1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Util
open Names
open Constr
open Context
open Libnames
open Globnames
open Termops
open Environ
open EConstr
open Vars
open Find_subterm
open Namegen
open CClosure
open Reductionops
open Cbv
open Patternops
open Locus

module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration

(* Errors *)

type reduction_tactic_error =
    InvalidAbstraction of env * Evd.evar_map * EConstr.constr * (env * Type_errors.type_error)

exception ReductionTacticError of reduction_tactic_error

(* Evaluable reference *)

exception Elimconst
exception Redelimination

let error_not_evaluable r =
  user_err ~hdr:"error_not_evaluable"
    (str "Cannot coerce" ++ spc () ++ Nametab.pr_global_env Id.Set.empty r ++
     spc () ++ str "to an evaluable reference.")

let is_evaluable_const env cst =
  is_transparent env (ConstKey cst) &&
    (evaluable_constant cst env || is_primitive env cst)

let is_evaluable_var env id =
  is_transparent env (VarKey id) && evaluable_named id env

let is_evaluable env = function
  | EvalConstRef cst -> is_evaluable_const env cst
  | EvalVarRef id -> is_evaluable_var env id

let value_of_evaluable_ref env evref u =
  match evref with
  | EvalConstRef con -> 
    let u = Unsafe.to_instance u in
    EConstr.of_constr (constant_value_in env (con, u))
  | EvalVarRef id -> env |> lookup_named id |> NamedDecl.get_value |> Option.get

let evaluable_of_global_reference env = function
  | GlobRef.ConstRef cst when is_evaluable_const env cst -> EvalConstRef cst
  | GlobRef.VarRef id when is_evaluable_var env id -> EvalVarRef id
  | r -> error_not_evaluable r

let global_of_evaluable_reference = function
  | EvalConstRef cst -> GlobRef.ConstRef cst
  | EvalVarRef id -> GlobRef.VarRef id

type evaluable_reference =
  | EvalConst of Constant.t
  | EvalVar of Id.t
  | EvalRel of int
  | EvalEvar of EConstr.existential

let evaluable_reference_eq sigma r1 r2 = match r1, r2 with
| EvalConst c1, EvalConst c2 -> Constant.equal c1 c2
| EvalVar id1, EvalVar id2 -> Id.equal id1 id2
| EvalRel i1, EvalRel i2 -> Int.equal i1 i2
| EvalEvar (e1, ctx1), EvalEvar (e2, ctx2) ->
  Evar.equal e1 e2 && Array.equal (EConstr.eq_constr sigma) ctx1 ctx2
| _ -> false

let mkEvalRef ref u =
  match ref with
  | EvalConst cst -> mkConstU (cst,u)
  | EvalVar id -> mkVar id
  | EvalRel n -> mkRel n
  | EvalEvar ev -> EConstr.mkEvar ev

let isEvalRef env sigma c = match EConstr.kind sigma c with
  | Const (sp,_) -> is_evaluable env (EvalConstRef sp)
  | Var id -> is_evaluable env (EvalVarRef id)
  | Rel _ | Evar _ -> true
  | _ -> false

let destEvalRefU sigma c = match EConstr.kind sigma c with
  | Const (cst,u) ->  EvalConst cst, u
  | Var id  -> (EvalVar id, EInstance.empty)
  | Rel n -> (EvalRel n, EInstance.empty)
  | Evar ev -> (EvalEvar ev, EInstance.empty)
  | _ -> anomaly (Pp.str "Not an unfoldable reference.")

let unsafe_reference_opt_value env sigma eval =
  match eval with
  | EvalConst cst ->
    (match (lookup_constant cst env).Declarations.const_body with 
    | Declarations.Def c -> Some (EConstr.of_constr (Mod_subst.force_constr c))
    | _ -> None)
  | EvalVar id ->
      env |> lookup_named id |> NamedDecl.get_value
  | EvalRel n ->
      env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
  | EvalEvar ev ->
    match EConstr.kind sigma (mkEvar ev) with
    | Evar _ -> None
    | c -> Some (EConstr.of_kind c)

let reference_opt_value env sigma eval u = 
  match eval with
  | EvalConst cst ->
    let u = EInstance.kind sigma u in
    Option.map EConstr.of_constr (constant_opt_value_in env (cst,u))
  | EvalVar id ->
      env |> lookup_named id |> NamedDecl.get_value
  | EvalRel n ->
      env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
  | EvalEvar ev ->
    match EConstr.kind sigma (mkEvar ev) with
    | Evar _ -> None
    | c -> Some (EConstr.of_kind c)

exception NotEvaluable
let reference_value env sigma c u =
  match reference_opt_value env sigma c u with
    | None -> raise NotEvaluable
    | Some d -> d

(************************************************************************)
(* Reduction of constants hiding a fixpoint (e.g. for "simpl" tactic).  *)
(* One reuses the name of the function after reduction of the fixpoint  *)

type constant_evaluation =
  | EliminationFix of int * int * (int * (int * constr) list * int)
  | EliminationMutualFix of
      int * evaluable_reference *
      ((int*evaluable_reference) option array *
       (int * (int * constr) list * int))
  | EliminationCases of int
  | EliminationProj of int
  | NotAnElimination

(* We use a cache registered as a global table *)

type frozen = constant_evaluation Cmap.t

let eval_table = Summary.ref (Cmap.empty : frozen) ~name:"evaluation"

(* [compute_consteval] determines whether c is an "elimination constant"

   either [yn:Tn]..[y1:T1](match yi with f1..fk end g1 ..gp)

   or     [yn:Tn]..[y1:T1](Fix(f|t) yi1..yip)
          with yi1..yip distinct variables among the yi, not occurring in t

   In the second case, [check_fix_reversibility [T1;...;Tn] args fix]
   checks that [args] is a subset of disjoint variables in y1..yn (a necessary
   condition for reversibility). It also returns the relevant
   information ([i1,Ti1;..;ip,Tip],n) in order to compute an
   equivalent of Fix(f|t) such that

   g := [xp:Tip']..[x1:Ti1'](f a1..an)
     == [xp:Tip']..[x1:Ti1'](Fix(f|t) yi1..yip)

   with a_k:=y_k if k<>i_j, a_k:=args_k otherwise, and
   Tij':=Tij[x1..xi(j-1) <- a1..ai(j-1)]

