1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Constr open Context open Libnames open Globnames open Termops open Environ open EConstr open Vars open Find_subterm open Namegen open CClosure open Reductionops open Cbv open Patternops open Locus module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration (* Errors *) type reduction_tactic_error = InvalidAbstraction of env * Evd.evar_map * EConstr.constr * (env * Type_errors.type_error) exception ReductionTacticError of reduction_tactic_error (* Evaluable reference *) exception Elimconst exception Redelimination let error_not_evaluable r = user_err ~hdr:"error_not_evaluable" (str "Cannot coerce" ++ spc () ++ Nametab.pr_global_env Id.Set.empty r ++ spc () ++ str "to an evaluable reference.") let is_evaluable_const env cst = is_transparent env (ConstKey cst) && (evaluable_constant cst env || is_primitive env cst) let is_evaluable_var env id = is_transparent env (VarKey id) && evaluable_named id env let is_evaluable env = function | EvalConstRef cst -> is_evaluable_const env cst | EvalVarRef id -> is_evaluable_var env id let value_of_evaluable_ref env evref u = match evref with | EvalConstRef con -> let u = Unsafe.to_instance u in EConstr.of_constr (constant_value_in env (con, u)) | EvalVarRef id -> env |> lookup_named id |> NamedDecl.get_value |> Option.get let evaluable_of_global_reference env = function | GlobRef.ConstRef cst when is_evaluable_const env cst -> EvalConstRef cst | GlobRef.VarRef id when is_evaluable_var env id -> EvalVarRef id | r -> error_not_evaluable r let global_of_evaluable_reference = function | EvalConstRef cst -> GlobRef.ConstRef cst | EvalVarRef id -> GlobRef.VarRef id type evaluable_reference = | EvalConst of Constant.t | EvalVar of Id.t | EvalRel of int | EvalEvar of EConstr.existential let evaluable_reference_eq sigma r1 r2 = match r1, r2 with | EvalConst c1, EvalConst c2 -> Constant.equal c1 c2 | EvalVar id1, EvalVar id2 -> Id.equal id1 id2 | EvalRel i1, EvalRel i2 -> Int.equal i1 i2 | EvalEvar (e1, ctx1), EvalEvar (e2, ctx2) -> Evar.equal e1 e2 && Array.equal (EConstr.eq_constr sigma) ctx1 ctx2 | _ -> false let mkEvalRef ref u = match ref with | EvalConst cst -> mkConstU (cst,u) | EvalVar id -> mkVar id | EvalRel n -> mkRel n | EvalEvar ev -> EConstr.mkEvar ev let isEvalRef env sigma c = match EConstr.kind sigma c with | Const (sp,_) -> is_evaluable env (EvalConstRef sp) | Var id -> is_evaluable env (EvalVarRef id) | Rel _ | Evar _ -> true | _ -> false let destEvalRefU sigma c = match EConstr.kind sigma c with | Const (cst,u) -> EvalConst cst, u | Var id -> (EvalVar id, EInstance.empty) | Rel n -> (EvalRel n, EInstance.empty) | Evar ev -> (EvalEvar ev, EInstance.empty) | _ -> anomaly (Pp.str "Not an unfoldable reference.") let unsafe_reference_opt_value env sigma eval = match eval with | EvalConst cst -> (match (lookup_constant cst env).Declarations.const_body with | Declarations.Def c -> Some (EConstr.of_constr (Mod_subst.force_constr c)) | _ -> None) | EvalVar id -> env |> lookup_named id |> NamedDecl.get_value | EvalRel n -> env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n) | EvalEvar ev -> match EConstr.kind sigma (mkEvar ev) with | Evar _ -> None | c -> Some (EConstr.of_kind c) let reference_opt_value env sigma eval u = match eval with | EvalConst cst -> let u = EInstance.kind sigma u in Option.map EConstr.of_constr (constant_opt_value_in env (cst,u)) | EvalVar id -> env |> lookup_named id |> NamedDecl.get_value | EvalRel n -> env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n) | EvalEvar ev -> match EConstr.kind sigma (mkEvar ev) with | Evar _ -> None | c -> Some (EConstr.of_kind c) exception NotEvaluable let reference_value env sigma c u = match reference_opt_value env sigma c u with | None -> raise NotEvaluable | Some d -> d (************************************************************************) (* Reduction of constants hiding a fixpoint (e.g. for "simpl" tactic). *) (* One reuses the name of the function after reduction of the fixpoint *) type constant_evaluation = | EliminationFix of int * int * (int * (int * constr) list * int) | EliminationMutualFix of int * evaluable_reference * ((int*evaluable_reference) option array * (int * (int * constr) list * int)) | EliminationCases of int | EliminationProj of int | NotAnElimination (* We use a cache registered as a global table *) type frozen = constant_evaluation Cmap.t let eval_table = Summary.ref (Cmap.empty : frozen) ~name:"evaluation" (* [compute_consteval] determines whether c is an "elimination constant" either [yn:Tn]..[y1:T1](match yi with f1..fk end g1 ..gp) or [yn:Tn]..