1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Declarations
open Term
open Constr
open Context
open Vars
open Environ
open Inductive
open Reduction
open Vmvalues
open Vm
open Context.Rel.Declaration

module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration

(*******************************************)
(* Calcul de la forme normal d'un terme    *)
(*******************************************)

let crazy_type =  mkSet

let decompose_prod env t =
  let (name,dom,codom) = destProd (whd_all env t) in
  let name = map_annot (function
  | Anonymous -> Name (Id.of_string "x")
  | Name _ as na -> na) name
  in
  (name,dom,codom)

exception Find_at of int

(* rend le numero du constructeur correspondant au tag [tag],
   [cst] = true si c'est un constructeur constant *)

let invert_tag cst tag reloc_tbl =
  try
    for j = 0 to Array.length reloc_tbl - 1 do
      let tagj,arity = reloc_tbl.(j) in
      let no_arity = Int.equal arity 0 in
      if Int.equal tag tagj && (cst && no_arity || not (cst || no_arity)) then
        raise (Find_at j)
      else ()
    done;raise Not_found
  with Find_at j -> (j+1)
             (* Argggg, ces constructeurs de ... qui commencent a 1*)

let find_rectype_a env c =
  let (t, l) = decompose_appvect (whd_all env c) in
  match kind t with
  | Ind ind -> (ind, l)
  | _ -> raise Not_found

(* Instantiate inductives and parameters in constructor type *)

let type_constructor mind mib u (ctx, typ) params =
  let typ = it_mkProd_or_LetIn typ ctx in
  let s = ind_subst mind mib u in
  let ctyp = substl s typ in
  let ctyp = subst_instance_constr u ctyp in
  let ndecls = Context.Rel.length mib.mind_params_ctxt in
  if Int.equal ndecls 0 then ctyp
  else
    let _,ctyp = decompose_prod_n_assum ndecls ctyp in
    substl (List.rev (adjust_subst_to_rel_context mib.mind_params_ctxt (Array.to_list params)))
      ctyp



let construct_of_constr const env tag typ =
  let (t, allargs) = decompose_appvect (whd_all env typ) in
  match Constr.kind t with
  | Ind ((mind,_ as ind), u as indu) ->
    let mib,mip = lookup_mind_specif env ind in
    let nparams = mib.mind_nparams in
    let i = invert_tag const tag mip.mind_reloc_tbl in
    let params = Array.sub allargs 0 nparams in
    let ctyp = type_constructor mind mib u (mip.mind_nf_lc.(i-1)) params in
    (mkApp(mkConstructUi(indu,i), params), ctyp)
  | _ ->
     assert (Constr.equal t (Typeops.type_of_int env));
      (mkInt (Uint63.of_int tag), t)

let construct_of_constr_const env tag typ =
  fst (construct_of_constr true env tag typ)

let construct_of_constr_block = construct_of_constr false

let type_of_ind env (ind, u) =
  type_of_inductive env (Inductive.lookup_mind_specif env ind, u)

let build_branches_type env sigma (mind,_ as _ind) mib mip u params p =
  let rtbl = mip.mind_reloc_tbl in
  (* [build_one_branch i cty] construit le type de la ieme branche (commence
     a 0) et les lambda correspondant aux realargs *)
  let build_one_branch i cty =
    let typi = type_constructor mind mib u cty params in
    let decl,indapp = Reductionops.splay_prod env sigma (EConstr.of_constr typi) in
    let decl = List.map (on_snd EConstr.Unsafe.to_constr) decl in
    let indapp = EConstr.Unsafe.to_constr indapp in
    let decl_with_letin,_ = decompose_prod_assum typi in
    let ((ind,u),cargs) = find_rectype_a env indapp in
    let nparams = Array.length params in
    let carity = snd (rtbl.(i)) in
    let crealargs = Array.sub cargs nparams (Array.length cargs - nparams) in
    let codom =
      let ndecl = List.length decl in
      let papp = mkApp(lift ndecl p,crealargs) in
      let cstr = ith_constructor_of_inductive ind (i+1) in
      let relargs = Array.init carity (fun i -> mkRel (carity-i)) in
      let params = Array.map (lift ndecl) params in
      let dep_cstr = mkApp(mkApp(mkConstructU (cstr,u),params),relargs) in
      mkApp(papp,[|dep_cstr|])
    in
    decl, decl_with_letin, codom
  in Array.mapi build_one_branch mip.mind_nf_lc

let build_case_type p realargs c =
  mkApp(mkApp(p, realargs), [|c|])

