer.pr_universes sigma ?variance:mib.mind_variance mib.mind_universes
  )

let pr_mutual_inductive_body env mind mib udecl =
  if mib.mind_record != NotRecord && not !Flags.raw_print then
    print_record env mind mib udecl
  else
    print_mutual_inductive env mind mib udecl

(** Modpaths *)

let rec print_local_modpath locals = function
  | MPbound mbid -> Id.print (Util.List.assoc_f MBId.equal mbid locals)
  | MPdot(mp,l) ->
      print_local_modpath locals mp ++ str "." ++ Label.print l
  | MPfile _ -> raise Not_found

let print_modpath locals mp =
  try (* must be with let because streams are lazy! *)
    let qid = Nametab.shortest_qualid_of_module mp in
      pr_qualid qid
  with
    | Not_found -> print_local_modpath locals mp

let print_kn locals kn =
  try
    let qid = Nametab.shortest_qualid_of_modtype kn in
      pr_qualid qid
  with
      Not_found ->
        try
          print_local_modpath locals kn
        with
            Not_found -> print_modpath locals kn

let nametab_register_dir obj_mp =
  let id = mk_fake_top () in
  let obj_dir = DirPath.make [id] in
  Nametab.(push_dir (Until 1) obj_dir (GlobDirRef.DirModule { obj_dir; obj_mp; }))

(** Nota: the [global_reference] we register in the nametab below
    might differ from internal ones, since we cannot recreate here
    the canonical part of constant and inductive names, but only
    the user names. This works nonetheless since we search now
    [Nametab.the_globrevtab] modulo user name. *)

let nametab_register_body mp dir (l,body) =
  let push id ref =
    Nametab.push (Nametab.Until (1+List.length (DirPath.repr dir)))
      (make_path dir id) ref
  in
  match body with
    | SFBmodule _ -> () (* TODO *)
    | SFBmodtype _ -> () (* TODO *)
    | SFBconst _ ->
      push (Label.to_id l) (GlobRef.ConstRef (Constant.make2 mp l))
    | SFBmind mib ->
      let mind = MutInd.make2 mp l in
      Array.iteri
        (fun i mip ->
          push mip.mind_typename (GlobRef.IndRef (mind,i));
          Array.iteri (fun j id -> push id (GlobRef.ConstructRef ((mind,i),j+1)))
            mip.mind_consnames)
        mib.mind_packets

type mod_ops =
  { import_module : export:bool -> ModPath.t -> unit
  ; process_module_binding : MBId.t -> Declarations.module_alg_expr -> unit
  }

let nametab_register_module_body ~mod_ops mp struc =
  (* If [mp] is a globally visible module, we simply import it *)
  try mod_ops.import_module ~export:false mp
  with Not_found ->
    (* Otherwise we try to emulate an import by playing with nametab *)
    nametab_register_dir mp;
    List.iter (nametab_register_body mp DirPath.empty) struc

let get_typ_expr_alg mtb = match mtb.mod_type_alg with
  | Some (NoFunctor me) -> me
  | _ -> raise Not_found

let nametab_register_modparam ~mod_ops mbid mtb =
  let id = MBId.to_id mbid in
  match mtb.mod_type with
  | MoreFunctor _ -> id (* functorial param : nothing to register *)
  | NoFunctor struc ->
    (* We first try to use the algebraic type expression if any,
       via a Declaremods function that converts back to module entries *)
    try
      let () = mod_ops.process_module_binding mbid (get_typ_expr_alg mtb) in
      id
    with e when CErrors.noncritical e ->
      (* Otherwise, we try to play with the nametab ourselves *)
      let mp = MPbound mbid in
      let check id = Nametab.exists_dir (DirPath.make [id]) in
      let id = Namegen.next_ident_away_from id check in
      let dir = DirPath.make [id] in
      nametab_register_dir mp;
      List.iter (nametab_register_body mp dir) struc;
      id

