1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Changed by (and thus parts copyright ©) by Lionel Elie Mamane <lionel@mamane.lu> * on May-June 2006 for implementation of abstraction of pretty-printing of objects. *) open Pp open CErrors open Util open CAst open Names open Nameops open Termops open Declarations open Environ open Impargs open Libobject open Libnames open Globnames open Recordops open Printer open Printmod open Context.Rel.Declaration (* module RelDecl = Context.Rel.Declaration *) module NamedDecl = Context.Named.Declaration type object_pr = { print_inductive : MutInd.t -> UnivNames.univ_name_list option -> Pp.t; print_constant_with_infos : Opaqueproof.indirect_accessor -> Constant.t -> UnivNames.univ_name_list option -> Pp.t; print_section_variable : env -> Evd.evar_map -> variable -> Pp.t; print_syntactic_def : env -> KerName.t -> Pp.t; print_module : mod_ops:Printmod.mod_ops -> bool -> ModPath.t -> Pp.t; print_modtype : mod_ops:Printmod.mod_ops -> ModPath.t -> Pp.t; print_named_decl : env -> Evd.evar_map -> Constr.named_declaration -> Pp.t; print_library_entry : mod_ops:Printmod.mod_ops -> Opaqueproof.indirect_accessor -> env -> Evd.evar_map -> bool -> (object_name * Lib.node) -> Pp.t option; print_context : mod_ops:Printmod.mod_ops -> Opaqueproof.indirect_accessor -> env -> Evd.evar_map -> bool -> int option -> Lib.library_segment -> Pp.t; print_typed_value_in_env : Environ.env -> Evd.evar_map -> EConstr.constr * EConstr.types -> Pp.t; print_eval : Reductionops.reduction_function -> env -> Evd.evar_map -> Constrexpr.constr_expr -> EConstr.unsafe_judgment -> Pp.t; } let gallina_print_module = print_module let gallina_print_modtype = print_modtype (**************) (** Utilities *) let print_closed_sections = ref false let pr_infos_list l = v 0 (prlist_with_sep cut (fun x -> x) l) let with_line_skip l = if List.is_empty l then mt() else fnl() ++ fnl () ++ pr_infos_list l let blankline = mt() (* add a blank sentence in the list of infos *) let add_colon prefix = if ismt prefix then mt () else prefix ++ str ": " let int_or_no n = if Int.equal n 0 then str "no" else int n (*******************) (** Basic printing *) let print_basename sp = pr_global (GlobRef.ConstRef sp) let print_ref reduce ref udecl = let env = Global.env () in let typ, univs = Typeops.type_of_global_in_context env ref in let inst = Univ.make_abstract_instance univs in let bl = UnivNames.universe_binders_with_opt_names (Environ.universes_of_global env ref) udecl in let sigma = Evd.from_ctx (UState.of_binders bl) in let typ = EConstr.of_constr typ in let typ = if reduce then let ctx,ccl = Reductionops.splay_prod_assum env sigma typ in EConstr.it_mkProd_or_LetIn ccl ctx else typ in let variance = let open GlobRef in match ref with | VarRef _ | ConstRef _ -> None | IndRef (ind,_) | ConstructRef ((ind,_),_) -> let mind = Environ.lookup_mind ind env in mind.Declarations.mind_variance in let inst = if Global.is_polymorphic ref then Printer.pr_universe_instance sigma inst else mt () in let priv = None in (* We deliberately don't print private univs in About. *) hov 0 (pr_global ref ++ inst ++ str " :" ++ spc () ++ pr_letype_env env sigma typ ++ Printer.pr_abstract_universe_ctx sigma ?variance univs ?priv) (********************************) (** Printing implicit arguments *) let pr_impl_name imp = Id.print (name_of_implicit imp) let print_impargs_by_name max = function | [] -> [] | impls -> let n = List.length impls in [hov 0 (str (String.plural n "Argument") ++ spc() ++ prlist_with_sep pr_comma pr_impl_name impls ++ spc() ++ str (String.conjugate_verb_to_be n) ++ str" implicit" ++ (if max then strbrk " and maximally inserted" else mt()))] let print_one_impargs_list l = let imps = List.filter is_status_implicit l in let maximps = List.filter Impargs.maximal_insertion_of imps in let nonmaximps = List.subtract (=) imps maximps in (* FIXME *) print_impargs_by_name false nonmaximps @ print_impargs_by_name true maximps let print_impargs_list prefix l = let l = extract_impargs_data l in List.flatten (List.map (fun (cond,imps) -> match cond with | None -> List.map (fun pp -> add_colon prefix ++ pp) (print_one_impargs_list imps) | Some (n1,n2) -> [v 2 (prlist_with_sep cut (fun x -> x) [(if ismt prefix then str "When" else prefix ++ str ", when") ++ str " applied to " ++ (if Int.equal n1 n2 then int_or_no n2 else if Int.equal n1 0 then str "no more than " ++ int n2 else int n1 ++ str " to " ++ int_or_no n2) ++ str (String.plural n2 " argument") ++ str ":"; v 0 (prlist_with_sep cut (fun x -> x) (if List.exists is_status_implicit imps then print_one_impargs_list imps else [str "No implicit arguments"]))])]) l) let print_renames_list prefix l = if List.is_empty l then [] else [add_colon prefix ++ str "Arguments are renamed to " ++ hv 2 (prlist_with_sep pr_comma (fun x -> x) (List.map Name.print l))] let need_expansion impl ref = let typ, _ = Typeops.type_of_global_in_context (Global.env ()) ref in let ctx = Term.prod_assum typ in let nprods = List.count is_local_assum ctx in not (List.is_empty impl) && List.length impl >= nprods && let _,lastimpl = List.chop nprods impl in List.exists is_status_implicit lastimpl let print_impargs ref = let ref = Smartlocate.smart_global ref in let impl = implicits_of_global ref in let has_impl = not (List.is_empty impl) in (* Need to reduce since implicits are computed with products flattened *) pr_infos_list ([ print_ref (need_expansion (select_impargs_size 0 impl) ref) ref None; blankline ] @ (if has_impl then print_impargs_list (mt()) impl else [str "No implicit arguments"])) (*********************) (** Printing Scopes *) let print_argument_scopes prefix = function | [Some sc] -> [add_colon prefix ++ str"Argument scope is [" ++ str sc ++ str"]"] | l when not (List.for_all Option.is_empty l) -> [add_colon prefix ++ hov 2 (str"Argument scopes are" ++ spc() ++ str "[" ++ pr_sequence (function Some sc -> str sc | None -> str "_") l ++ str "]")] | _ -> [] (*********************) (** Printing Opacity *) type opacity = | FullyOpaque | TransparentMaybeOpacified of Conv_oracle.level let opacity env = function | GlobRef.VarRef v when NamedDecl.is_local_def (Environ.lookup_named v env) -> Some(TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (VarKey v))) | GlobRef.ConstRef cst -> let cb = Environ.lookup_constant cst env in (match cb.const_body with | Undef _ | Primitive _ -> None | OpaqueDef _ -> Some FullyOpaque | Def _ -> Some (TransparentMaybeOpacified (Conv_oracle.get_strategy (Environ.oracle env) (ConstKey cst)))) | _ -> None let print_opacity ref = match opacity (Global.env()) ref with | None -> [] | Some s -> [pr_global ref ++ str " is " ++ match s with | FullyOpaque -> str "opaque" | TransparentMaybeOpacified Conv_oracle.Opaque -> str "basically transparent but considered opaque for reduction" | TransparentMaybeOpacified lev when Conv_oracle.is_transparent lev -> str "transparent" | TransparentMaybeOpacified (Conv_oracle.Level n) -> str "transparent (with expansion weight " ++ int n ++ str ")" | TransparentMaybeOpacified Conv_oracle.Expand -> str "transparent (with minimal expansion weight)"] (*******************) let print_if_is_coercion ref = if Classops.coercion_exists ref then [pr_global ref ++ str " is a coercion"] else [] (*******************) (* *) let pr_template_variables = function | [] -> mt () | vars -> str "on " ++ prlist_with_sep spc UnivNames.pr_with_global_universes vars let print_polymorphism ref = let poly = Global.is_polymorphic ref in let template_poly = Global.is_template_polymorphic ref in let template_checked = Global.is_template_checked ref in let template_variables = Global.get_template_polymorphic_variables ref in [ pr_global ref ++ str " is " ++ (if poly then str "universe polymorphic" else if template_poly then (if not template_checked then str "assumed " else mt()) ++ str "template universe polymorphic " ++ h 0 (pr_template_variables template_variables) else str "not universe polymorphic") ] let print_type_in_type ref = let unsafe = Global.is_type_in_type ref in if unsafe then [ pr_global ref ++ str " relies on an unsafe universe hierarchy"] else [] let print_primitive_record recflag mipv = function | PrimRecord _ -> let eta = match recflag with | CoFinite | Finite -> str" without eta conversion" | BiFinite -> str " with eta conversion" in [Id.print mipv.