(* La fonction de normalisation *)

let rec nf_val env sigma v t = nf_whd env sigma (Vmvalues.whd_val v) t

and nf_vtype env sigma v =  nf_val env sigma v crazy_type

and nf_whd env sigma whd typ =
  match whd with
  | Vprod p ->
      let dom = nf_vtype env sigma (dom p) in
      let name = Name (Id.of_string "x") in
      let vc = reduce_fun (nb_rel env) (codom p) in
      let r = Retyping.relevance_of_type env sigma (EConstr.of_constr dom) in
      let name = make_annot name r in
      let codom = nf_vtype (push_rel (LocalAssum (name,dom)) env) sigma vc  in
      mkProd(name,dom,codom)
  | Vfun f -> nf_fun env sigma f typ
  | Vfix(f,None) -> nf_fix env sigma f
  | Vfix(f,Some vargs) -> fst (nf_fix_app env sigma f vargs)
  | Vcofix(cf,_,None) -> nf_cofix env sigma cf
  | Vcofix(cf,_,Some vargs) ->
      let cfd = nf_cofix env sigma cf in
      let i,(_,ta,_) = destCoFix cfd in
      let t = ta.(i) in
      let _, args = nf_args env sigma vargs t in
      mkApp(cfd,args)
  | Vconstr_const n ->
    construct_of_constr_const env n typ
  | Vconstr_block b ->
      let tag = btag b in
      let (tag,ofs) =
        if tag = Obj.last_non_constant_constructor_tag then
          match whd_val (bfield b 0) with
          | Vconstr_const tag -> (tag+Obj.last_non_constant_constructor_tag, 1)
          | _ -> assert false
        else (tag, 0) in
      let capp,ctyp = construct_of_constr_block env tag typ in
      let args = nf_bargs env sigma b ofs ctyp in
      mkApp(capp,args)
  | Vint64 i -> i |> Uint63.of_int64 |> mkInt
  | Vatom_stk(Aid idkey, stk) ->
      constr_type_of_idkey env sigma idkey stk
  | Vatom_stk(Aind ((mi,i) as ind), stk) ->
     let mib = Environ.lookup_mind mi env in
     let nb_univs =
       Univ.AUContext.size (Declareops.inductive_polymorphic_context mib)
     in
     let mk u =
       let pind = (ind, u) in (mkIndU pind, type_of_ind env pind)
     in
     nf_univ_args ~nb_univs mk env sigma stk
  | Vatom_stk(Asort s, stk) ->
    assert (List.is_empty stk); mkSort s
  | Vuniv_level lvl ->
    assert false

and nf_univ_args ~nb_univs mk env sigma stk =
  let u =
    if Int.equal nb_univs 0 then Univ.Instance.empty
    else match stk with
    | Zapp args :: _ ->
       let inst =
         Array.init nb_univs (fun i -> uni_lvl_val (arg args i))
       in
       Univ.Instance.of_array inst
    | _ -> assert false
  in
  let (t,ty) = mk u in
  nf_stk ~from:nb_univs env sigma t ty stk

and nf_evar env sigma evk stk =
  let evi = try Evd.find sigma evk with Not_found -> assert false in
  let hyps = Environ.named_context_of_val (Evd.evar_filtered_hyps evi) in
  let concl = EConstr.to_constr ~abort_on_undefined_evars:false sigma @@ Evd.evar_concl evi in
  if List.is_empty hyps then
    nf_stk env sigma (mkEvar (evk, [||])) concl stk
  else match stk with
  | Zapp args :: stk ->
    (* We assume that there is no consecutive Zapp nodes in a VM stack. Is that
       really an invariant? *)
    (* Let-bound arguments are present in the evar arguments but not in the
       type, so we turn the let into a product. *)
    let hyps = Context.Named.drop_bodies hyps in
    let fold accu d = Term.mkNamedProd_or_LetIn d accu in
    let t = List.fold_left fold concl hyps in
    let t, args = nf_args env sigma args t in
    let inst, args = Array.chop (List.length hyps) args in
    let c = mkApp (mkEvar (evk, inst), args) in
    nf_stk env sigma c t stk
  | _ ->
    CErrors.anomaly (Pp.str "Argument size mismatch when decompiling an evar")