let print_body is_impl extent env mp (l,body) =
  let name = Label.print l in
  hov 2 (match body with
    | SFBmodule _ -> keyword "Module" ++ spc () ++ name
    | SFBmodtype _ -> keyword "Module Type" ++ spc () ++ name
    | SFBconst cb ->
       let ctx = Declareops.constant_polymorphic_context cb in
      (match cb.const_body with
        | Def _ -> def "Definition" ++ spc ()
        | OpaqueDef _ when is_impl -> def "Theorem" ++ spc ()
        | _ -> def "Parameter" ++ spc ()) ++ name ++
      (match extent with
         | OnlyNames -> mt ()
         | WithContents ->
            let bl = UnivNames.universe_binders_with_opt_names ctx None in
            let sigma = Evd.from_ctx (UState.of_binders bl) in
            str " :" ++ spc () ++
            hov 0 (Printer.pr_ltype_env env sigma cb.const_type) ++
            (match cb.const_body with
              | Def l when is_impl ->
                spc () ++
                hov 2 (str ":= " ++
                       Printer.pr_lconstr_env env sigma (Mod_subst.force_constr l))
              | _ -> mt ()) ++ str "." ++
            Printer.pr_abstract_universe_ctx sigma ctx)
    | SFBmind mib ->
      match extent with
      | WithContents ->
        pr_mutual_inductive_body env (MutInd.make2 mp l) mib None
      | OnlyNames ->
        let keyword =
          let open Declarations in
          match mib.mind_finite with
          | Finite -> def "Inductive"
          | BiFinite -> def "Variant"
          | CoFinite -> def "CoInductive"
        in
        keyword ++ spc () ++ name)

let print_struct is_impl extent env mp struc =
  prlist_with_sep spc (print_body is_impl extent env mp) struc

let print_structure ~mod_ops is_type extent env mp locals struc =
  let env' = Modops.add_structure mp struc Mod_subst.empty_delta_resolver env in
  nametab_register_module_body ~mod_ops mp struc;
  let kwd = if is_type then "Sig" else "Struct" in
  hv 2 (keyword kwd ++ spc () ++ print_struct false extent env' mp struc ++
        brk (1,-2) ++ keyword "End")

let rec flatten_app mexpr l = match mexpr with
  | MEapply (mexpr, arg) -> flatten_app mexpr (arg::l)
  | MEident mp -> mp::l
  | MEwith _ -> assert false

let rec print_typ_expr extent env mp locals mty =
  match mty with
  | MEident kn -> print_kn locals kn
  | MEapply _ ->
      let lapp = flatten_app mty [] in
      let fapp = List.hd lapp in
      let mapp = List.tl lapp in
      hov 3 (str"(" ++ (print_kn locals fapp) ++ spc () ++
                 prlist_with_sep spc (print_modpath locals) mapp ++ str")")
  | MEwith(me,WithDef(idl,(c, _)))->
      let s = String.concat "." (List.map Id.to_string idl) in
      let body = match extent with
        | WithContents ->
            let sigma = Evd.from_env env in
            spc() ++ str ":=" ++ spc() ++ Printer.pr_lconstr_env env sigma c
        | OnlyNames ->
            mt() in
      hov 2 (print_typ_expr extent env mp locals me ++ spc() ++ str "with" ++ spc()
             ++ def "Definition"++ spc() ++ str s ++ body)
  | MEwith(me,WithMod(idl,mp'))->
      let s = String.concat "." (List.map Id.to_string idl) in
      let body = match extent with
        | WithContents ->
            spc() ++ str ":="++ spc() ++ print_modpath locals mp'
        | OnlyNames -> mt () in
      hov 2 (print_typ_expr extent env mp locals me ++ spc() ++ str "with" ++ spc() ++
             keyword "Module"++ spc() ++ str s ++ body)

let print_mod_expr env mp locals = function
  | MEident mp -> print_modpath locals mp
  | MEapply _ as me ->
      let lapp = flatten_app me [] in
      hov 3
        (str"(" ++ prlist_with_sep spc (print_modpath locals) lapp ++ str")")
  | MEwith _ -> assert false (* No 'with' syntax for modules *)