   Note that the types Tk, when no i_j=k, must not be dependent on
   the xp..x1.
*)

let check_fix_reversibility sigma labs args ((lv,i),(_,tys,bds)) =
  let n = List.length labs in
  let nargs = List.length args in
  if nargs > n then raise Elimconst;
  let nbfix = Array.length bds in
  let li =
    List.map
      (function d -> match EConstr.kind sigma d with
         | Rel k ->
             if
               Array.for_all (Vars.noccurn sigma k) tys
               && Array.for_all (Vars.noccurn sigma (k+nbfix)) bds
               && k <= n
             then
               (k, List.nth labs (k-1))
             else
               raise Elimconst
         | _ ->
             raise Elimconst) args
  in
  let reversible_rels = List.map fst li in
  if not (List.distinct_f Int.compare reversible_rels) then
    raise Elimconst;
  List.iteri (fun i t_i ->
    if not (Int.List.mem_assoc (i+1) li) then
      let fvs = List.map ((+) (i+1)) (Int.Set.elements (free_rels sigma t_i)) in
      match List.intersect Int.equal fvs reversible_rels with
      | [] -> ()
      | _ -> raise Elimconst)
    labs;
  let k = lv.(i) in
  if k < nargs then
(*  Such an optimisation would need eta-expansion
      let p = destRel (List.nth args k) in
      EliminationFix (n-p+1,(nbfix,li,n))
*)
    EliminationFix (n,nargs,(nbfix,li,n))
  else
    EliminationFix (n-nargs+k+1,nargs,(nbfix,li,n))

(* Heuristic to look if global names are associated to other
   components of a mutual fixpoint *)

let invert_name labs l {binder_name=na0} env sigma ref na =
  match na.binder_name with
  | Name id ->
      let minfxargs = List.length l in
      begin match na0 with
      | Name id' when Id.equal id' id ->
        Some (minfxargs,ref)
      | _ ->
        let refi = match ref with
          | EvalRel _ | EvalEvar _ -> None
          | EvalVar id' -> Some (EvalVar id)
          | EvalConst kn ->
            let kn = Constant.change_label kn (Label.of_id id) in
            if Environ.mem_constant kn env then Some (EvalConst kn) else None
        in
        match refi with
          | None -> None
          | Some ref ->
              try match unsafe_reference_opt_value env sigma ref with
                | None -> None
                | Some c ->
                    let labs',ccl = decompose_lam sigma c in
                    let _, l' = whd_betalet_stack sigma ccl in
                    let labs' = List.map snd labs' in
                    (* ppedrot: there used to be generic equality on terms here *)
                    let eq_constr c1 c2 = EConstr.eq_constr sigma c1 c2 in
                    if List.equal eq_constr labs' labs &&
                       List.equal eq_constr l l' then Some (minfxargs,ref)
                    else None
              with Not_found (* Undefined ref *) -> None
      end
  | Anonymous -> None (* Actually, should not occur *)

(* [compute_consteval_direct] expand all constant in a whole, but
   [compute_consteval_mutual_fix] only one by one, until finding the
   last one before the Fix if the latter is mutually defined *)

let compute_consteval_direct env sigma ref =
  let rec srec env n labs onlyproj c =
    let c',l = whd_betadeltazeta_stack env sigma c in
    match EConstr.kind sigma c' with
      | Lambda (id,t,g) when List.is_empty l && not onlyproj ->
          let open Context.Rel.Declaration in
          srec (push_rel (LocalAssum (id,t)) env) (n+1) (t::labs) onlyproj g
      | Fix fix when not onlyproj ->
          (try check_fix_reversibility sigma labs l fix
          with Elimconst -> NotAnElimination)
      | Case (_,_,d,_) when isRel sigma d && not onlyproj -> EliminationCases n
      | Case (_,_,d,_) -> srec env n labs true d
      | Proj (p, d) when isRel sigma d -> EliminationProj n
      | _ -> NotAnElimination
  in
  match unsafe_reference_opt_value env sigma ref with
    | None -> NotAnElimination
    | Some c -> srec env 0 [] false c

let compute_consteval_mutual_fix env sigma ref =
  let rec srec env minarg labs ref c =
    let c',l = whd_betalet_stack sigma c in
    let nargs = List.length l in
    match EConstr.kind sigma c' with
      | Lambda (na,t,g) when List.is_empty l ->
          let open Context.Rel.Declaration in
          srec (push_rel (LocalAssum (na,t)) env) (minarg+1) (t::labs) ref g
      | Fix ((lv,i),(names,_,_)) ->
          (* Last known constant wrapping Fix is ref = [labs](Fix l) *)
          (match compute_consteval_direct env sigma ref with
             | NotAnElimination -> (*Above const was eliminable but this not!*)
                 NotAnElimination
             | EliminationFix (minarg',minfxargs,infos) ->
                 let refs =
                   Array.map
                     (invert_name labs l names.(i) env sigma ref) names in
                 let new_minarg = max (minarg'+minarg-nargs) minarg' in
                 EliminationMutualFix (new_minarg,ref,(refs,infos))
             | _ -> assert false)
      | _ when isEvalRef env sigma c' ->
          (* Forget all \'s and args and do as if we had started with c' *)
          let ref,_ = destEvalRefU sigma c' in
          (match unsafe_reference_opt_value env sigma ref with
            | None -> anomaly (Pp.str "Should have been trapped by compute_direct.")
            | Some c -> srec env (minarg-nargs) [] ref c)
      | _ -> (* Should not occur *) NotAnElimination
  in
  match unsafe_reference_opt_value env sigma ref with
    | None -> (* Should not occur *) NotAnElimination
    | Some c -> srec env 0 [] ref c

let compute_consteval env sigma ref =
  match compute_consteval_direct env sigma ref with
    | EliminationFix (_,_,(nbfix,_,_)) when not (Int.equal nbfix 1) ->
        compute_consteval_mutual_fix env sigma ref
    | elim -> elim

let reference_eval env sigma = function
  | EvalConst cst as ref ->
      (try
         Cmap.find cst !eval_table
       with Not_found -> begin
         let v = compute_consteval env sigma ref in
         eval_table := Cmap.add cst v !eval_table;
         v
       end)
  | ref -> compute_consteval env sigma ref

(* If f is bound to EliminationFix (n',infos), then n' is the minimal
   number of args for starting the reduction and infos is
   (nbfix,[(yi1,Ti1);...;(yip,Tip)],n) indicating that f converts
   to some [y1:T1,...,yn:Tn](Fix(..) yip .. yi1) where the y_{i_j} consist in a
   disjoint subset of the yi, i.e. 1 <= ij <= n and the ij are disjoint (in
   particular, p <= n).

   f is applied to largs := arg1 .. argn and we need for recursive
   calls to build the function

      g := [xp:Tip',...,x1:Ti1'](f a1 ... an)

   s.t. (g u1 ... up) reduces to (Fix(..) u1 ... up)