[y1:T1](Fix(f|t) yi1..yip) with yi1..yip distinct variables among the yi, not occurring in t In the second case, [check_fix_reversibility [T1;...;Tn] args fix] checks that [args] is a subset of disjoint variables in y1..yn (a necessary condition for reversibility). It also returns the relevant information ([i1,Ti1;..;ip,Tip],n) in order to compute an equivalent of Fix(f|t) such that g := [xp:Tip']..[x1:Ti1'](f a1..an) == [xp:Tip']..[x1:Ti1'](Fix(f|t) yi1..yip) with a_k:=y_k if k<>i_j, a_k:=args_k otherwise, and Tij':=Tij[x1..xi(j-1) <- a1..ai(j-1)] Note that the types Tk, when no i_j=k, must not be dependent on the xp..x1. *) let check_fix_reversibility sigma labs args ((lv,i),(_,tys,bds)) = let n = List.length labs in let nargs = List.length args in if nargs > n then raise Elimconst; let nbfix = Array.length bds in let li = List.map (function d -> match EConstr.kind sigma d with | Rel k -> if Array.for_all (Vars.noccurn sigma k) tys && Array.for_all (Vars.noccurn sigma (k+nbfix)) bds && k <= n then (k, List.nth labs (k-1)) else raise Elimconst | _ -> raise Elimconst) args in let reversible_rels = List.map fst li in if not (List.distinct_f Int.compare reversible_rels) then raise Elimconst; List.iteri (fun i t_i -> if not (Int.List.mem_assoc (i+1) li) then let fvs = List.map ((+) (i+1)) (Int.Set.elements (free_rels sigma t_i)) in match List.intersect Int.equal fvs reversible_rels with | [] -> () | _ -> raise Elimconst) labs; let k = lv.(i) in if k < nargs then (* Such an optimisation would need eta-expansion let p = destRel (List.nth args k) in EliminationFix (n-p+1,(nbfix,li,n)) *) EliminationFix (n,nargs,(nbfix,li,n)) else EliminationFix (n-nargs+k+1,nargs,(nbfix,li,n)) (* Heuristic to look if global names are associated to other components of a mutual fixpoint *) let invert_name labs l {binder_name=na0} env sigma ref na = match na.binder_name with | Name id -> let minfxargs = List.length l in begin match na0 with | Name id' when Id.equal id' id -> Some (minfxargs,ref) | _ -> let refi = match ref with | EvalRel _ | EvalEvar _ -> None | EvalVar id' -> Some (EvalVar id) | EvalConst kn -> let kn = Constant.change_label kn (Label.of_id id) in if Environ.mem_constant kn env then Some (EvalConst kn) else None in match refi with | None -> None | Some ref -> try match unsafe_reference_opt_value env sigma ref with | None -> None | Some c -> let labs',ccl = decompose_lam sigma c in let _, l' = whd_betalet_stack sigma ccl in let labs' = List.map snd labs' in (* ppedrot: there used to be generic equality on terms here *) let eq_constr c1 c2 = EConstr.eq_constr sigma c1 c2 in if List.equal eq_constr labs' labs && List.equal eq_constr l l' then Some (minfxargs,ref) else None with Not_found (* Undefined ref *) -> None end | Anonymous -> None (* Actually, should not occur *) (* [compute_consteval_direct] expand all constant in a whole, but [compute_consteval_mutual_fix] only one by one, until finding the last one before the Fix if the latter is mutually defined *) let compute_consteval_direct env sigma ref = let rec srec env n labs onlyproj c = let c',l = whd_betadeltazeta_stack env sigma c in match EConstr.kind sigma c' with | Lambda (id,t,g) when List.is_empty l && not onlyproj -> let open Context.Rel.Declaration in srec (push_rel (LocalAssum (id,t)) env) (n+1) (t::labs) onlyproj g | Fix fix when not onlyproj -> (try check_fix_reversibility sigma labs l fix with Elimconst -> NotAnElimination) | Case (_,_,d,_) when isRel sigma d && not onlyproj -> EliminationCases n | Case (_,_,d,_) -> srec env n labs true d | Proj (p, d) when isRel sigma d -> EliminationProj n | _ -> NotAnElimination in match unsafe_reference_opt_value env sigma ref with | None -> NotAnElimination | Some c -> srec env 0 [] false c let compute_consteval_mutual_fix env sigma ref = let rec srec env minarg labs ref c = let c',l = whd_betalet_stack sigma c in let nargs = List.length l in match EConstr.kind sigma c' with | Lambda (na,t,g) when List.is_empty l -> let open Context.Rel.Declaration in srec (push_rel (LocalAssum (na,t)) env) (minarg+1) (t::labs) ref g | Fix ((lv,i),(names,_,_)) -> (* Last known constant wrapping Fix is ref = [labs](Fix l) *) (match compute_consteval_direct env sigma ref with | NotAnElimination -> (*Above const was eliminable but this not!*) NotAnElimination | EliminationFix (minarg',minfxargs,infos) -> let refs = Array.map (invert_name labs l names.