and constr_type_of_idkey env sigma (idkey : Vmvalues.id_key) stk =
  match idkey with
  | ConstKey cst ->
     let cbody = Environ.lookup_constant cst env in
     let nb_univs =
       Univ.AUContext.size (Declareops.constant_polymorphic_context cbody)
     in
     let mk u =
       let pcst = (cst, u) in (mkConstU pcst, Typeops.type_of_constant_in env pcst)
     in
     nf_univ_args ~nb_univs mk env sigma stk
   | VarKey id ->
      let ty = NamedDecl.get_type (lookup_named id env) in
      nf_stk env sigma (mkVar id) ty stk
  | RelKey i ->
      let n = (nb_rel env - i) in
      let ty = RelDecl.get_type (lookup_rel n env) in
      nf_stk env sigma (mkRel n) (lift n ty) stk
  | EvarKey evk ->
      nf_evar env sigma evk stk

and nf_stk ?from:(from=0) env sigma c t stk  =
  match stk with
  | [] -> c
  | Zapp vargs :: stk ->
      if nargs vargs >= from then
        let t, args = nf_args ~from:from env sigma vargs t in
        nf_stk env sigma (mkApp(c,args)) t stk
      else
        let rest = from - nargs vargs in
        nf_stk ~from:rest env sigma c t stk
  | Zfix (f,vargs) :: stk ->
      assert (from = 0) ;
      let fa, typ = nf_fix_app env sigma f vargs in
      let _,_,codom = decompose_prod env typ in
      nf_stk env sigma (mkApp(fa,[|c|])) (subst1 c codom) stk
  | Zswitch sw :: stk ->
      assert (from = 0) ;
      let ((mind,_ as ind), u), allargs = find_rectype_a env t in
      let (mib,mip) = Inductive.lookup_mind_specif env ind in
      let nparams = mib.mind_nparams in
      let params,realargs = Util.Array.chop nparams allargs in
      let nparamdecls = Context.Rel.length (Inductive.inductive_paramdecls (mib,u)) in
      let pT =
        hnf_prod_applist_assum env nparamdecls (type_of_ind env (ind,u)) (Array.to_list params) in
      let p = nf_predicate env sigma (ind,u) mip params (type_of_switch sw) pT in
      (* Calcul du type des branches *)
      let btypes = build_branches_type env sigma ind mib mip u params p in
      (* calcul des branches *)
      let bsw = branch_of_switch (nb_rel env) sw in
      let mkbranch i (n,v) =
        let decl,decl_with_letin,codom = btypes.(i) in
        let b = nf_val (Termops.push_rels_assum decl env) sigma v codom in
        Termops.it_mkLambda_or_LetIn_from_no_LetIn b decl_with_letin
      in
      let branchs = Array.mapi mkbranch bsw in
      let tcase = build_case_type p realargs c in
      let ci = sw.sw_annot.Vmvalues.ci in
      nf_stk env sigma (mkCase(ci, p, c, branchs)) tcase stk
  | Zproj p :: stk ->
     assert (from = 0) ;
     let p' = Projection.make p true in
     let ty = Inductiveops.type_of_projection_knowing_arg env sigma p' (EConstr.of_constr c) (EConstr.of_constr t) in
     nf_stk env sigma (mkProj(p',c)) ty stk

and nf_predicate env sigma ind mip params v pT =
  match kind (whd_allnolet env pT) with
  | LetIn (name,b,t,pT) ->
      let body =
        nf_predicate (push_rel (LocalDef (name,b,t)) env) sigma ind mip params v pT in
      mkLetIn (name,b,t,body)
  | Prod (name,dom,codom) -> begin
    match whd_val v with
    | Vfun f ->
      let k = nb_rel env in
      let vb = reduce_fun k f in
      let body =
        nf_predicate (push_rel (LocalAssum (name,dom)) env) sigma ind mip params vb codom in
      mkLambda(name,dom,body)
    | _ -> assert false
    end
  | _ ->
    match whd_val v with
    | Vfun f ->
      let k = nb_rel env in
      let vb = reduce_fun k f in
      let name = Name (Id.of_string "c") in
      let n = mip.mind_nrealargs in
      let rargs = Array.init n (fun i -> mkRel (n-i)) in
      let params = if Int.equal n 0 then params else Array.map (lift n) params in
      let dom = mkApp(mkIndU ind,Array.append params rargs) in
      let r = Inductive.relevance_of_inductive env (fst ind) in
      let name = make_annot name r in
      let body = nf_vtype (push_rel (LocalAssum (name,dom)) env) sigma vb in
      mkLambda(name,dom,body)
    | _ -> assert false