(0).mind_typename ++ str" has primitive projections" ++ eta ++ str"."] | FakeRecord | NotRecord -> [] let print_primitive ref = match ref with | GlobRef.IndRef ind -> let mib,_ = Global.lookup_inductive ind in print_primitive_record mib.mind_finite mib.mind_packets mib.mind_record | _ -> [] let print_name_infos ref = let impls = implicits_of_global ref in let scopes = Notation.find_arguments_scope ref in let renames = try Arguments_renaming.arguments_names ref with Not_found -> [] in let type_info_for_implicit = if need_expansion (select_impargs_size 0 impls) ref then (* Need to reduce since implicits are computed with products flattened *) [str "Expanded type for implicit arguments"; print_ref true ref None; blankline] else [] in print_type_in_type ref @ print_primitive ref @ type_info_for_implicit @ print_renames_list (mt()) renames @ print_impargs_list (mt()) impls @ print_argument_scopes (mt()) scopes @ print_if_is_coercion ref let print_id_args_data test pr id l = if List.exists test l then pr (str "For " ++ Id.print id) l else [] let print_args_data_of_inductive_ids get test pr sp mipv = List.flatten (Array.to_list (Array.mapi (fun i mip -> print_id_args_data test pr mip.mind_typename (get (GlobRef.IndRef (sp,i))) @ List.flatten (Array.to_list (Array.mapi (fun j idc -> print_id_args_data test pr idc (get (GlobRef.ConstructRef ((sp,i),j+1)))) mip.mind_consnames))) mipv)) let print_inductive_implicit_args = print_args_data_of_inductive_ids implicits_of_global (fun l -> not (List.is_empty (positions_of_implicits l))) print_impargs_list let print_inductive_renames = print_args_data_of_inductive_ids (fun r -> try Arguments_renaming.arguments_names r with Not_found -> []) ((!=) Anonymous) print_renames_list let print_inductive_argument_scopes = print_args_data_of_inductive_ids Notation.find_arguments_scope (Option.has_some) print_argument_scopes let print_bidi_hints gr = match Pretyping.get_bidirectionality_hint gr with | None -> [] | Some nargs -> [str "Using typing information from context after typing the " ++ int nargs ++ str " first arguments"] (*********************) (* "Locate" commands *) type 'a locatable_info = { locate : qualid -> 'a option; locate_all : qualid -> 'a list; shortest_qualid : 'a -> qualid; name : 'a -> Pp.t; print : 'a -> Pp.t; about : 'a -> Pp.t; } type locatable = Locatable : 'a locatable_info -> locatable type logical_name = | Term of GlobRef.t | Dir of Nametab.GlobDirRef.t | Syntactic of KerName.t | ModuleType of ModPath.t | Other : 'a * 'a locatable_info -> logical_name | Undefined of qualid (** Generic table for objects that are accessible through a name. *) let locatable_map : locatable String.Map.t ref = ref String.Map.empty let register_locatable name f = locatable_map := String.Map.add name (Locatable f) !locatable_map exception ObjFound of logical_name let locate_any_name qid = try Term (Nametab.locate qid) with Not_found -> try Syntactic (Nametab.locate_syndef qid) with Not_found -> try Dir (Nametab.locate_dir qid) with Not_found -> try ModuleType (Nametab.locate_modtype qid) with Not_found -> let iter _ (Locatable info) = match info.locate qid with | None -> () | Some ans -> raise (ObjFound (Other (ans, info))) in try String.Map.iter iter !locatable_map; Undefined qid with ObjFound obj -> obj let pr_located_qualid = function | Term ref -> let ref_str = let open GlobRef in match ref with ConstRef _ -> "Constant" | IndRef _ -> "Inductive" | ConstructRef _ -> "Constructor" | VarRef _ -> "Variable" in str ref_str ++ spc () ++ pr_path (Nametab.path_of_global ref) | Syntactic kn -> str "Notation" ++ spc () ++ pr_path (Nametab.path_of_syndef kn) | Dir dir -> let s,dir = let open Nametab in let open GlobDirRef in match dir with | DirOpenModule { obj_dir ; _ } -> "Open Module", obj_dir | DirOpenModtype { obj_dir ; _ } -> "Open Module Type", obj_dir | DirOpenSection { obj_dir ; _ } -> "Open Section", obj_dir | DirModule { obj_dir ; _ } -> "Module", obj_dir in str