(i) env sigma ref) names in let new_minarg = max (minarg'+minarg-nargs) minarg' in EliminationMutualFix (new_minarg,ref,(refs,infos)) | _ -> assert false) | _ when isEvalRef env sigma c' -> (* Forget all \'s and args and do as if we had started with c' *) let ref,_ = destEvalRefU sigma c' in (match unsafe_reference_opt_value env sigma ref with | None -> anomaly (Pp.str "Should have been trapped by compute_direct.") | Some c -> srec env (minarg-nargs) [] ref c) | _ -> (* Should not occur *) NotAnElimination in match unsafe_reference_opt_value env sigma ref with | None -> (* Should not occur *) NotAnElimination | Some c -> srec env 0 [] ref c let compute_consteval env sigma ref = match compute_consteval_direct env sigma ref with | EliminationFix (_,_,(nbfix,_,_)) when not (Int.equal nbfix 1) -> compute_consteval_mutual_fix env sigma ref | elim -> elim let reference_eval env sigma = function | EvalConst cst as ref -> (try Cmap.find cst !eval_table with Not_found -> begin let v = compute_consteval env sigma ref in eval_table := Cmap.add cst v !eval_table; v end) | ref -> compute_consteval env sigma ref (* If f is bound to EliminationFix (n',infos), then n' is the minimal number of args for starting the reduction and infos is (nbfix,[(yi1,Ti1);...;(yip,Tip)],n) indicating that f converts to some [y1:T1,...,yn:Tn](Fix(..) yip .. yi1) where the y_{i_j} consist in a disjoint subset of the yi, i.e. 1 <= ij <= n and the ij are disjoint (in particular, p <= n). f is applied to largs := arg1 .. argn and we need for recursive calls to build the function g := [xp:Tip',...,x1:Ti1'](f a1 ... an) s.t. (g u1 ... up) reduces to (Fix(..) u1 ... up) This is made possible by setting a_k:=x_j if k=i_j for some j a_k:=arg_k otherwise The type Tij' is Tij[yi(j-1)..y1 <- ai(j-1)..a1] *) let x = Name default_dependent_ident let make_elim_fun (names,(nbfix,lv,n)) u largs = let lu = List.firstn n largs in let p = List.length lv in let lyi = List.map fst lv in let la = List.map_i (fun q aq -> (* k from the comment is q+1 *) try mkRel (p+1-(List.index Int.equal (n-q) lyi)) with Not_found -> aq) 0 (List.map (Vars.lift p) lu) in fun i -> match names.(i) with | None -> None | Some (minargs,ref) -> let body = applist (mkEvalRef ref u, la) in let g = List.fold_left_i (fun q (* j = n+1-q *) c (ij,tij) -> let subst = List.map (Vars.lift (-q)) (List.firstn (n-ij) la) in let tij' = Vars.substl (List.rev subst) tij in let x = make_annot x Sorts.Relevant in (* TODO relevance *) mkLambda (x,tij',c)) 1 body (List.rev lv) in Some (minargs,g) (* [f] is convertible to [Fix(recindices,bodynum),bodyvect)]: do so that the reduction uses this extra information *) let dummy = mkProp let vfx = Id.of_string "_expanded_fix_" let vfun = Id.of_string "_eliminator_function_" let venv = let open Context.Named.Declaration in val_of_named_context [LocalAssum (make_annot vfx Sorts.Relevant, dummy); LocalAssum (make_annot vfun Sorts.Relevant, dummy)] (* Mark every occurrence of substituted vars (associated to a function) as a problem variable: an evar that can be instantiated either by vfx (expanded fixpoint) or vfun (named function). *) let substl_with_function subst sigma constr = let evd = ref sigma in let minargs = ref Evar.Map.empty in let v = Array.of_list subst in let rec subst_total k c = match EConstr.kind sigma c with | Rel i when k < i -> if i <= k + Array.length v then match v.(i-k-1) with | (fx, Some (min, ref)) -> let sigma = !evd in let (sigma, evk) = Evarutil.new_pure_evar venv sigma dummy in evd := sigma; minargs := Evar.Map.add evk min !minargs; Vars.lift k (mkEvar (evk, [|fx;ref|])) | (fx, None) -> Vars.lift k fx else mkRel (i - Array.length v) | _ -> map_with_binders sigma succ subst_total k c in let c = subst_total 0 constr in (c, !evd, !minargs) exception Partial (* each problem variable that cannot be made totally applied even by reduction is solved by the expanded fix term. *) let solve_arity_problem env sigma fxminargs c = let evm = ref sigma in let set_fix i = evm := Evd.define i (mkVar vfx) !evm in let rec check strict c = let c' = whd_betaiotazeta sigma c in let (h,rcargs) = decompose_app_vect sigma c' in match EConstr.kind sigma h with Evar(i,_) when Evar.Map.mem i fxminargs && not (Evd.is_defined !evm i) -> let minargs = Evar.Map.find i fxminargs in if Array.length rcargs < minargs then if strict then set_fix i else raise Partial; Array.iter (check strict) rcargs | (Var _|Const _) when isEvalRef env sigma h -> (let ev, u = destEvalRefU sigma h in match reference_opt_value env sigma ev u with | Some h' -> let bak = !evm in (try Array.iter (check false) rcargs with Partial -> evm := bak; check strict (mkApp(h',rcargs))) | None -> Array.iter (check strict) rcargs) | _ -> EConstr.iter sigma (check strict) c' in check true c; !evm let substl_checking_arity env subst sigma c = (* we initialize the problem: *) let body,sigma,minargs = substl_with_function subst sigma c in (* we collect arity constraints *) let sigma' = solve_arity_problem env sigma minargs body in (* we propagate the constraints: solved problems are