   This is made possible by setting
      a_k:=x_j    if k=i_j for some j
      a_k:=arg_k  otherwise

   The type Tij' is Tij[yi(j-1)..y1 <- ai(j-1)..a1]
*)

let x = Name default_dependent_ident

let make_elim_fun (names,(nbfix,lv,n)) u largs =
  let lu = List.firstn n largs in
  let p = List.length lv in
  let lyi = List.map fst lv in
  let la =
    List.map_i (fun q aq ->
      (* k from the comment is q+1 *)
      try mkRel (p+1-(List.index Int.equal (n-q) lyi))
      with Not_found -> aq)
      0 (List.map (Vars.lift p) lu)
  in
  fun i ->
    match names.(i) with
      | None -> None
      | Some (minargs,ref) ->
          let body = applist (mkEvalRef ref u, la) in
          let g =
            List.fold_left_i (fun q (* j = n+1-q *) c (ij,tij) ->
              let subst = List.map (Vars.lift (-q)) (List.firstn (n-ij) la) in
              let tij' = Vars.substl (List.rev subst) tij in
              let x = make_annot x Sorts.Relevant in  (* TODO relevance *)
              mkLambda (x,tij',c)) 1 body (List.rev lv)
          in Some (minargs,g)

(* [f] is convertible to [Fix(recindices,bodynum),bodyvect)]:
   do so that the reduction uses this extra information *)

let dummy = mkProp
let vfx = Id.of_string "_expanded_fix_"
let vfun = Id.of_string "_eliminator_function_"
let venv = let open Context.Named.Declaration in
  val_of_named_context [LocalAssum (make_annot vfx Sorts.Relevant, dummy);
                        LocalAssum (make_annot vfun Sorts.Relevant, dummy)]

(* Mark every occurrence of substituted vars (associated to a function)
   as a problem variable: an evar that can be instantiated either by
   vfx (expanded fixpoint) or vfun (named function). *)
let substl_with_function subst sigma constr =
  let evd = ref sigma in
  let minargs = ref Evar.Map.empty in
  let v = Array.of_list subst in
  let rec subst_total k c = match EConstr.kind sigma c with
  | Rel i when k < i ->
    if i <= k + Array.length v then
      match v.(i-k-1) with
      | (fx, Some (min, ref)) ->
        let sigma = !evd in
        let (sigma, evk) = Evarutil.new_pure_evar venv sigma dummy in
        evd := sigma;
        minargs := Evar.Map.add evk min !minargs;
        Vars.lift k (mkEvar (evk, [|fx;ref|]))
      | (fx, None) -> Vars.lift k fx
    else mkRel (i - Array.length v)
  | _ ->
    map_with_binders sigma succ subst_total k c in
  let c = subst_total 0 constr in
  (c, !evd, !minargs)

exception Partial

(* each problem variable that cannot be made totally applied even by
   reduction is solved by the expanded fix term. *)
let solve_arity_problem env sigma fxminargs c =
  let evm = ref sigma in
  let set_fix i = evm := Evd.define i (mkVar vfx) !evm in
  let rec check strict c =
    let c' = whd_betaiotazeta sigma c in
    let (h,rcargs) = decompose_app_vect sigma c' in
    match EConstr.kind sigma h with
        Evar(i,_) when Evar.Map.mem i fxminargs && not (Evd.is_defined !evm i) ->
          let minargs = Evar.Map.find i fxminargs in
          if Array.length rcargs < minargs then
            if strict then set_fix i
            else raise Partial;
          Array.iter (check strict) rcargs
      | (Var _|Const _) when isEvalRef env sigma h ->
          (let ev, u = destEvalRefU sigma h in
             match reference_opt_value env sigma ev u with
             | Some h' ->
                let bak = !evm in
                (try Array.iter (check false) rcargs
                with Partial ->
                  evm := bak;
                  check strict (mkApp(h',rcargs)))
            | None -> Array.iter (check strict) rcargs)
      | _ -> EConstr.iter sigma (check strict) c' in
  check true c;
  !evm

let substl_checking_arity env subst sigma c =
  (* we initialize the problem: *)
  let body,sigma,minargs = substl_with_function subst sigma c in
  (* we collect arity constraints *)
  let sigma' = solve_arity_problem env sigma minargs body in
  (* we propagate the constraints: solved problems are substituted;
     the other ones are replaced by the function symbol *)
  let rec nf_fix c = match EConstr.kind sigma c with
  | Evar (i,[|fx;f|]) when Evar.Map.mem i minargs ->
    (* FIXME: find a less hackish way of doing this *)
    begin match EConstr.kind sigma' c with
    | Evar _ -> f
    | c -> EConstr.of_kind c
    end
  | _ -> EConstr.map sigma nf_fix c
  in
  nf_fix body

type fix_reduction_result = NotReducible | Reduced of (constr * constr list)

let reduce_fix whdfun sigma fix stack =
  match fix_recarg fix (Stack.append_app_list stack Stack.empty) with
    | None -> NotReducible
    | Some (recargnum,recarg) ->
        let (recarg'hd,_ as recarg') = whdfun sigma recarg in
        let stack' = List.assign stack recargnum (applist recarg') in
        (match EConstr.kind sigma recarg'hd with
           | Construct _ -> Reduced (contract_fix sigma fix, stack')
           | _ -> NotReducible)

let contract_fix_use_function env sigma f
  ((recindices,bodynum),(_names,_types,bodies as typedbodies)) =
  let nbodies = Array.length recindices in
  let make_Fi j = (mkFix((recindices,j),typedbodies), f j) in
  let lbodies = List.init nbodies make_Fi in
  substl_checking_arity env (List.rev lbodies) sigma (nf_beta env sigma bodies.(bodynum))

let reduce_fix_use_function env sigma f whfun fix stack =
  match fix_recarg fix (Stack.append_app_list stack Stack.empty) with
    | None -> NotReducible
    | Some (recargnum,recarg) ->
        let (recarg'hd,_ as recarg') =
          if EConstr.isRel sigma recarg then
            (* The recarg cannot be a local def, no worry about the right env *)
            (recarg, [])
          else
            whfun recarg in
        let stack' = List.assign stack recargnum (applist recarg') in
        (match EConstr.kind sigma recarg'hd with
           | Construct _ ->
               Reduced (contract_fix_use_function env sigma f fix,stack')
           | _ -> NotReducible)