s ++ spc () ++ DirPath.print dir | ModuleType mp -> str "Module Type" ++ spc () ++ pr_path (Nametab.path_of_modtype mp) | Other (obj, info) -> info.name obj | Undefined qid -> pr_qualid qid ++ spc () ++ str "not a defined object." let canonize_ref = let open GlobRef in function | ConstRef c -> let kn = Constant.canonical c in if KerName.equal (Constant.user c) kn then None else Some (ConstRef (Constant.make1 kn)) | IndRef (ind,i) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (IndRef (MutInd.make1 kn, i)) | ConstructRef ((ind,i),j) -> let kn = MutInd.canonical ind in if KerName.equal (MutInd.user ind) kn then None else Some (ConstructRef ((MutInd.make1 kn, i),j)) | VarRef _ -> None let display_alias = function | Term r -> begin match canonize_ref r with | None -> mt () | Some r' -> let q' = Nametab.shortest_qualid_of_global Id.Set.empty r' in spc () ++ str "(alias of " ++ pr_qualid q' ++ str ")" end | _ -> mt () let locate_term qid = let expand = function | TrueGlobal ref -> Term ref, Nametab.shortest_qualid_of_global Id.Set.empty ref | SynDef kn -> Syntactic kn, Nametab.shortest_qualid_of_syndef Id.Set.empty kn in List.map expand (Nametab.locate_extended_all qid) let locate_module qid = let all = Nametab.locate_extended_all_dir qid in let map dir = let open Nametab.GlobDirRef in match dir with | DirModule { Nametab.obj_mp ; _ } -> Some (Dir dir, Nametab.shortest_qualid_of_module obj_mp) | DirOpenModule _ -> Some (Dir dir, qid) | _ -> None in List.map_filter map all let locate_modtype qid = let all = Nametab.locate_extended_all_modtype qid in let map mp = ModuleType mp, Nametab.shortest_qualid_of_modtype mp in let modtypes = List.map map all in (* Don't forget the opened module types: they are not part of the same name tab. *) let all = Nametab.locate_extended_all_dir qid in let map dir = let open Nametab.GlobDirRef in match dir with | DirOpenModtype _ -> Some (Dir dir, qid) | _ -> None in modtypes @ List.map_filter map all let locate_other s qid = let Locatable info = String.Map.find s !locatable_map in let ans = info.locate_all qid in let map obj = (Other (obj, info), info.shortest_qualid obj) in List.map map ans type locatable_kind = | LocTerm | LocModule | LocOther of string | LocAny let print_located_qualid name flags qid = let located = match flags with | LocTerm -> locate_term qid | LocModule -> locate_modtype qid @ locate_module qid | LocOther s -> locate_other s qid | LocAny -> locate_term qid @ locate_modtype qid @ locate_module qid @ String.Map.fold (fun s _ accu -> locate_other s qid @ accu) !locatable_map [] in match located with | [] -> let (dir,id) = repr_qualid qid in if DirPath.is_empty dir then str "No " ++ str name ++ str " of basename" ++ spc () ++ Id.print id else str "No " ++ str name ++ str " of suffix" ++ spc () ++ pr_qualid qid | l -> prlist_with_sep fnl (fun (o,oqid) -> hov 2 (pr_located_qualid o ++ (if not (qualid_eq oqid qid) then spc() ++ str "(shorter name to refer to it in current context is " ++ pr_qualid oqid ++ str")" else mt ()) ++ display_alias o)) l let print_located_term ref = print_located_qualid "term" LocTerm ref let print_located_other s ref = print_located_qualid s (LocOther s) ref let print_located_module ref = print_located_qualid "module" LocModule ref let print_located_qualid ref = print_located_qualid "object" LocAny ref (******************************************) (**** Printing declarations and judgments *) (**** Gallina layer *****) let gallina_print_typed_value_in_env env sigma (trm,typ) = (pr_leconstr_env env sigma trm ++ fnl () ++ str " : " ++ pr_letype_env env sigma typ) (* To be improved; the type should be used to provide the types in the abstractions. This should be done recursively inside pr_lconstr, so that the pretty-print of a proposition (P:(nat->nat)->Prop)(P [u]u) synthesizes the type nat of the abstraction on u *) let print_named_def env sigma name body typ = let pbody = pr_lconstr_env env sigma body in let ptyp = pr_ltype_env env sigma typ in let pbody = if Constr.isCast body then surround pbody else pbody in (str "*** [" ++ str name ++ str " " ++ hov 0 (str ":=" ++ brk (1,2) ++ pbody ++ spc () ++ str ":" ++ brk (1,2) ++ ptyp) ++ str "]") let print_named_assum env sigma name typ = str "*** [" ++ str name ++ str " : " ++ pr_ltype_env env sigma typ ++ str "]" let gallina_print_named_decl env sigma = let open Context.Named.Declaration in function | LocalAssum (id, typ) -> print_named_assum env sigma (Id.to_string id.Context.binder_name) typ | LocalDef (id, body, typ) -> print_named_def env sigma (Id.to_string id.Context.binder_name) body typ let assumptions_for_print lna = List.fold_right (fun na env -> add_name na env) lna empty_names_context (*********************) (* *) let gallina_print_inductive sp udecl = let env = Global.env() in let mib = Environ.lookup_mind sp env in let mipv = mib.mind_packets in pr_mutual_inductive_body env sp mib udecl ++ with_line_skip (print_primitive_record mib.mind_finite mipv mib.mind_record @ print_inductive_renames sp mipv @ print_inductive_implicit_args sp mipv @ print_inductive_argument_scopes sp mipv) let print_named_decl env sigma id = gallina_print_named_decl env sigma (Global.lookup_named id) ++ fnl () let gallina_print_section_variable env sigma id = print_named_decl env sigma id ++ with_line_skip (print_name_infos (GlobRef.VarRef id)) let print_body env evd = function | Some c -> pr_lconstr_env env evd c | None -> (str"<no body>") let print_typed_body env evd (val_0,typ) = (print_body env evd val_0 ++ fnl () ++ str " : " ++ pr_ltype_env env evd typ) let print_instance sigma cb = if Declareops.constant_is_polymorphic cb then let univs = Declareops.constant_polymorphic_context cb in let inst = Univ.make_abstract_instance univs in pr_universe_instance sigma inst else mt() let print_constant indirect_accessor with_values sep sp udecl = let cb = Global.lookup_constant sp in let val_0 = Global.body_of_constant_body indirect_accessor cb in let typ = cb.const_type in let univs = let open Univ in let otab = Global.opaque_tables () in match cb.const_body with | Undef _ | Def _ | Primitive _ -> cb.const_universes | OpaqueDef o -> let body_uctxs = Opaqueproof.force_constraints indirect_accessor otab o in match cb.const_universes with | Monomorphic ctx -> Monomorphic (ContextSet.union body_uctxs ctx) | Polymorphic ctx -> assert(ContextSet.is_empty body_uctxs); Polymorphic ctx in let ctx = UState.of_binders (UnivNames.universe_binders_with_opt_names (Declareops.constant_polymorphic_context cb) udecl) in let env = Global.env () and sigma = Evd.from_ctx ctx in let pr_ltype = pr_ltype_env env sigma in hov 0 ( match val_0 with | None -> str"*** [ " ++ print_basename sp ++ print_instance sigma cb ++ str " : " ++ cut () ++ pr_ltype typ ++ str" ]" ++ Printer.pr_universes sigma univs | Some (c, priv, ctx) -> let priv = match priv with | Opaqueproof.PrivateMonomorphic () -> None | Opaqueproof.PrivatePolymorphic (_, ctx) -> Some ctx in print_basename sp ++ print_instance sigma cb ++ str sep ++ cut () ++ (if with_values then print_typed_body env sigma (Some c,typ) else pr_ltype typ)++ Printer.pr_universes sigma univs ?priv) let gallina_print_constant_with_infos indirect_accessor sp udecl = print_constant indirect_accessor true " = " sp udecl ++ with_line_skip (print_name_infos (GlobRef.ConstRef sp)) let gallina_print_syntactic_def env kn = let qid = Nametab.shortest_qualid_of_syndef Id.Set.empty kn and (vars,a) = Syntax_def.search_syntactic_definition kn in let c = Notation_ops.glob_constr_of_notation_constr a in hov 2 (hov 4 (str "Notation " ++ pr_qualid qid ++ prlist (fun id -> spc () ++ Id.print id) (List.map fst vars) ++ spc () ++ str ":=") ++ spc () ++ Constrextern.without_specific_symbols [Notation.SynDefRule kn] (pr_glob_constr_env env) c) let gallina_print_leaf_entry ~mod_ops indirect_accessor env sigma with_values ((sp,kn as oname),lobj) = let sep = if with_values then " = " else " : " in match lobj with | AtomicObject o -> let tag = object_tag o in begin match (oname,tag) with | (_,"VARIABLE") -> (* Outside sections, VARIABLES still exist but only with universes constraints *) (try Some(print_named_decl env sigma (basename sp)) with Not_found -> None) | (_,"CONSTANT") -> Some (print_constant indirect_accessor with_values sep (Constant.make1 kn) None) | (_,"INDUCTIVE") -> Some (gallina_print_inductive (MutInd.make1 kn) None) | (_,("AUTOHINT"|"GRAMMAR"|"SYNTAXCONSTANT"|"PPSYNTAX"|"TOKEN"|"CLASS"| "COERCION"|"REQUIRE"|"END-SECTION"|"STRUCTURE")) -> None (* To deal with forgotten cases... *) | (_,s) -> None end | ModuleObject _ -> let (mp,l) = KerName.repr kn in Some (print_module ~mod_ops with_values (MPdot (mp,l))) | ModuleTypeObject _ -> let (mp,l) = KerName.repr kn in Some (print_modtype ~mod_ops (MPdot (mp,l))) | _ -> None let gallina_print_library_entry ~mod_ops indirect_accessor env sigma with_values ent = let pr_name (sp,_) = Id.print (basename sp) in match ent with | (oname,Lib.Leaf lobj) -> gallina_print_leaf_entry ~mod_ops indirect_accessor env sigma with_values (oname,lobj) | (oname,Lib.OpenedSection (dir,_)) -> Some (str " >>>>>>> Section " ++ pr_name oname) | (_,Lib.CompilingLibrary { Nametab.obj_dir; _ }) -> Some (str " >>>>>>> Library " ++ DirPath.print obj_dir) | (oname,Lib.OpenedModule _) -> Some (str " >>>>>>> Module " ++ pr_name oname) let gallina_print_context ~mod_ops indirect_accessor env sigma with_values = let rec prec n = function | h::rest when Option.is_empty n || Option.get n > 0 -> (match gallina_print_library_entry ~mod_ops indirect_accessor env sigma with_values h with | None -> prec n rest | Some pp -> prec (Option.map ((+) (-1)) n) rest ++ pp ++ fnl ()) | _ -> mt () in prec let gallina_print_eval red_fun env sigma _ {uj_val=trm;uj_type=typ} = let ntrm = red_fun env sigma trm in (str " = " ++ gallina_print_typed_value_in_env env sigma (ntrm,typ)) (******************************************) (**** Printing abstraction layer *) let default_object_pr = { print_inductive = gallina_print_inductive; print_constant_with_infos = gallina_print_constant_with_infos; print_section_variable = gallina_print_section_variable; print_syntactic_def = gallina_print_syntactic_def; print_module = gallina_print_module; print_modtype = gallina_print_modtype; print_named_decl = gallina_print_named_decl; print_library_entry = gallina_print_library_entry; print_context = gallina_print_context; print_typed_value_in_env = gallina_print_typed_value_in_env; print_eval = gallina_print_eval; } let object_pr = ref default_object_pr let set_object_pr = (:=) object_pr let print_inductive x = !object_pr.print_inductive x let print_constant_with_infos c = !object_pr.print_constant_with_infos c let print_section_variable c = !object_pr.print_section_variable c let print_syntactic_def x = !object_pr.print_syntactic_def x let print_module x = !object_pr.print_module x let print_modtype x = !object_pr.print_modtype x let print_named_decl x = !object_pr.print_named_decl x let print_library_entry ~mod_ops x = !object_pr.print_library_entry ~mod_ops x let print_context ~mod_ops x = !object_pr.print_context ~mod_ops x let print_typed_value_in_env x = !object_pr.print_typed_value_in_env x let print_eval x = !object_pr.print_eval x (******************************************) (**** Printing declarations and judgments *) (**** Abstract layer *****) let print_judgment env sigma {uj_val=trm;uj_type=typ} = print_typed_value_in_env env sigma (trm, typ) let print_safe_judgment env sigma j = let trm = Safe_typing.j_val j in let typ = Safe_typing.j_type j in let trm = EConstr.of_constr trm in let typ = EConstr.of_constr typ in print_typed_value_in_env env sigma (trm, typ) (*********************) (* *) let print_full_context ~mod_ops indirect_accessor env sigma = print_context ~mod_ops indirect_accessor env sigma true None (Lib.contents ()) let print_full_context_typ ~mod_ops indirect_accessor env sigma = print_context ~mod_ops indirect_accessor env sigma false None (Lib.contents ()) let print_full_pure_context ~mod_ops ~library_accessor env sigma = let rec prec = function | ((_,kn),Lib.Leaf AtomicObject lobj)::rest -> let pp = match object_tag lobj with | "CONSTANT" -> let con = Global.constant_of_delta_kn kn in let cb = Global.lookup_constant con in let typ = cb.const_type in hov 0 ( match cb.const_body