substituted; the other ones are replaced by the function symbol *) let rec nf_fix c = match EConstr.kind sigma c with | Evar (i,[|fx;f|]) when Evar.Map.mem i minargs -> (* FIXME: find a less hackish way of doing this *) begin match EConstr.kind sigma' c with | Evar _ -> f | c -> EConstr.of_kind c end | _ -> EConstr.map sigma nf_fix c in nf_fix body type fix_reduction_result = NotReducible | Reduced of (constr * constr list) let reduce_fix whdfun sigma fix stack = match fix_recarg fix (Stack.append_app_list stack Stack.empty) with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = whdfun sigma recarg in let stack' = List.assign stack recargnum (applist recarg') in (match EConstr.kind sigma recarg'hd with | Construct _ -> Reduced (contract_fix sigma fix, stack') | _ -> NotReducible) let contract_fix_use_function env sigma f ((recindices,bodynum),(_names,_types,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = (mkFix((recindices,j),typedbodies), f j) in let lbodies = List.init nbodies make_Fi in substl_checking_arity env (List.rev lbodies) sigma (nf_beta env sigma bodies.(bodynum)) let reduce_fix_use_function env sigma f whfun fix stack = match fix_recarg fix (Stack.append_app_list stack Stack.empty) with | None -> NotReducible | Some (recargnum,recarg) -> let (recarg'hd,_ as recarg') = if EConstr.isRel sigma recarg then (* The recarg cannot be a local def, no worry about the right env *) (recarg, []) else whfun recarg in let stack' = List.assign stack recargnum (applist recarg') in (match EConstr.kind sigma recarg'hd with | Construct _ -> Reduced (contract_fix_use_function env sigma f fix,stack') | _ -> NotReducible) let contract_cofix_use_function env sigma f (bodynum,(_names,_,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = (mkCoFix(j,typedbodies), f j) in let subbodies = List.init nbodies make_Fi in substl_checking_arity env (List.rev subbodies) sigma (nf_beta env sigma bodies.(bodynum)) let reduce_mind_case_use_function func env sigma mia = match EConstr.kind sigma mia.mconstr with | Construct ((ind_sp,i),u) -> let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1), real_cargs) | CoFix (bodynum,(names,_,_) as cofix) -> let build_cofix_name = if isConst sigma func then let minargs = List.length mia.mcargs in fun i -> if Int.equal i bodynum then Some (minargs,func) else match names.(i).binder_name with | Anonymous -> None | Name id -> (* In case of a call to another component of a block of mutual inductive, try to reuse the global name if the block was indeed initially built as a global definition *) let (kn, u) = destConst sigma func in let kn = Constant.change_label kn (Label.of_id id) in let cst = (kn, EInstance.kind sigma u) in try match constant_opt_value_in env cst with | None -> None (* TODO: check kn is correct *) | Some _ -> Some (minargs,mkConstU (kn, u)) with Not_found -> None else fun _ -> None in let cofix_def = contract_cofix_use_function env sigma build_cofix_name cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false let match_eval_ref env sigma constr stack = match EConstr.kind sigma constr with | Const (sp, u) -> reduction_effect_hook env sigma sp (lazy (EConstr.to_constr sigma (applist (constr,stack)))); if is_evaluable env (EvalConstRef sp) then Some (EvalConst sp, u) else None | Var id when is_evaluable env (EvalVarRef id) -> Some (EvalVar id, EInstance.empty) | Rel i -> Some (EvalRel i, EInstance.empty) | Evar ev -> Some (EvalEvar ev, EInstance.empty) | _ -> None let match_eval_ref_value env sigma constr stack = match EConstr.kind sigma constr with | Const (sp, u) -> reduction_effect_hook env sigma sp (lazy (EConstr.to_constr sigma (applist (constr,stack)))); if is_evaluable env (EvalConstRef sp) then let u = EInstance.kind sigma u in Some (EConstr.of_constr (constant_value_in env (sp, u))) else None | Proj (p, c) when not (Projection.unfolded p) -> if is_evaluable env (EvalConstRef (Projection.constant p)) then Some (mkProj (Projection.unfold p, c)) else None | Var id when is_evaluable env (EvalVarRef id) -> env |> lookup_named id |> NamedDecl.get_value | Rel n -> env |> lookup_rel n |> RelDecl.get_value |> Option.map (lift n) | _ -> None let special_red_case env sigma whfun (ci, p, c, lf) = let rec redrec s = let (constr, cargs) = whfun s in match match_eval_ref env sigma constr cargs with | Some (ref, u) -> (match reference_opt_value env sigma ref u with | None -> raise Redelimination | Some gvalue -> if reducible_mind_case sigma gvalue then reduce_mind_case_use_function constr env sigma {mP=p; mconstr=gvalue; mcargs=cargs; mci=ci; mlf=lf} else redrec (applist(gvalue, cargs))) | None -> if reducible_mind_case sigma constr then reduce_mind_case sigma {mP=p; mconstr=constr; mcargs=cargs; mci=ci; mlf=lf} else raise Redelimination in redrec c let recargs = function | EvalVar _ | EvalRel _ | EvalEvar _ -> None | EvalConst c -> ReductionBehaviour.get (GlobRef.ConstRef c) let reduce_projection env sigma p ~npars (recarg'hd,stack') stack = (match EConstr.kind sigma recarg'hd with | Construct _ -> let proj_narg = npars + Projection.arg p in Reduced (List.nth stack' proj_narg, stack) | _ -> NotReducible) let reduce_proj env sigma whfun whfun' c = let rec redrec s = match EConstr.kind sigma s with | Proj (proj, c) -> let c' = try redrec c with Redelimination -> c in let constr, cargs = whfun c' in (match EConstr.kind sigma constr with | Construct _ -> let proj_narg = Projection.npars proj + Projection.arg proj in List.nth cargs proj_narg | _ -> raise Redelimination) | Case (n,p,c,brs) -> let c' = redrec c in let p = (n,p,c',brs) in (try special_red_case env sigma whfun' p with Redelimination -> mkCase p) | _ -> raise Redelimination in redrec c let whd_nothing_for_iota env sigma s = let rec whrec (x, stack as s) = match EConstr.kind sigma x with | Rel n -> let open Context.Rel.Declaration in (match lookup_rel n env with | LocalDef (_,body,_) -> whrec (lift n body, stack) | _ -> s) | Var id -> let open Context.Named.Declaration in (match lookup_named id env with | LocalDef (_,body,_) -> whrec (body, stack) | _ -> s) | Evar ev -> s | Meta ev -> (try whrec (Evd.meta_value sigma ev, stack) with Not_found -> s) | Const (const, u) -> let u = EInstance.kind sigma u in (match constant_opt_value_in env (const, u) with | Some body -> whrec (EConstr.of_constr body, stack) | None -> s) | LetIn (_,b,_,c) -> stacklam whrec [b] sigma c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, Stack.append_app cl stack) | Lambda (na,t,c) -> (match Stack.decomp stack with | Some (a,m) -> stacklam whrec [a] sigma c m | _ -> s) | x -> s in EConstr.decompose_app sigma (Stack.zip sigma (whrec (s,Stack.empty))) (* [red_elim_const] contracts iota/fix/cofix redexes hidden behind constants by keeping the name of the constants in the recursive calls; it fails if no redex is around *) let rec red_elim_const env sigma ref u largs = let open ReductionBehaviour in let nargs = List.length largs in let largs, unfold_anyway, unfold_nonelim, nocase = match recargs ref with | None -> largs, false, false, false | Some NeverUnfold -> raise Redelimination | Some (UnfoldWhen { nargs = Some n } | UnfoldWhenNoMatch { nargs = Some n }) when nargs < n -> raise Redelimination | Some (UnfoldWhen { recargs = x::l } | UnfoldWhenNoMatch { recargs = x::l }) when nargs <= List.fold_left max x l -> raise Redelimination | Some (UnfoldWhen { recargs; nargs = None }) -> reduce_params env sigma largs recargs, false, false, false | Some (UnfoldWhenNoMatch { recargs; nargs = None }) -> reduce_params env sigma largs recargs, false, false, true | Some (UnfoldWhen { recargs; nargs = Some n }) -> let is_empty = List.is_empty recargs in reduce_params env sigma largs recargs, is_empty && nargs >= n, not is_empty && nargs >= n, false | Some (UnfoldWhenNoMatch { recargs; nargs = Some n }) -> let is_empty = List.is_empty recargs in reduce_params env sigma largs recargs, is_empty && nargs >= n, not is_empty && nargs >= n, true in try match reference_eval env sigma ref with | EliminationCases n when nargs >= n -> let c = reference_value env sigma ref u in let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in let whfun = whd_simpl_stack env sigma in (special_red_case env sigma whfun (EConstr.destCase sigma c'), lrest), nocase | EliminationProj n when nargs >= n -> let c = reference_value env sigma ref u in let c', lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in let whfun = whd_construct_stack env sigma in let whfun' = whd_simpl_stack env sigma in (reduce_proj env sigma whfun whfun' c', lrest), nocase | EliminationFix (min,minfxargs,infos) when nargs >= min -> let c = reference_value env sigma ref u in let d, lrest = whd_nothing_for_iota env sigma (applist(c,largs)) in let f = make_elim_fun ([|Some (minfxargs,ref)|],infos) u largs in let whfun = whd_construct_stack env sigma in (match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase) | EliminationMutualFix (min,refgoal,refinfos) when nargs >= min -> let rec descend (ref,u) args = let c = reference_value env sigma ref u in if evaluable_reference_eq sigma ref refgoal then (c,args) else let c', lrest = whd_betalet_stack sigma (applist(c,args)) in descend (destEvalRefU sigma c') lrest in let (_, midargs as s) = descend (ref,u) largs in let d, lrest = whd_nothing_for_iota env sigma (applist s) in let f = make_elim_fun refinfos u midargs in let whfun = whd_construct_stack env sigma in (match