let contract_cofix_use_function env sigma f
  (bodynum,(_names,_,bodies as typedbodies)) =
  let nbodies = Array.length bodies in
  let make_Fi j = (mkCoFix(j,typedbodies), f j) in
  let subbodies = List.init nbodies make_Fi in
  substl_checking_arity env (List.rev subbodies)
    sigma (nf_beta env sigma bodies.(bodynum))

let reduce_mind_case_use_function func env sigma mia =
  match EConstr.kind sigma mia.mconstr with
    | Construct ((ind_sp,i),u) ->
        let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in
        applist (mia.mlf.(i-1), real_cargs)
    | CoFix (bodynum,(names,_,_) as cofix) ->
        let build_cofix_name =
          if isConst sigma func then
            let minargs = List.length mia.mcargs in
            fun i ->
              if Int.equal i bodynum then Some (minargs,func)
              else match names.(i).binder_name with
                | Anonymous -> None
                | Name id ->
                    (* In case of a call to another component of a block of
                       mutual inductive, try to reuse the global name if
                       the block was indeed initially built as a global
                       definition *)
                    let (kn, u) = destConst sigma func in
                    let kn = Constant.change_label kn (Label.of_id id) in
                    let cst = (kn, EInstance.kind sigma u) in
                    try match constant_opt_value_in env cst with
                      | None -> None
                          (* TODO: check kn is correct *)
                      | Some _ -> Some (minargs,mkConstU (kn, u))
                    with Not_found -> None
          else
            fun _ -> None in
        let cofix_def =
          contract_cofix_use_function env sigma build_cofix_name cofix in
        mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
    | _ -> assert false


let match_eval_ref env sigma constr stack =
  match EConstr.kind sigma constr with
  | Const (sp, u) ->
     reduction_effect_hook env sigma sp
        (lazy (EConstr.to_constr sigma (applist (constr,stack))));
     if is_evaluable env (EvalConstRef sp) then Some (EvalConst sp, u) else None
  | Var id when is_evaluable env (EvalVarRef id) -> Some (EvalVar id, EInstance.empty)
  | Rel i -> Some (EvalRel i, EInstance.empty)
  | Evar ev -> Some (EvalEvar ev, EInstance.empty)
  | _ -> None

let match_eval_ref_value env sigma constr stack =
  match EConstr.kind sigma constr with
  | Const (sp, u) ->
     reduction_effect_hook env sigma sp
        (lazy (EConstr.to_constr sigma (applist (constr,stack))));
    if is_evaluable env (EvalConstRef sp) then
      let u = EInstance.kind sigma u in
      Some (EConstr.of_constr (constant_value_in env (sp, u)))
    else
      None
  | Proj (p, c) when not (Projection.unfolded p) ->
     if is_evaluable env (EvalConstRef (Projection.constant p)) then
       Some (mkProj (Projection.unfold p, c))
     else None
  | Var id when is_evaluable env (EvalVarRef id) -> 
     env |> lookup_named id |> NamedDecl.get_value
  | Rel n ->
     env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n)
  | _ -> None

let special_red_case env sigma whfun (ci, p, c, lf) =
  let rec redrec s =
    let (constr, cargs) = whfun s in
    match match_eval_ref env sigma constr cargs with
    | Some (ref, u) ->
      (match reference_opt_value env sigma ref u with
      | None -> raise Redelimination
      | Some gvalue ->
        if reducible_mind_case sigma gvalue then
          reduce_mind_case_use_function constr env sigma
          {mP=p; mconstr=gvalue; mcargs=cargs;
           mci=ci; mlf=lf}
        else
          redrec (applist(gvalue, cargs)))
    | None ->
      if reducible_mind_case sigma constr then
        reduce_mind_case sigma
          {mP=p; mconstr=constr; mcargs=cargs;
          mci=ci; mlf=lf}
      else
        raise Redelimination
  in
  redrec c

let recargs = function
  | EvalVar _ | EvalRel _ | EvalEvar _ -> None
  | EvalConst c -> ReductionBehaviour.get (GlobRef.ConstRef c)

let reduce_projection env sigma p ~npars (recarg'hd,stack') stack =
  (match EConstr.kind sigma recarg'hd with
  | Construct _ -> 
    let proj_narg = npars + Projection.arg p in
    Reduced (List.nth stack' proj_narg, stack)
  | _ -> NotReducible)

let reduce_proj env sigma whfun whfun' c =
  let rec redrec s =
    match EConstr.kind sigma s with
    | Proj (proj, c) -> 
      let c' = try redrec c with Redelimination -> c in
      let constr, cargs = whfun c' in
        (match EConstr.kind sigma constr with
        | Construct _ -> 
          let proj_narg = Projection.npars proj + Projection.arg proj in
          List.nth cargs proj_narg
        | _ -> raise Redelimination)
    | Case (n,p,c,brs) -> 
      let c' = redrec c in
      let p = (n,p,c',brs) in
        (try special_red_case env sigma whfun' p
         with Redelimination -> mkCase p)
    | _ -> raise Redelimination
  in redrec c

let whd_nothing_for_iota env sigma s =
  let rec whrec (x, stack as s) =
    match EConstr.kind sigma x with
      | Rel n ->
          let open Context.Rel.Declaration in
          (match lookup_rel n env with
             | LocalDef (_,body,_) -> whrec (lift n body, stack)
             | _ -> s)
      | Var id ->
          let open Context.Named.Declaration in
          (match lookup_named id env with
             | LocalDef (_,body,_) -> whrec (body, stack)
             | _ -> s)
      | Evar ev -> s
      | Meta ev ->
        (try whrec (Evd.meta_value sigma ev, stack)
        with Not_found -> s)
      | Const (const, u) ->
          let u = EInstance.kind sigma u in
          (match constant_opt_value_in env (const, u) with
             | Some  body -> whrec (EConstr.of_constr body, stack)
             | None -> s)
      | LetIn (_,b,_,c) -> stacklam whrec [b] sigma c stack
      | Cast (c,_,_) -> whrec (c, stack)
      | App (f,cl)  -> whrec (f, Stack.append_app cl stack)
      | Lambda (na,t,c) ->
          (match Stack.decomp stack with
             | Some (a,m) -> stacklam whrec [a] sigma c m
             | _ -> s)

      | x -> s
  in
  EConstr.decompose_app sigma (Stack.zip sigma (whrec (s,Stack.empty)))

