1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open CErrors open Util open Term open Constr open Context open Environ open EConstr open Vars open Reductionops open Inductive open Inductiveops open Typeops open Arguments_renaming open Pretype_errors open Context.Rel.Declaration let meta_type evd mv = let ty = try Evd.meta_ftype evd mv with Not_found -> anomaly (str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in meta_instance evd ty let inductive_type_knowing_parameters env sigma (ind,u) jl = let u = Unsafe.to_instance u in let mspec = lookup_mind_specif env ind in let paramstyp = Array.map (fun j -> lazy (EConstr.to_constr ~abort_on_undefined_evars:false sigma j.uj_type)) jl in Inductive.type_of_inductive_knowing_parameters env (mspec,u) paramstyp let type_judgment env sigma j = match EConstr.kind sigma (whd_all env sigma j.uj_type) with | Sort s -> sigma, {utj_val = j.uj_val; utj_type = ESorts.kind sigma s } | Evar ev -> let (sigma,s) = Evardefine.define_evar_as_sort env sigma ev in sigma, { utj_val = j.uj_val; utj_type = s } | _ -> error_not_a_type env sigma j let assumption_of_judgment env sigma j = try let sigma, j = type_judgment env sigma j in sigma, j.utj_val with Type_errors.TypeError _ | PretypeError _ -> error_assumption env sigma j let judge_of_applied_inductive_knowing_parameters env sigma funj ind argjv = let rec apply_rec sigma n typ = function | [] -> sigma, { uj_val = mkApp (j_val funj, Array.map j_val argjv); uj_type = let ar = inductive_type_knowing_parameters env sigma ind argjv in hnf_prod_appvect env sigma (EConstr.of_constr ar) (Array.map j_val argjv) } | hj::restjl -> let sigma, (c1,c2) = match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_,c1,c2) -> sigma, (c1,c2) | Evar ev -> let (sigma,t) = Evardefine.define_evar_as_product env sigma ev in let (_,c1,c2) = destProd sigma t in sigma, (c1,c2) | _ -> error_cant_apply_not_functional env sigma funj argjv in begin match Evarconv.unify_leq_delay env sigma hj.uj_type c1 with | sigma -> apply_rec sigma (n+1) (subst1 hj.uj_val c2) restjl | exception Evarconv.UnableToUnify _ -> error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj argjv end in apply_rec sigma 1 funj.uj_type (Array.to_list argjv) let judge_of_apply env sigma funj argjv = let rec apply_rec sigma n typ = function | [] -> sigma, { uj_val = mkApp (j_val funj, Array.map j_val argjv); uj_type = typ } | hj::restjl -> let sigma, (c1,c2) = match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_,c1,c2) -> sigma, (c1,c2) | Evar ev -> let (sigma,t) = Evardefine.define_evar_as_product env sigma ev in let (_,c1,c2) = destProd sigma t in sigma, (c1,c2) | _ -> error_cant_apply_not_functional env sigma funj argjv in begin match Evarconv.unify_leq_delay env sigma hj.uj_type c1 with | sigma -> apply_rec sigma (n+1) (subst1 hj.uj_val c2) restjl | exception Evarconv.UnableToUnify _ -> error_cant_apply_bad_type env sigma (n, c1, hj.uj_type) funj argjv end in apply_rec sigma 1 funj.uj_type (Array.to_list argjv) let check_branch_types env sigma (ind,u) cj (lfj,explft) = if not (Int.equal (Array.length lfj) (Array.length explft)) then error_number_branches env sigma cj (Array.length explft); Array.fold_left2_i (fun i sigma lfj explft -> match Evarconv.unify_leq_delay env sigma lfj.uj_type explft with | sigma -> sigma | exception Evarconv.UnableToUnify _ -> error_ill_formed_branch env sigma cj.uj_val ((ind,i+1),u) lfj.uj_type explft) sigma lfj explft let max_sort l = if List.mem_f Sorts.family_equal InType l then InType else if List.mem_f Sorts.family_equal InSet l then InSet else InProp let is_correct_arity env sigma c pj ind specif params = let arsign = make_arity_signature env sigma true (make_ind_family (ind,params)) in let allowed_sorts = sorts_below (elim_sort specif) in let error () = Pretype_errors.error_elim_arity env sigma ind c pj None in let rec srec env sigma pt ar = let pt' = whd_all env sigma pt in match EConstr.kind sigma pt', ar with | Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' -> begin match Evarconv.unify_leq_delay env sigma a1 a1' with | exception Evarconv.UnableToUnify _ -> error () | sigma -> srec (push_rel (LocalAssum (na1,a1)) env) sigma t ar' end | Sort s, [] -> let s = ESorts.kind sigma s in if not (List.mem_f Sorts.family_equal (Sorts.family s) allowed_sorts) then error () else sigma, s | Evar (ev,_), [] -> let sigma, s = Evd.fresh_sort_in_family sigma (max_sort allowed_sorts) in let sigma = Evd.define ev (mkSort s) sigma in sigma, s | _, (LocalDef _ as d)::ar' -> srec (push_rel d env) sigma (lift 1 pt') ar' | _ -> error () in srec env sigma pj.uj_type (List.rev arsign) let lambda_applist_assum sigma n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Not enough arguments.") else match EConstr.kind sigma t, l with | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _ -> anomaly (Pp.str "Not enough lambda/let's.") in app n [] c l let type_case_branches env sigma (ind,largs) pj c = let specif = lookup_mind_specif env (fst ind) in let nparams = inductive_params specif in let (params,realargs) = List.chop nparams largs in let p = pj.uj_val in let params = List.map EConstr.Unsafe.to_constr params in let sigma, ps = is_correct_arity env sigma c pj ind specif params in let lc = build_branches_type ind specif params (EConstr.to_constr ~abort_on_undefined_evars:false sigma p) in let lc = Array.map EConstr.of_constr lc in let n = (snd specif).Declarations.mind_nrealdecls in let ty = whd_betaiota sigma (lambda_applist_assum sigma (n+1) p (realargs@[c])) in sigma, (lc, ty, Sorts.relevance_of_sort ps) let judge_of_case env sigma ci pj cj lfj = let ((ind, u), spec) = try find_mrectype env sigma cj.uj_type with Not_found -> error_case_not_inductive env sigma cj in let indspec = ((ind, EInstance.kind sigma u), spec) in let sigma, (bty,rslty,rci) = type_case_branches env sigma indspec pj cj.uj_val in let () = check_case_info env (fst indspec) rci ci in let sigma = check_branch_types env sigma (fst indspec) cj (lfj,bty) in sigma, { uj_val = mkCase (ci, pj.uj_val, cj.uj_val, Array.map j_val lfj); uj_type = rslty } let check_type_fixpoint ?loc env sigma lna lar vdefj = let lt = Array.length vdefj in assert (Int.equal (Array.length lar) lt); Array.fold_left2_i (fun i sigma defj ar -> match Evarconv.unify_leq_delay env sigma defj.uj_type (lift lt ar) with | sigma -> sigma | exception Evarconv.UnableToUnify _ -> error_ill_typed_rec_body ?loc env sigma i lna vdefj lar) sigma vdefj lar (* FIXME: might depend on the level of actual parameters!*) let check_allowed_sort env sigma ind c p = let specif = lookup_mind_specif env (fst ind) in let sorts = elim_sort specif in let pj = Retyping.get_judgment_of env sigma p in let _, s = splay_prod env sigma pj.uj_type in let ksort = match EConstr.kind sigma s with | Sort s -> Sorts.family (ESorts.kind sigma s) | _ -> error_elim_arity env sigma ind c pj None in if not (Sorts.family_leq ksort sorts) then let s = inductive_sort_family (snd specif) in error_elim_arity env sigma ind c pj (Some(sorts,ksort,s,Type_errors.error_elim_explain ksort s)) else Sorts.relevance_of_sort_family ksort let judge_of_cast env sigma cj k tj = let expected_type = tj.utj_val in match Evarconv.unify_leq_delay env sigma cj.uj_type expected_type with | exception Evarconv.UnableToUnify _ -> error_actual_type_core env sigma cj expected_type; | sigma -> sigma, { uj_val = mkCast (cj.uj_val, k, expected_type); uj_type = expected_type } let check_fix env sigma pfix = let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in let (idx, (ids, cs, ts)) = pfix in check_fix env (idx, (ids, Array.map inj cs, Array.map inj ts)) let check_cofix env sigma pcofix = let inj c = EConstr.to_constr sigma c in let (idx, (ids, cs, ts)) = pcofix in check_cofix env (idx, (ids, Array.map inj cs, Array.map inj ts)) (* The typing machine with universes and existential variables. *) let judge_of_sprop = { uj_val = EConstr.mkSProp; uj_type = EConstr.type1 } let judge_of_prop = { uj_val = EConstr.mkProp; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_set = { uj_val = EConstr.mkSet; uj_type = EConstr.mkSort Sorts.type1 } let judge_of_type u = let uu = Univ.Universe.super u in { uj_val = EConstr.mkType u; uj_type = EConstr.mkType uu } let judge_of_relative env v = Environ.on_judgment EConstr.of_constr (judge_of_relative env v) let judge_of_variable env id = Environ.on_judgment EConstr.of_constr (judge_of_variable env id) let judge_of_projection env sigma p cj = let pty = lookup_projection p env in let (ind,u), args = try find_mrectype env sigma cj.uj_type with Not_found -> error_case_not_inductive env sigma cj in let u = EInstance.kind sigma u in let ty = EConstr.of_constr (CVars.subst_instance_constr u pty) in let ty = substl (cj.uj_val :: List.rev args) ty in {uj_val = EConstr.mkProj (p,cj.uj_val); uj_type = ty} let judge_of_abstraction env name var j = let r = Sorts.relevance_of_sort var.utj_type in { uj_val = mkLambda (make_annot name r, var.utj_val, j.uj_val); uj_type = mkProd (make_annot name r, var.utj_val, j.uj_type) } let judge_of_product env name t1 t2 = let r = Sorts.relevance_of_sort t1.utj_type in let s = sort_of_product env t1.utj_type t2.utj_type in { uj_val = mkProd (make_annot name r, t1.utj_val, t2.utj_val); uj_type = mkSort s } let judge_of_letin env name defj typj j = let r = Sorts.relevance_of_sort typj.utj_type in { uj_val = mkLetIn (make_annot name r, defj.uj_val, typj.utj_val, j.uj_val) ; uj_type = subst1 defj.uj_val j.uj_type } let check_hyps_inclusion env sigma f x hyps = let evars = Evarutil.safe_evar_value sigma, Evd.universes sigma in let f x = EConstr.Unsafe.to_constr (f x) in Typeops.check_hyps_inclusion env ~evars f x hyps let type_of_constant env sigma (c,u) = let open Declarations in let cb = Environ.lookup_constant c env in let () = check_hyps_inclusion env sigma mkConstU (c,u) cb.const_hyps in let u = EInstance.kind sigma u in let ty, csts = Environ.constant_type env (c,u) in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (Names.GlobRef.ConstRef c))) let type_of_inductive env sigma (ind,u) = let open Declarations in let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let () = check_hyps_inclusion env sigma mkIndU (ind,u) mib.mind_hyps in let u = EInstance.kind sigma u in let ty, csts = Inductive.constrained_type_of_inductive env (specif,u) in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (Names.GlobRef.IndRef ind))) let type_of_constructor env sigma ((ind,_ as ctor),u) = let open Declarations in let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let () = check_hyps_inclusion env sigma mkIndU (ind,u) mib.mind_hyps in let u = EInstance.kind sigma u in let ty, csts = Inductive.constrained_type_of_constructor (ctor,u) specif in let sigma = Evd.add_constraints sigma csts in sigma, (EConstr.of_constr (rename_type ty (Names.GlobRef.ConstructRef ctor))) let judge_of_int env v = Environ.on_judgment EConstr.of_constr (judge_of_int env v) (* cstr must be in n.f. w.r.t. evars and execute returns a judgement where both the term and type are in n.f. *) let rec execute env sigma cstr = let cstr = whd_evar sigma cstr in match EConstr.kind sigma cstr with | Meta n -> sigma, { uj_val = cstr; uj_type = meta_type sigma n } | Evar ev -> let ty = EConstr.existential_type sigma ev in let sigma, jty = execute env sigma ty in let sigma, jty = assumption_of_judgment env sigma jty in sigma, { uj_val = cstr; uj_type = jty } | Rel n -> sigma, judge_of_relative env n | Var id -> sigma, judge_of_variable env id | Const c -> let sigma, ty = type_of_constant env sigma c in sigma, make_judge cstr ty | Ind ind -> let sigma, ty = type_of_inductive env sigma ind in sigma, make_judge cstr ty | Construct ctor -> let sigma, ty = type_of_constructor env sigma ctor in sigma, make_judge cstr ty | Case (ci,p,c,lf) -> let sigma, cj = execute env sigma c in let sigma, pj = execute env sigma p in let sigma, lfj = execute_array env sigma lf in judge_of_case env sigma ci pj cj lfj | Fix ((vn,i as vni),recdef) -> let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in let fix = (vni,recdef') in check_fix env sigma fix; sigma, make_judge (mkFix fix) tys.