reduce_fix_use_function env sigma f whfun (destFix sigma d) lrest with | NotReducible -> raise Redelimination | Reduced (c,rest) -> (nf_beta env sigma c, rest), nocase) | NotAnElimination when unfold_nonelim -> let c = reference_value env sigma ref u in (whd_betaiotazeta sigma (applist (c, largs)), []), nocase | _ -> raise Redelimination with Redelimination when unfold_anyway -> let c = reference_value env sigma ref u in (whd_betaiotazeta sigma (applist (c, largs)), []), nocase and reduce_params env sigma stack l = let len = List.length stack in List.fold_left (fun stack i -> if len <= i then raise Redelimination else let arg = List.nth stack i in let rarg = whd_construct_stack env sigma arg in match EConstr.kind sigma (fst rarg) with | Construct _ -> List.assign stack i (applist rarg) | _ -> raise Redelimination) stack l (* reduce to whd normal form or to an applied constant that does not hide a reducible iota/fix/cofix redex (the "simpl" tactic) *) and whd_simpl_stack env sigma = let open ReductionBehaviour in let rec redrec s = let (x, stack) = decompose_app_vect sigma s in let stack = Array.to_list stack in let s' = (x, stack) in match EConstr.kind sigma x with | Lambda (na,t,c) -> (match stack with | [] -> s' | a :: rest -> redrec (beta_applist sigma (x, stack))) | LetIn (n,b,t,c) -> redrec (applist (Vars.substl [b] c, stack)) | App (f,cl) -> redrec (applist(f, (Array.to_list cl)@stack)) | Cast (c,_,_) -> redrec (applist(c, stack)) | Case (ci,p,c,lf) -> (try redrec (applist(special_red_case env sigma redrec (ci,p,c,lf), stack)) with Redelimination -> s') | Fix fix -> (try match reduce_fix (whd_construct_stack env) sigma fix stack with | Reduced s' -> redrec (applist s') | NotReducible -> s' with Redelimination -> s') | Proj (p, c) -> (try let unf = Projection.unfolded p in if unf || is_evaluable env (EvalConstRef (Projection.constant p)) then let npars = Projection.npars p in (match unf, get (GlobRef.ConstRef (Projection.constant p)) with | false, Some NeverUnfold -> s' | false, Some (UnfoldWhen { recargs } | UnfoldWhenNoMatch { recargs }) when not (List.is_empty recargs) -> let l' = List.map_filter (fun i -> let idx = (i - (npars + 1)) in if idx < 0 then None else Some idx) recargs in let stack = reduce_params env sigma stack l' in (match reduce_projection env sigma p ~npars (whd_construct_stack env sigma c) stack with | Reduced s' -> redrec (applist s') | NotReducible -> s') | _ -> match reduce_projection env sigma p ~npars (whd_construct_stack env sigma c) stack with | Reduced s' -> redrec (applist s') | NotReducible -> s') else s' with Redelimination -> s') | _ -> match match_eval_ref env sigma x stack with | Some (ref, u) -> (try let sapp, nocase = red_elim_const env sigma ref u stack in let hd, _ as s'' = redrec (applist(sapp)) in let rec is_case x = match EConstr.kind sigma x with | Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x | App (hd, _) -> is_case hd | Case _ -> true | _ -> false in if nocase && is_case hd then raise Redelimination else s'' with Redelimination -> s') | None -> s' in redrec (* reduce until finding an applied constructor or fail *) and whd_construct_stack env sigma s = let (constr, cargs as s') = whd_simpl_stack env sigma s in if reducible_mind_case sigma constr then s' else match match_eval_ref env sigma constr cargs with | Some (ref, u) -> (match reference_opt_value env sigma ref u with | None -> raise Redelimination | Some gvalue -> whd_construct_stack env sigma (applist(gvalue, cargs))) | _ -> raise Redelimination (************************************************************************) (* Special Purpose Reduction Strategies *) (* Red reduction tactic: one step of delta reduction + full beta-iota-fix-cofix-zeta-cast at the head of the conclusion of a sequence of products; fails if no delta redex is around *) let try_red_product env sigma c = let simpfun c = clos_norm_flags betaiotazeta env sigma c in let rec redrec env x = let x = whd_betaiota sigma x in match EConstr.kind sigma x with | App (f,l) -> (match EConstr.kind sigma f with | Fix fix -> let stack = Stack.append_app l Stack.empty in (match fix_recarg fix stack with | None -> raise Redelimination | Some (recargnum,recarg) -> let recarg' = redrec env recarg in let stack' = Stack.assign stack recargnum recarg' in simpfun (Stack.zip sigma (f,stack'))) | _ -> simpfun (mkApp (redrec env f, l))) | Cast (c,_,_) -> redrec env c | Prod (x,a,b) -> let open Context.Rel.Declaration in mkProd (x, a, redrec (push_rel (LocalAssum (x, a)) env) b) | LetIn (x,a,b,t) -> redrec env (Vars.subst1 a t) | Case (ci,p,d,lf) -> simpfun (mkCase (ci,p,redrec env d,lf)) | Proj (p, c) -> let c' = match EConstr.kind sigma c with | Construct _ -> c | _ -> redrec env c in let npars = Projection.npars p in (match reduce_projection env sigma p ~npars (whd_betaiotazeta_stack sigma c') [] with | Reduced s -> simpfun (applist s) | NotReducible -> raise Redelimination) | _ -> (match match_eval_ref env sigma x [] with | Some (ref, u) -> (* TO DO: re-fold fixpoints after expansion *) (* to get true one-step reductions *) (match reference_opt_value env sigma ref u with | None -> raise Redelimination | Some c -> c) | _ -> raise Redelimination) in redrec env c let red_product env sigma c = try try_red_product env sigma c with Redelimination -> user_err (str "No head constant to reduce.") (* (* This old version of hnf uses betadeltaiota instead of itself (resp whd_construct_state) to reduce the argument of Case (resp Fix); The new version uses the "simpl" strategy instead. For instance, Variable n:nat. Eval hnf in match (plus (S n) O) with S n => n | _ => O end. returned (fix plus (n m : nat) {struct n} : nat := match n with | O => m | S p => S (plus p m) end) n 0 while the new version returns (plus n O) *) let whd_simpl_orelse_delta_but_fix_old env sigma c = let whd_all = whd_all_state env sigma in let rec redrec (x, stack as s) = match kind_of_term x with | Lambda (na,t,c) -> (match decomp_stack stack with | None -> s | Some (a,rest) -> stacklam redrec [a] c rest) | LetIn (n,b,t,c) -> stacklam redrec [b] c stack | App (f,cl) -> redrec (f, append_stack cl stack) | Cast (c,_,_) -> redrec (c, stack) | Case (ci,p,d,lf) -> (try redrec (special_red_case env sigma whd_all (ci,p,d,lf), stack) with Redelimination -> s) | Fix fix -> (match reduce_fix whd_all fix stack with | Reduced s' -> redrec s' | NotReducible -> s) | _ when isEvalRef env x -> let ref = destEvalRef x in (try redrec (red_elim_const env sigma ref stack) with Redelimination -> match reference_opt_value env sigma ref with | Some c -> (match kind_of_term (strip_lam c) with | CoFix _ | Fix _ -> s | _ -> redrec (c, stack)) | None -> s) | _ -> s in app_stack (redrec (c, empty_stack)) *) let whd_simpl_stack = if Flags.profile then let key = CProfile.declare_profile "whd_simpl_stack" in CProfile.profile3 key whd_simpl_stack else whd_simpl_stack (* Same as [whd_simpl] but also reduces constants that do not hide a reducible fix, but does this reduction of constants only until it immediately hides a non reducible fix or a cofix *) let whd_simpl_orelse_delta_but_fix env sigma c = let rec redrec s = let (constr, stack as s') = whd_simpl_stack env sigma s in match match_eval_ref_value env sigma constr stack with | Some c -> (match EConstr.kind sigma (snd (decompose_lam sigma c)) with | CoFix _ | Fix _ -> s' | Proj (p,t) when (match EConstr.kind sigma constr with | Const (c', _) -> Constant.equal (Projection.constant p) c' | _ -> false) -> let npars = Projection.npars p in if List.length stack <= npars then (* Do not show the eta-expanded form *) s' else redrec (applist (c, stack)) | _ -> redrec (applist(c, stack))) | None -> s' in let simpfun = clos_norm_flags betaiota env sigma in simpfun (applist (redrec c)) let hnf_constr = whd_simpl_orelse_delta_but_fix (* The "simpl" reduction tactic *) let whd_simpl env sigma c = applist (whd_simpl_stack env sigma c) let simpl env sigma c = strong whd_simpl env sigma c (* Reduction at specific subterms *) let matches_head env sigma c t = match EConstr.kind sigma t with | App (f,_) -> Constr_matching.matches env sigma c f | Proj (p, _) -> Constr_matching.matches env sigma c (mkConstU (Projection.constant p, EInstance.empty)) | _ -> raise Constr_matching.PatternMatchingFailure (** FIXME: Specific function to handle projections: it ignores what happens on the parameters. This is a temporary fix while rewrite etc... are not up to equivalence of the projection and its eta expanded form. *) let change_map_constr_with_binders_left_to_right g f (env, l as acc) sigma c = match EConstr.kind sigma c with | Proj (p, r) -> (* Treat specially for partial applications *) let t = Retyping.expand_projection env sigma p r [] in let hdf, al = destApp sigma t in let a = al.