(* [red_elim_const] contracts iota/fix/cofix redexes hidden behind
   constants by keeping the name of the constants in the recursive calls;
   it fails if no redex is around *)

let rec red_elim_const env sigma ref u largs =
  let open ReductionBehaviour in
  let nargs = List.length largs in
  let largs, unfold_anyway, unfold_nonelim, nocase =
    match recargs ref with
    | None -> largs, false, false, false
    | Some NeverUnfold -> raise Redelimination
    | Some (UnfoldWhen { nargs = Some n } | UnfoldWhenNoMatch { nargs = Some n })
      when nargs < n -> raise Redelimination
    | Some (UnfoldWhen { recargs = x::l } | UnfoldWhenNoMatch { recargs = x::l })
      when nargs <= List.fold_left max x l -> raise Redelimination
    | Some (UnfoldWhen { recargs; nargs = None }) ->
      reduce_params env sigma largs recargs,
      false,
      false,
      false
    | Some (UnfoldWhenNoMatch { recargs; nargs = None }) ->
      reduce_params env sigma largs recargs,
      false,
      false,
      true
    | Some (UnfoldWhen { recargs; nargs = Some n }) ->
      let is_empty = List.is_empty recargs in
      reduce_params env sigma largs recargs,
      is_empty && nargs >= n,
      not is_empty && nargs >= n,
      false
    | Some (UnfoldWhenNoMatch { recargs; nargs = Some n }) ->
      let is_empty = List.is_empty recargs in
      reduce_params env sigma largs recargs,
      is_empty && nargs >= n,
      not is_empty && nargs >= n,
      true
  in
  try match reference_eval env sigma ref with
    | EliminationCases n when nargs >= n ->
        let c = reference_value env sigma ref u in
        let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
        let whfun = whd_simpl_stack env sigma in
        (special_red_case env sigma whfun (EConstr.destCase sigma c'), lrest), nocase
    | EliminationProj n when nargs >= n ->
        let c = reference_value env sigma ref u in
        let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
        let whfun = whd_construct_stack env sigma in
        let whfun' = whd_simpl_stack env sigma in
          (reduce_proj env sigma whfun whfun' c', lrest), nocase
    | EliminationFix (min,minfxargs,infos) when nargs >= min ->
        let c = reference_value env sigma ref u in
        let d, lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in
        let f = make_elim_fun ([|Some (minfxargs,ref)|],infos) u largs in
        let whfun = whd_construct_stack env sigma in
        (match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with
           | NotReducible -> raise Redelimination
           | Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase)
    | EliminationMutualFix (min,refgoal,refinfos) when nargs >= min ->
        let rec descend (ref,u) args =
          let c = reference_value env sigma ref u in
          if evaluable_reference_eq sigma ref refgoal then
            (c,args)
          else
            let c', lrest = whd_betalet_stack sigma (applist(c,args)) in
            descend (destEvalRefU sigma c') lrest in
        let (_, midargs as s) = descend (ref,u) largs in
        let d, lrest = whd_nothing_for_iota env sigma (applist s) in
        let f = make_elim_fun refinfos u midargs in
        let whfun = whd_construct_stack env sigma in
        (match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with
           | NotReducible -> raise Redelimination
           | Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase)
    | NotAnElimination when unfold_nonelim ->
         let c = reference_value env sigma ref u in
           (whd_betaiotazeta sigma (applist (c, largs)), []), nocase
    | _ -> raise Redelimination
    with Redelimination when unfold_anyway ->
       let c = reference_value env sigma ref u in
         (whd_betaiotazeta sigma (applist (c, largs)), []), nocase

and reduce_params env sigma stack l =
  let len = List.length stack in
    List.fold_left (fun stack i ->
      if len <= i then raise Redelimination
      else
        let arg = List.nth stack i in
        let rarg = whd_construct_stack env sigma arg in
          match EConstr.kind sigma (fst rarg) with
          | Construct _ -> List.assign stack i (applist rarg)
          | _ -> raise Redelimination)
      stack l
    

(* reduce to whd normal form or to an applied constant that does not hide
   a reducible iota/fix/cofix redex (the "simpl" tactic) *)

and whd_simpl_stack env sigma =
  let open ReductionBehaviour in
  let rec redrec s =
    let (x, stack) = decompose_app_vect sigma s in
    let stack = Array.to_list stack in
    let s' = (x, stack) in
    match EConstr.kind sigma x with
      | Lambda (na,t,c) ->
          (match stack with
             | [] -> s'
             | a :: rest -> redrec (beta_applist sigma (x, stack)))
      | LetIn (n,b,t,c) -> redrec (applist (Vars.substl [b] c, stack))
      | App (f,cl) -> redrec (applist(f, (Array.to_list cl)@stack))
      | Cast (c,_,_) -> redrec (applist(c, stack))
      | Case (ci,p,c,lf) ->
          (try
            redrec (applist(special_red_case env sigma redrec (ci,p,c,lf), stack))
          with
              Redelimination -> s')
      | Fix fix ->
          (try match reduce_fix (whd_construct_stack env) sigma fix stack with
            | Reduced s' -> redrec (applist s')
            | NotReducible -> s'
          with Redelimination -> s')

      | Proj (p, c) ->
        (try
           let unf = Projection.unfolded p in
           if unf || is_evaluable env (EvalConstRef (Projection.constant p)) then
             let npars = Projection.npars p in
             (match unf, get (GlobRef.ConstRef (Projection.constant p)) with
              | false, Some NeverUnfold -> s'
              | false, Some (UnfoldWhen { recargs } | UnfoldWhenNoMatch { recargs })
                when not (List.is_empty recargs) ->
                let l' = List.map_filter (fun i ->
                    let idx = (i - (npars + 1)) in
                    if idx < 0 then None else Some idx) recargs in
                let stack = reduce_params env sigma stack l' in
                (match reduce_projection env sigma p ~npars
                         (whd_construct_stack env sigma c) stack
                 with
                 | Reduced s' -> redrec (applist s')
                 | NotReducible -> s')
              | _ ->
                match reduce_projection env sigma p ~npars (whd_construct_stack env sigma c) stack with
                | Reduced s' -> redrec (applist s')
                            | NotReducible -> s')
                 else s'
               with Redelimination -> s')

      | _ -> 
        match match_eval_ref env sigma x stack with
        | Some (ref, u) ->
          (try
             let sapp, nocase = red_elim_const env sigma ref u stack in
             let hd, _ as s'' = redrec (applist(sapp)) in
             let rec is_case x = match EConstr.kind sigma x with
               | Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x
               | App (hd, _) -> is_case hd
               | Case _ -> true
               | _ -> false in
               if nocase && is_case hd then raise Redelimination
               else s''
           with Redelimination -> s')
        | None -> s'
  in
  redrec