with | Undef _ -> str "Parameter " ++ print_basename con ++ str " : " ++ cut () ++ pr_ltype_env env sigma typ | OpaqueDef lc -> str "Theorem " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype_env env sigma typ ++ str "." ++ fnl () ++ str "Proof " ++ pr_lconstr_env env sigma (fst (Opaqueproof.force_proof library_accessor (Global.opaque_tables ()) lc)) | Def c -> str "Definition " ++ print_basename con ++ cut () ++ str " : " ++ pr_ltype_env env sigma typ ++ cut () ++ str " := " ++ pr_lconstr_env env sigma (Mod_subst.force_constr c) | Primitive _ -> str "Primitive " ++ print_basename con ++ str " : " ++ cut () ++ pr_ltype_env env sigma typ) ++ str "." ++ fnl () ++ fnl () | "INDUCTIVE" -> let mind = Global.mind_of_delta_kn kn in let mib = Global.lookup_mind mind in pr_mutual_inductive_body (Global.env()) mind mib None ++ str "." ++ fnl () ++ fnl () | _ -> mt () in prec rest ++ pp | ((_,kn),Lib.Leaf ModuleObject _)::rest -> (* TODO: make it reparsable *) let (mp,l) = KerName.repr kn in prec rest ++ print_module ~mod_ops true (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | ((_,kn),Lib.Leaf ModuleTypeObject _)::rest -> (* TODO: make it reparsable *) let (mp,l) = KerName.repr kn in prec rest ++ print_modtype ~mod_ops (MPdot (mp,l)) ++ str "." ++ fnl () ++ fnl () | _::rest -> prec rest | _ -> mt () in prec (Lib.contents ()) (* For printing an inductive definition with its constructors and elimination, assume that the declaration of constructors and eliminations follows the definition of the inductive type *) (* This is designed to print the contents of an opened section *) let read_sec_context qid = let dir = try Nametab.locate_section qid with Not_found -> user_err ?loc:qid.loc ~hdr:"read_sec_context" (str "Unknown section.") in let rec get_cxt in_cxt = function | (_,Lib.OpenedSection ({Nametab.obj_dir;_},_) as hd)::rest -> if DirPath.equal dir obj_dir then (hd::in_cxt) else get_cxt (hd::in_cxt) rest | [] -> [] | hd::rest -> get_cxt (hd::in_cxt) rest in let cxt = Lib.contents () in List.rev (get_cxt [] cxt) let print_sec_context ~mod_ops indirect_accessor env sigma sec = print_context ~mod_ops indirect_accessor env sigma true None (read_sec_context sec) let print_sec_context_typ ~mod_ops indirect_accessor env sigma sec = print_context ~mod_ops indirect_accessor env sigma false None (read_sec_context sec) let maybe_error_reject_univ_decl na udecl = let open GlobRef in match na, udecl with | _, None | Term (ConstRef _ | IndRef _ | ConstructRef _), Some _ -> () | (Term (VarRef _) | Syntactic _ | Dir _ | ModuleType _ | Other _ | Undefined _), Some udecl -> (* TODO Print na somehow *) user_err ~hdr:"reject_univ_decl" (str "This object does not support universe names.") let print_any_name ~mod_ops indirect_accessor env sigma na udecl = maybe_error_reject_univ_decl na udecl; let open GlobRef in match na with | Term (ConstRef sp) -> print_constant_with_infos indirect_accessor sp udecl | Term (IndRef (sp,_)) -> print_inductive sp udecl | Term (ConstructRef ((sp,_),_)) -> print_inductive sp udecl | Term (VarRef sp) -> print_section_variable env sigma sp | Syntactic kn -> print_syntactic_def env kn | Dir (Nametab.GlobDirRef.DirModule Nametab.{ obj_dir; obj_mp; _ } ) -> print_module ~mod_ops (printable_body obj_dir) obj_mp | Dir _ -> mt () | ModuleType mp -> print_modtype ~mod_ops mp | Other (obj, info) -> info.print obj | Undefined qid -> try (* Var locale de but, pas var de section... donc pas d'implicits *) let dir,str = repr_qualid qid in if not (DirPath.is_empty dir) then raise Not_found; str |> Global.lookup_named |> print_named_decl env sigma with Not_found -> user_err ~hdr:"print_name" (pr_qualid qid ++ spc () ++ str "not a defined object.") let print_name ~mod_ops indirect_accessor env sigma na udecl = match na with | {loc; v=Constrexpr.ByNotation (ntn,sc)} -> print_any_name ~mod_ops indirect_accessor env sigma (Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true) ntn sc)) udecl | {loc; v=Constrexpr.AN ref} -> print_any_name ~mod_ops indirect_accessor env sigma (locate_any_name ref) udecl let print_opaque_name indirect_accessor env sigma qid = let open GlobRef in match Nametab.global qid with | ConstRef cst -> let cb = Global.lookup_constant cst in if Declareops.constant_has_body cb then print_constant_with_infos indirect_accessor cst None else user_err Pp.