and nf_args env sigma vargs ?from:(f=0) t =
  let t = ref t in
  let len = nargs vargs - f in
  let args =
    Array.init len
      (fun i ->
        let _,dom,codom = decompose_prod env !t in
        let c = nf_val env sigma (arg vargs (f+i)) dom in
        t := subst1 c codom; c) in
  !t,args

and nf_bargs env sigma b ofs t =
  let t = ref t in
  let len = bsize b - ofs in
  let args =
    Array.init len
      (fun i ->
        let _,dom,codom = decompose_prod env !t in
        let c = nf_val env sigma (bfield b (i+ofs)) dom in
        t := subst1 c codom; c) in
  args

and nf_fun env sigma f typ =
  let k = nb_rel env in
  let vb = reduce_fun k f in
  let name,dom,codom =
    try decompose_prod env typ
    with DestKO ->
      CErrors.anomaly
        Pp.(strbrk "Returned a functional value in type " ++
            Termops.Internal.print_constr_env env sigma (EConstr.of_constr typ))
  in
  let body = nf_val (push_rel (LocalAssum (name,dom)) env) sigma vb codom in
  mkLambda(name,dom,body)

and nf_fix env sigma f =
  let init = current_fix f in
  let rec_args = rec_args f in
  let k = nb_rel env in
  let vb, vt = reduce_fix k f in
  let ndef = Array.length vt in
  let ft = Array.map (fun v -> nf_val env sigma v crazy_type) vt in
  let name = Name (Id.of_string "Ffix") in
  let names = Array.map (fun t ->
      make_annot name @@
      Retyping.relevance_of_type env sigma (EConstr.of_constr t)) ft in
  (* Body argument of the tuple is ignored by push_rec_types *)
  let env = push_rec_types (names,ft,ft) env in
  (* We lift here because the types of arguments (in tt) will be evaluated
     in an environment where the fixpoints have been pushed *)
  let norm_vb v t = nf_fun env sigma v (lift ndef t) in
  let fb = Util.Array.map2 norm_vb vb ft in
  mkFix ((rec_args,init),(names,ft,fb))

and nf_fix_app env sigma f vargs =
  let fd = nf_fix env sigma f in
  let (_,i),(_,ta,_) = destFix fd in
  let t = ta.(i) in
  let t, args = nf_args env sigma vargs t in
  mkApp(fd,args),t

and nf_cofix env sigma cf =
  let init = current_cofix cf in
  let k = nb_rel env in
  let vb,vt = reduce_cofix k cf in
  let cft = Array.map (fun v -> nf_val env sigma v crazy_type) vt in
  let name = Name (Id.of_string "Fcofix") in
  let names = Array.map (fun t ->
      make_annot name @@
      Retyping.relevance_of_type env sigma (EConstr.of_constr t)) cft in
  let env = push_rec_types (names,cft,cft) env in
  let cfb = Util.Array.map2 (fun v t -> nf_val env sigma v t) vb cft in
  mkCoFix (init,(names,cft,cfb))

let cbv_vm env sigma c t  =
  if Termops.occur_meta sigma c then
    CErrors.user_err Pp.(str "vm_compute does not support metas.");
  (* This evar-normalizes terms beforehand *)
  let c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in
  let t = EConstr.to_constr ~abort_on_undefined_evars:false sigma t in
  let v = Csymtable.val_of_constr env c in
  EConstr.of_constr (nf_val env sigma v t)

let vm_infer_conv ?(pb=Reduction.CUMUL) env sigma t1 t2 =
  Reductionops.infer_conv_gen (fun pb ~l2r sigma ts -> Vconv.vm_conv_gen pb)
    ~catch_incon:true ~pb env sigma t1 t2

let _ = if Coq_config.bytecode_compiler then Reductionops.set_vm_infer_conv vm_infer_conv