(* reduce until finding an applied constructor or fail *)

and whd_construct_stack env sigma s =
  let (constr, cargs as s') = whd_simpl_stack env sigma s in
  if reducible_mind_case sigma constr then s'
  else match match_eval_ref env sigma constr cargs with
  | Some (ref, u) ->
    (match reference_opt_value env sigma ref u with
    | None -> raise Redelimination
    | Some gvalue -> whd_construct_stack env sigma (applist(gvalue, cargs)))
  | _ -> raise Redelimination

(************************************************************************)
(*            Special Purpose Reduction Strategies                     *)

(* Red reduction tactic: one step of delta reduction + full
   beta-iota-fix-cofix-zeta-cast at the head of the conclusion of a
   sequence of products; fails if no delta redex is around
*)

let try_red_product env sigma c =
  let simpfun c = clos_norm_flags betaiotazeta env sigma c in
  let rec redrec env x =
    let x = whd_betaiota sigma x in
    match EConstr.kind sigma x with
      | App (f,l) ->
          (match EConstr.kind sigma f with
             | Fix fix ->
                 let stack = Stack.append_app l Stack.empty in
                 (match fix_recarg fix stack with
                    | None -> raise Redelimination
                    | Some (recargnum,recarg) ->
                        let recarg' = redrec env recarg in
                        let stack' = Stack.assign stack recargnum recarg' in
                        simpfun (Stack.zip sigma (f,stack')))
             | _ -> simpfun (mkApp (redrec env f, l)))
      | Cast (c,_,_) -> redrec env c
      | Prod (x,a,b) ->
          let open Context.Rel.Declaration in
          mkProd (x, a, redrec (push_rel (LocalAssum (x, a)) env) b)
      | LetIn (x,a,b,t) -> redrec env (Vars.subst1 a t)
      | Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf))
      | Proj (p, c) ->
        let c' = 
          match EConstr.kind sigma c with
          | Construct _ -> c
          | _ -> redrec env c
        in
        let npars = Projection.npars p in
          (match reduce_projection env sigma p ~npars (whd_betaiotazeta_stack sigma c') [] with
          | Reduced s -> simpfun (applist s)
          | NotReducible -> raise Redelimination)
      | _ -> 
        (match match_eval_ref env sigma x [] with
        | Some (ref, u) ->
          (* TO DO: re-fold fixpoints after expansion *)
          (* to get true one-step reductions *)
          (match reference_opt_value env sigma ref u with
             | None -> raise Redelimination
             | Some c -> c)
        | _ -> raise Redelimination)
  in redrec env c

let red_product env sigma c =
  try try_red_product env sigma c
  with Redelimination -> user_err (str "No head constant to reduce.")

(*
(* This old version of hnf uses betadeltaiota instead of itself (resp
   whd_construct_state) to reduce the argument of Case (resp Fix);
   The new version uses the "simpl" strategy instead. For instance,

   Variable n:nat.
   Eval hnf in match (plus (S n) O) with S n => n | _ => O end.

   returned

   (fix plus (n m : nat) {struct n} : nat :=
        match n with
        | O => m
        | S p => S (plus p m)
        end) n 0

   while the new version returns (plus n O)
 *)

let whd_simpl_orelse_delta_but_fix_old env sigma c =
  let whd_all = whd_all_state env sigma in
  let rec redrec (x, stack as s) =
    match kind_of_term x with
      | Lambda (na,t,c) ->
          (match decomp_stack stack with
             | None      -> s
             | Some (a,rest) -> stacklam redrec [a] c rest)
      | LetIn (n,b,t,c) -> stacklam redrec [b] c stack
      | App (f,cl)   -> redrec (f, append_stack cl stack)
      | Cast (c,_,_) -> redrec (c, stack)
      | Case (ci,p,d,lf) ->
          (try
             redrec (special_red_case env sigma whd_all (ci,p,d,lf), stack)
           with Redelimination ->
             s)
      | Fix fix ->
          (match reduce_fix whd_all fix stack with
             | Reduced s' -> redrec s'
             | NotReducible -> s)
      | _ when isEvalRef env x ->
          let ref = destEvalRef x in
          (try
            redrec (red_elim_const env sigma ref stack)
           with Redelimination ->
             match reference_opt_value env sigma ref with
               | Some c ->
                   (match kind_of_term (strip_lam c) with
                     | CoFix _ | Fix _ -> s
                     | _ -> redrec (c, stack))
               | None -> s)
      | _ -> s
  in app_stack (redrec (c, empty_stack))
*)

let whd_simpl_stack = 
  if Flags.profile then 
    let key = CProfile.declare_profile "whd_simpl_stack" in
      CProfile.profile3 key whd_simpl_stack
  else whd_simpl_stack

(* Same as [whd_simpl] but also reduces constants that do not hide a
   reducible fix, but does this reduction of constants only until it
   immediately hides a non reducible fix or a cofix *)

let whd_simpl_orelse_delta_but_fix env sigma c =
  let rec redrec s =
    let (constr, stack as s') = whd_simpl_stack env sigma s in
    match match_eval_ref_value env sigma constr stack with
    | Some c ->
      (match EConstr.kind sigma (snd (decompose_lam sigma c)) with
      | CoFix _ | Fix _ -> s'
      | Proj (p,t) when
          (match EConstr.kind sigma constr with
          | Const (c', _) -> Constant.equal (Projection.constant p) c'
          | _ -> false) ->
        let npars = Projection.npars p in
          if List.length stack <= npars then
            (* Do not show the eta-expanded form *)
            s'
          else redrec (applist (c, stack))
      | _ -> redrec (applist(c, stack)))
    | None -> s'
  in
  let simpfun = clos_norm_flags betaiota env sigma in
  simpfun (applist (redrec c))

let hnf_constr = whd_simpl_orelse_delta_but_fix

(* The "simpl" reduction tactic *)

let whd_simpl env sigma c =
  applist (whd_simpl_stack env sigma c)

let simpl env sigma c = strong whd_simpl env sigma c

(* Reduction at specific subterms *)

let matches_head env sigma c t =
  match EConstr.kind sigma t with
    | App (f,_) -> Constr_matching.matches env sigma c f
    | Proj (p, _) -> Constr_matching.matches env sigma c (mkConstU (Projection.constant p, EInstance.empty))
    | _ -> raise Constr_matching.PatternMatchingFailure