(str "Not a defined constant.") | IndRef (sp,_) -> print_inductive sp None | ConstructRef cstr as gr -> let ty, ctx = Typeops.type_of_global_in_context env gr in let ty = EConstr.of_constr ty in let open EConstr in print_typed_value_in_env env sigma (mkConstruct cstr, ty) | VarRef id -> env |> lookup_named id |> print_named_decl env sigma let print_about_any ?loc env sigma k udecl = maybe_error_reject_univ_decl k udecl; match k with | Term ref -> let rb = Reductionops.ReductionBehaviour.print ref in Dumpglob.add_glob ?loc ref; pr_infos_list (print_ref false ref udecl :: blankline :: print_polymorphism ref @ print_name_infos ref @ (if Pp.ismt rb then [] else [rb]) @ print_opacity ref @ print_bidi_hints ref @ [hov 0 (str "Expands to: " ++ pr_located_qualid k)]) | Syntactic kn -> let () = match Syntax_def.search_syntactic_definition kn with | [],Notation_term.NRef ref -> Dumpglob.add_glob ?loc ref | _ -> () in v 0 ( print_syntactic_def env kn ++ fnl () ++ hov 0 (str "Expands to: " ++ pr_located_qualid k)) | Dir _ | ModuleType _ | Undefined _ -> hov 0 (pr_located_qualid k) | Other (obj, info) -> hov 0 (info.about obj) let print_about env sigma na udecl = match na with | {loc;v=Constrexpr.ByNotation (ntn,sc)} -> print_about_any ?loc env sigma (Term (Notation.interp_notation_as_global_reference ?loc (fun _ -> true) ntn sc)) udecl | {loc;v=Constrexpr.AN ref} -> print_about_any ?loc env sigma (locate_any_name ref) udecl (* for debug *) let inspect ~mod_ops indirect_accessor env sigma depth = print_context ~mod_ops indirect_accessor env sigma false (Some depth) (Lib.contents ()) (*************************************************************************) (* Pretty-printing functions coming from classops.ml *) open Classops let print_coercion_value v = Printer.pr_global v.coe_value let print_class i = let cl,_ = class_info_from_index i in pr_class cl let print_path ((i,j),p) = hov 2 ( str"[" ++ hov 0 (prlist_with_sep pr_semicolon print_coercion_value p) ++ str"] : ") ++ print_class i ++ str" >-> " ++ print_class j let _ = Classops.install_path_printer print_path let print_graph () = prlist_with_sep fnl print_path (inheritance_graph()) let print_classes () = pr_sequence pr_class (classes()) let print_coercions () = pr_sequence print_coercion_value (coercions()) let index_of_class cl = try fst (class_info cl) with Not_found -> user_err ~hdr:"index_of_class" (pr_class cl ++ spc() ++ str "not a defined class.") let print_path_between cls clt = let i = index_of_class cls in let j = index_of_class clt in let p = try lookup_path_between_class (i,j) with Not_found -> user_err ~hdr:"index_cl_of_id" (str"No path between " ++ pr_class cls ++ str" and " ++ pr_class clt ++ str ".") in print_path ((i,j),p) let print_canonical_projections env sigma = prlist_with_sep fnl (fun ((r1,r2),o) -> pr_cs_pattern r2 ++ str " <- " ++ pr_global r1 ++ str " ( " ++ pr_lconstr_env env sigma o.o_DEF ++ str " )") (canonical_projections ()) (*************************************************************************) (*************************************************************************) (* Pretty-printing functions for type classes *) open Typeclasses let pr_typeclass env t = print_ref false t.cl_impl None let print_typeclasses () = let env = Global.env () in prlist_with_sep fnl (pr_typeclass env) (typeclasses ()) let pr_instance env i = (* gallina_print_constant_with_infos i.is_impl *) (* lighter *) print_ref false (instance_impl i) None ++ begin match hint_priority i with | None -> mt () | Some i -> spc () ++ str "|" ++ spc () ++ int i end let print_all_instances () = let env = Global.env () in let inst = all_instances () in prlist_with_sep fnl (pr_instance env) inst let print_instances r = let env = Global.env () in let sigma = Evd.from_env env in let inst = instances env sigma r in prlist_with_sep fnl (pr_instance env) inst