let rec print_functor ~mod_ops fty fatom is_type extent env mp locals = function
  | NoFunctor me -> fatom ~mod_ops is_type extent env mp locals me
  | MoreFunctor (mbid,mtb1,me2) ->
      let id = nametab_register_modparam ~mod_ops mbid mtb1 in
      let mp1 = MPbound mbid in
      let pr_mtb1 = fty ~mod_ops extent env mp1 locals mtb1 in
      let env' = Modops.add_module_type mp1 mtb1 env in
      let locals' = (mbid, get_new_id locals (MBId.to_id mbid))::locals in
      let kwd = if is_type then "Funsig" else "Functor" in
      hov 2
        (keyword kwd ++ spc () ++
         str "(" ++ Id.print id ++ str ":" ++ pr_mtb1 ++ str ")" ++
         spc() ++ print_functor ~mod_ops fty fatom is_type extent env' mp locals' me2)

let rec print_expression ~mod_ops x =
  print_functor ~mod_ops
    print_modtype
    (fun ~mod_ops -> function true -> print_typ_expr | false -> fun _ -> print_mod_expr) x

and print_signature ~mod_ops x =
  print_functor ~mod_ops print_modtype print_structure x

and print_modtype ~mod_ops extent env mp locals mtb = match mtb.mod_type_alg with
  | Some me -> print_expression ~mod_ops true extent env mp locals me
  | None -> print_signature ~mod_ops true extent env mp locals mtb.mod_type

let rec printable_body dir =
  let dir = pop_dirpath dir in
    DirPath.is_empty dir ||
    try
      let open Nametab.GlobDirRef in
      match Nametab.locate_dir (qualid_of_dirpath dir) with
          DirOpenModtype _ -> false
        | DirModule _ | DirOpenModule _ -> printable_body dir
        | _ -> true
    with
        Not_found -> true

(** Since we might play with nametab above, we should reset to prior
    state after the printing *)

let print_expression' ~mod_ops is_type extent env mp me =
  States.with_state_protection
    (fun e -> print_expression ~mod_ops is_type extent env mp [] e) me

let print_signature' ~mod_ops is_type extent env mp me =
  States.with_state_protection
    (fun e -> print_signature ~mod_ops is_type extent env mp [] e) me

let unsafe_print_module ~mod_ops extent env mp with_body mb =
  let name = print_modpath [] mp in
  let pr_equals = spc () ++ str ":= " in
  let body = match with_body, mb.mod_expr with
    | false, _
    | true, Abstract -> mt()
    | _, Algebraic me -> pr_equals ++ print_expression' ~mod_ops false extent env mp me
    | _, Struct sign -> pr_equals ++ print_signature' ~mod_ops false extent env mp sign
    | _, FullStruct -> pr_equals ++ print_signature' ~mod_ops false extent env mp mb.mod_type
  in
  let modtype = match mb.mod_expr, mb.mod_type_alg with
    | FullStruct, _ -> mt ()
    | _, Some ty -> brk (1,1) ++ str": " ++ print_expression' ~mod_ops true extent env mp ty
    | _, _ -> brk (1,1) ++ str": " ++ print_signature' ~mod_ops true extent env mp mb.mod_type
  in
  hv 0 (keyword "Module" ++ spc () ++ name ++ modtype ++ body)

exception ShortPrinting

let print_module ~mod_ops with_body mp =
  let me = Global.lookup_module mp in
  try
    if !short then raise ShortPrinting;
    unsafe_print_module ~mod_ops WithContents
      (Global.env ()) mp with_body me ++ fnl ()
  with e when CErrors.noncritical e ->
    unsafe_print_module ~mod_ops OnlyNames
      (Global.env ()) mp with_body me ++ fnl ()

let print_modtype ~mod_ops kn =
  let mtb = Global.lookup_modtype kn in
  let name = print_kn [] kn in
  hv 1
    (keyword "Module Type" ++ spc () ++ name ++ str " =" ++ spc () ++
     try
      if !short then raise ShortPrinting;
      print_signature' ~mod_ops true WithContents
        (Global.env ()) kn mtb.mod_type
     with e when CErrors.noncritical e ->
      print_signature' ~mod_ops true OnlyNames
        (Global.env ()) kn mtb.mod_type)