(** FIXME: Specific function to handle projections: it ignores what happens on the
    parameters. This is a temporary fix while rewrite etc... are not up to equivalence
    of the projection and its eta expanded form.
*)
let change_map_constr_with_binders_left_to_right g f (env, l as acc) sigma c = 
  match EConstr.kind sigma c with
  | Proj (p, r) -> (* Treat specially for partial applications *)
    let t = Retyping.expand_projection env sigma p r [] in
    let hdf, al = destApp sigma t in
    let a = al.(Array.length al - 1) in
    let app = (mkApp (hdf, Array.sub al 0 (Array.length al - 1))) in
    let app' = f acc app in
    let a' = f acc a in
      (match EConstr.kind sigma app' with
      | App (hdf', al') when hdf' == hdf ->
        (* Still the same projection, we ignore the change in parameters *)
        mkProj (p, a')
      | _ -> mkApp (app', [| a' |]))
  | _ -> map_constr_with_binders_left_to_right sigma g f acc c

let e_contextually byhead (occs,c) f = begin fun env sigma t ->
  let (nowhere_except_in,locs) = Locusops.convert_occs occs in
  let maxocc = List.fold_right max locs 0 in
  let pos = ref 1 in
  (* FIXME: we do suspicious things with this evarmap *)
  let evd = ref sigma in
  let rec traverse nested (env,c as envc) t =
    if nowhere_except_in && (!pos > maxocc) then (* Shortcut *) t
    else
    try
      let subst =
        if byhead then matches_head env sigma c t 
        else Constr_matching.matches env sigma c t in
      let ok =
        if nowhere_except_in then Int.List.mem !pos locs
        else not (Int.List.mem !pos locs) in
      incr pos;
      if ok then begin
        if Option.has_some nested then
          user_err  (str "The subterm at occurrence " ++ int (Option.get nested) ++ str " overlaps with the subterm at occurrence " ++ int (!pos-1) ++ str ".");
        (* Skip inner occurrences for stable counting of occurrences *)
        if locs != [] then
          ignore (traverse_below (Some (!pos-1)) envc t);
        let (evm, t) = (f subst) env !evd t in
        (evd := evm; t)
      end
      else
        traverse_below nested envc t
    with Constr_matching.PatternMatchingFailure ->
      traverse_below nested envc t
  and traverse_below nested envc t =
    (* when byhead, find other occurrences without matching again partial
       application with same head *)
    match EConstr.kind !evd t with
    | App (f,l) when byhead -> mkApp (f, Array.map_left (traverse nested envc) l)
    | Proj (p,c) when byhead -> mkProj (p,traverse nested envc c)
    | _ ->
        change_map_constr_with_binders_left_to_right
          (fun d (env,c) -> (push_rel d env,lift_pattern 1 c))
          (traverse nested) envc sigma t
  in
  let t' = traverse None (env,c) t in
  if List.exists (fun o -> o >= !pos) locs then error_invalid_occurrence locs;
  (!evd, t')
  end

let contextually byhead occs f env sigma t =
  let f' subst env sigma t = sigma, f subst env sigma t in
  snd (e_contextually byhead occs f' env sigma t)

(* linear bindings (following pretty-printer) of the value of name in c.
 * n is the number of the next occurrence of name.
 * ol is the occurrence list to find. *)

let match_constr_evaluable_ref sigma c evref = 
  match EConstr.kind sigma c, evref with
  | Const (c,u), EvalConstRef c' when Constant.equal c c' -> Some u
  | Var id, EvalVarRef id' when Id.equal id id' -> Some EInstance.empty
  | _, _ -> None

let substlin env sigma evalref n (nowhere_except_in,locs) c =
  let maxocc = List.fold_right max locs 0 in
  let pos = ref n in
  assert (List.for_all (fun x -> x >= 0) locs);
  let value u = value_of_evaluable_ref env evalref u in
  let rec substrec () c =
    if nowhere_except_in && !pos > maxocc then c
    else 
      match match_constr_evaluable_ref sigma c evalref with
      | Some u ->
        let ok =
          if nowhere_except_in then Int.List.mem !pos locs
          else not (Int.List.mem !pos locs) in
          incr pos;
          if ok then value u else c
      | None -> 
        map_constr_with_binders_left_to_right sigma
          (fun _ () -> ())
          substrec () c
  in
  let t' = substrec () c in
  (!pos, t')

let string_of_evaluable_ref env = function
  | EvalVarRef id -> Id.to_string id
  | EvalConstRef kn ->
      string_of_qualid
        (Nametab.shortest_qualid_of_global (vars_of_env env) (GlobRef.ConstRef kn))

(* Removing fZETA for finer behaviour would break many developments *)
let unfold_side_flags = RedFlags.[fBETA;fMATCH;fFIX;fCOFIX;fZETA]
let unfold_side_red = RedFlags.(mkflags [fBETA;fMATCH;fFIX;fCOFIX;fZETA])
let unfold_red kn =
  let flag = match kn with
    | EvalVarRef id -> RedFlags.fVAR id
    | EvalConstRef kn -> RedFlags.fCONST kn in
  RedFlags.mkflags (flag::unfold_side_flags)

let unfold env sigma name c =
  if is_evaluable env name then
    clos_norm_flags (unfold_red name) env sigma c
  else
    user_err Pp.(str (string_of_evaluable_ref env name^" is opaque."))

(* [unfoldoccs : (readable_constraints -> (int list * full_path) -> constr -> constr)]
 * Unfolds the constant name in a term c following a list of occurrences occl.
 * at the occurrences of occ_list. If occ_list is empty, unfold all occurrences.
 * Performs a betaiota reduction after unfolding. *)
let unfoldoccs env sigma (occs,name) c =
  let unfo nowhere_except_in locs =
    let (nbocc,uc) = substlin env sigma name 1 (nowhere_except_in,locs) c in
    if Int.equal nbocc 1 then
      user_err Pp.(str ((string_of_evaluable_ref env name)^" does not occur."));
    let rest = List.filter (fun o -> o >= nbocc) locs in
    let () = match rest with
    | [] -> ()
    | _ -> error_invalid_occurrence rest
    in
    nf_betaiotazeta env sigma uc
  in
  match occs with
    | NoOccurrences -> c
    | AllOccurrences -> unfold env sigma name c
    | OnlyOccurrences l -> unfo true l
    | AllOccurrencesBut l -> unfo false l
    | AtLeastOneOccurrence -> unfo false []

(* Unfold reduction tactic: *)
let unfoldn loccname env sigma c =
  List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname

(* Re-folding constants tactics: refold com in term c *)
let fold_one_com com env sigma c =
  let rcom =
    try red_product env sigma com
    with Redelimination -> user_err Pp.(str "Not reducible.") in
  (* Reason first on the beta-iota-zeta normal form of the constant as
     unfold produces it, so that the "unfold f; fold f" configuration works
     to refold fix expressions *)
  let a = subst_term sigma (clos_norm_flags unfold_side_red env sigma rcom) c in
  if not (EConstr.eq_constr sigma a c) then
    Vars.subst1 com a
  else
    (* Then reason on the non beta-iota-zeta form for compatibility -
       even if it is probably a useless configuration *)
    let a = subst_term sigma rcom c in
    Vars.subst1 com a

let fold_commands cl env sigma c =
  List.fold_right (fun com c -> fold_one_com com env sigma c) (List.rev cl) c


(* call by value reduction functions *)
let cbv_norm_flags flags env sigma t =
  cbv_norm (create_cbv_infos flags env sigma) t

let cbv_beta = cbv_norm_flags beta
let cbv_betaiota = cbv_norm_flags betaiota
let cbv_betadeltaiota env sigma =  cbv_norm_flags all env sigma

let compute = cbv_betadeltaiota

(* Pattern *)

(* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only
 * the specified occurrences. *)

let abstract_scheme env sigma (locc,a) (c, sigma) =
  let ta = Retyping.get_type_of env sigma a in
  let na = named_hd env sigma ta Anonymous in
  let na = make_annot na Sorts.Relevant in (* TODO relevance *)
  if occur_meta sigma ta then user_err Pp.(str "Cannot find a type for the generalisation.");
  if occur_meta sigma a then
    mkLambda (na,ta,c), sigma
  else
    let c', sigma' = subst_closed_term_occ env sigma (AtOccs locc) a c in
      mkLambda (na,ta,c'), sigma'

let pattern_occs loccs_trm = begin fun env sigma c ->
  let abstr_trm, sigma = List.fold_right (abstract_scheme env sigma) loccs_trm (c,sigma) in
  try
    let _ = Typing.unsafe_type_of env sigma abstr_trm in
    (sigma, applist(abstr_trm, List.map snd loccs_trm))
  with Type_errors.TypeError (env',t) ->
    raise (ReductionTacticError (InvalidAbstraction (env,sigma,abstr_trm,(env',t))))
  end

(* Used in several tactics. *)

let check_privacy env ind =
  let spec = Inductive.lookup_mind_specif env (fst ind) in
  if Inductive.is_private spec then
    user_err  (str "case analysis on a private type.")
  else ind

let check_not_primitive_record env ind =
  let spec = Inductive.lookup_mind_specif env (fst ind) in
    if Inductive.is_primitive_record spec then
      user_err  (str "case analysis on a primitive record type: " ++
                       str "use projections or let instead.")
    else ind

(* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name
   return name, B and t' *)

let reduce_to_ind_gen allow_product env sigma t =
  let rec elimrec env t l =
    let t = hnf_constr env sigma t in
    match EConstr.kind sigma (fst (decompose_app_vect sigma t)) with
      | Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t l)
      | Prod (n,ty,t') ->
          let open Context.Rel.Declaration in
          if allow_product then
            elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l)
          else
            user_err  (str"Not an inductive definition.")
      | _ ->
          (* Last chance: we allow to bypass the Opaque flag (as it
             was partially the case between V5.10 and V8.1 *)
          let t' = whd_all env sigma t in
          match EConstr.kind sigma (fst (decompose_app_vect sigma t')) with
            | Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t' l)
            | _ -> user_err  (str"Not an inductive product.")
  in
  elimrec env t []

let reduce_to_quantified_ind env sigma c = reduce_to_ind_gen true env sigma c
let reduce_to_atomic_ind env sigma c = reduce_to_ind_gen false env sigma c

let find_hnf_rectype env sigma t =
  let ind,t = reduce_to_atomic_ind env sigma t in
  ind, snd (decompose_app sigma t)

(* Reduce the weak-head redex [beta,iota/fix/cofix[all],cast,zeta,simpl/delta]
   or raise [NotStepReducible] if not a weak-head redex *)

exception NotStepReducible

let one_step_reduce env sigma c =
  let rec redrec (x, stack) =
    match EConstr.kind sigma x with
      | Lambda (n,t,c)  ->
          (match stack with
             | []        -> raise NotStepReducible
             | a :: rest -> (Vars.subst1 a c, rest))
      | App (f,cl) -> redrec (f, (Array.to_list cl)@stack)
      | LetIn (_,f,_,cl) -> (Vars.subst1 f cl,stack)
      | Cast (c,_,_) -> redrec (c,stack)
      | Case (ci,p,c,lf) ->
          (try
             (special_red_case env sigma (whd_simpl_stack env sigma)
               (ci,p,c,lf), stack)
           with Redelimination -> raise NotStepReducible)
      | Fix fix ->
          (try match reduce_fix (whd_construct_stack env) sigma fix stack with
             | Reduced s' -> s'
             | NotReducible -> raise NotStepReducible
           with Redelimination -> raise NotStepReducible)
      | _ when isEvalRef env sigma x ->
          let ref,u = destEvalRefU sigma x in
          (try
             fst (red_elim_const env sigma ref u stack)
           with Redelimination ->
             match reference_opt_value env sigma ref u with
               | Some d -> (d, stack)
               | None -> raise NotStepReducible)

      | _ -> raise NotStepReducible
  in
  applist (redrec (c,[]))

let error_cannot_recognize ref =
  user_err 
    (str "Cannot recognize a statement based on " ++
     Nametab.pr_global_env Id.Set.empty ref ++ str".")

let reduce_to_ref_gen allow_product env sigma ref t =
  if isIndRef ref then
    let ((mind,u),t) = reduce_to_ind_gen allow_product env sigma t in
    begin match ref with
    | GlobRef.IndRef mind' when eq_ind mind mind' -> t
    | _ -> error_cannot_recognize ref
    end
  else
  (* lazily reduces to match the head of [t] with the expected [ref] *)
  let rec elimrec env t l =
    let c, _ = decompose_app_vect sigma t in
    match EConstr.kind sigma c with
      | Prod (n,ty,t') ->
          if allow_product then
            let open Context.Rel.Declaration in
            elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l)
          else
            error_cannot_recognize ref
      | _ ->
          try
            if GlobRef.equal (fst (global_of_constr sigma c)) ref
            then it_mkProd_or_LetIn t l
            else raise Not_found
          with Not_found ->
          try
            let t' = nf_betaiota env sigma (one_step_reduce env sigma t) in
            elimrec env t' l
          with NotStepReducible -> error_cannot_recognize ref
  in
  elimrec env t []

let reduce_to_quantified_ref = reduce_to_ref_gen true
let reduce_to_atomic_ref = reduce_to_ref_gen false