(i) | CoFix (i,recdef) -> let sigma, (_,tys,_ as recdef') = execute_recdef env sigma recdef in let cofix = (i,recdef') in check_cofix env sigma cofix; sigma, make_judge (mkCoFix cofix) tys.(i) | Sort s -> begin match ESorts.kind sigma s with | SProp -> if Environ.sprop_allowed env then sigma, judge_of_sprop else error_disallowed_sprop env sigma | Prop -> sigma, judge_of_prop | Set -> sigma, judge_of_set | Type u -> sigma, judge_of_type u end | Proj (p, c) -> let sigma, cj = execute env sigma c in sigma, judge_of_projection env sigma p cj | App (f,args) -> let sigma, jl = execute_array env sigma args in (match EConstr.kind sigma f with | Ind (ind, u) when EInstance.is_empty u && Environ.template_polymorphic_ind ind env -> let sigma, fj = execute env sigma f in judge_of_applied_inductive_knowing_parameters env sigma fj (ind, u) jl | _ -> (* No template polymorphism *) let sigma, fj = execute env sigma f in judge_of_apply env sigma fj jl) | Lambda (name,c1,c2) -> let sigma, j = execute env sigma c1 in let sigma, var = type_judgment env sigma j in let name = check_binder_annot var.utj_type name in let env1 = push_rel (LocalAssum (name, var.utj_val)) env in let sigma, j' = execute env1 sigma c2 in sigma, judge_of_abstraction env1 name.binder_name var j' | Prod (name,c1,c2) -> let sigma, j = execute env sigma c1 in let sigma, varj = type_judgment env sigma j in let name = check_binder_annot varj.utj_type name in let env1 = push_rel (LocalAssum (name, varj.utj_val)) env in let sigma, j' = execute env1 sigma c2 in let sigma, varj' = type_judgment env1 sigma j' in sigma, judge_of_product env name.binder_name varj varj' | LetIn (name,c1,c2,c3) -> let sigma, j1 = execute env sigma c1 in let sigma, j2 = execute env sigma c2 in let sigma, j2 = type_judgment env sigma j2 in let sigma, _ = judge_of_cast env sigma j1 DEFAULTcast j2 in let name = check_binder_annot j2.utj_type name in let env1 = push_rel (LocalDef (name, j1.uj_val, j2.utj_val)) env in let sigma, j3 = execute env1 sigma c3 in sigma, judge_of_letin env name.binder_name j1 j2 j3 | Cast (c,k,t) -> let sigma, cj = execute env sigma c in let sigma, tj = execute env sigma t in let sigma, tj = type_judgment env sigma tj in judge_of_cast env sigma cj k tj | Int i -> sigma, judge_of_int env i and execute_recdef env sigma (names,lar,vdef) = let sigma, larj = execute_array env sigma lar in let sigma, lara = Array.fold_left_map (assumption_of_judgment env) sigma larj in let env1 = push_rec_types (names,lara,vdef) env in let sigma, vdefj = execute_array env1 sigma vdef in let vdefv = Array.map j_val vdefj in let sigma = check_type_fixpoint env1 sigma names lara vdefj in sigma, (names,lara,vdefv) and execute_array env = Array.fold_left_map (execute env) let check env sigma c t = let sigma, j = execute env sigma c in match Evarconv.unify_leq_delay env sigma j.uj_type t with | exception Evarconv.UnableToUnify _ -> error_actual_type_core env sigma j t | sigma -> sigma (* Type of a constr *) let unsafe_type_of env sigma c = let sigma, j = execute env sigma c in j.uj_type (* Sort of a type *) let sort_of env sigma c = let sigma, j = execute env sigma c in let sigma, a = type_judgment env sigma j in sigma, a.utj_type (* Try to solve the existential variables by typing *) let type_of ?(refresh=false) env sigma c = let sigma, j = execute env sigma c in (* side-effect on evdref *) if refresh then Evarsolve.refresh_universes ~onlyalg:true (Some false) env sigma j.uj_type else sigma, j.uj_type let solve_evars env sigma c = let sigma, j = execute env sigma c in (* side-effect on evdref *) sigma, nf_evar sigma j.uj_val let _ = Evarconv.set_solve_evars (fun env sigma c -> solve_evars env sigma c)