(Array.length al - 1) in let app = (mkApp (hdf, Array.sub al 0 (Array.length al - 1))) in let app' = f acc app in let a' = f acc a in (match EConstr.kind sigma app' with | App (hdf', al') when hdf' == hdf -> (* Still the same projection, we ignore the change in parameters *) mkProj (p, a') | _ -> mkApp (app', [| a' |])) | _ -> map_constr_with_binders_left_to_right sigma g f acc c let e_contextually byhead (occs,c) f = begin fun env sigma t -> let (nowhere_except_in,locs) = Locusops.convert_occs occs in let maxocc = List.fold_right max locs 0 in let pos = ref 1 in (* FIXME: we do suspicious things with this evarmap *) let evd = ref sigma in let rec traverse nested (env,c as envc) t = if nowhere_except_in && (!pos > maxocc) then (* Shortcut *) t else try let subst = if byhead then matches_head env sigma c t else Constr_matching.matches env sigma c t in let ok = if nowhere_except_in then Int.List.mem !pos locs else not (Int.List.mem !pos locs) in incr pos; if ok then begin if Option.has_some nested then user_err (str "The subterm at occurrence " ++ int (Option.get nested) ++ str " overlaps with the subterm at occurrence " ++ int (!pos-1) ++ str "."); (* Skip inner occurrences for stable counting of occurrences *) if locs != [] then ignore (traverse_below (Some (!pos-1)) envc t); let (evm, t) = (f subst) env !evd t in (evd := evm; t) end else traverse_below nested envc t with Constr_matching.PatternMatchingFailure -> traverse_below nested envc t and traverse_below nested envc t = (* when byhead, find other occurrences without matching again partial application with same head *) match EConstr.kind !evd t with | App (f,l) when byhead -> mkApp (f, Array.map_left (traverse nested envc) l) | Proj (p,c) when byhead -> mkProj (p,traverse nested envc c) | _ -> change_map_constr_with_binders_left_to_right (fun d (env,c) -> (push_rel d env,lift_pattern 1 c)) (traverse nested) envc sigma t in let t' = traverse None (env,c) t in if List.exists (fun o -> o >= !pos) locs then error_invalid_occurrence locs; (!evd, t') end let contextually byhead occs f env sigma t = let f' subst env sigma t = sigma, f subst env sigma t in snd (e_contextually byhead occs f' env sigma t) (* linear bindings (following pretty-printer) of the value of name in c. * n is the number of the next occurrence of name. * ol is the occurrence list to find. *) let match_constr_evaluable_ref sigma c evref = match EConstr.kind sigma c, evref with | Const (c,u), EvalConstRef c' when Constant.equal c c' -> Some u | Var id, EvalVarRef id' when Id.equal id id' -> Some EInstance.empty | _, _ -> None let substlin env sigma evalref n (nowhere_except_in,locs) c = let maxocc = List.fold_right max locs 0 in let pos = ref n in assert (List.for_all (fun x -> x >= 0) locs); let value u = value_of_evaluable_ref env evalref u in let rec substrec () c = if nowhere_except_in && !pos > maxocc then c else match match_constr_evaluable_ref sigma c evalref with | Some u -> let ok = if nowhere_except_in then Int.List.mem !pos locs else not (Int.List.mem !pos locs) in incr pos; if ok then value u else c | None -> map_constr_with_binders_left_to_right sigma (fun _ () -> ()) substrec () c in let t' = substrec () c in (!pos, t') let string_of_evaluable_ref env = function | EvalVarRef id -> Id.to_string id | EvalConstRef kn -> string_of_qualid (Nametab.shortest_qualid_of_global (vars_of_env env) (GlobRef.ConstRef kn)) (* Removing fZETA for finer behaviour would break many developments *) let unfold_side_flags = RedFlags.[fBETA;fMATCH;fFIX;fCOFIX;fZETA] let unfold_side_red = RedFlags.(mkflags [fBETA;fMATCH;fFIX;fCOFIX;fZETA]) let unfold_red kn = let flag = match kn with | EvalVarRef id -> RedFlags.fVAR id | EvalConstRef kn -> RedFlags.fCONST kn in RedFlags.mkflags (flag::unfold_side_flags) let unfold env sigma name c = if is_evaluable env name then clos_norm_flags (unfold_red name) env sigma c else user_err Pp.(str (string_of_evaluable_ref env name^" is opaque.")) (* [unfoldoccs : (readable_constraints -> (int list * full_path) -> constr -> constr)] * Unfolds the constant name in a term c following a list of occurrences occl. * at the occurrences of occ_list. If occ_list is empty, unfold all occurrences. * Performs a betaiota reduction after unfolding. *) let unfoldoccs env sigma (occs,name) c = let unfo nowhere_except_in locs = let (nbocc,uc) = substlin env sigma name 1 (nowhere_except_in,locs) c in if Int.equal nbocc 1 then user_err Pp.(str ((string_of_evaluable_ref env name)^" does not occur.")); let rest = List.filter (fun o -> o >= nbocc) locs in let () = match rest with | [] -> () | _ -> error_invalid_occurrence rest in nf_betaiotazeta env sigma uc in match occs with | NoOccurrences -> c | AllOccurrences -> unfold env sigma name c | OnlyOccurrences l -> unfo true l | AllOccurrencesBut l -> unfo false l | AtLeastOneOccurrence -> unfo false [] (* Unfold reduction tactic: *) let unfoldn loccname env sigma c = List.fold_left (fun c occname -> unfoldoccs env sigma occname c) c loccname (* Re-folding constants tactics: refold com in term c *) let fold_one_com com env sigma c = let rcom = try red_product env sigma com with Redelimination -> user_err Pp.(str "Not reducible.") in (* Reason first on the beta-iota-zeta normal form of the constant as unfold produces it, so that the "unfold f; fold f" configuration works to refold fix expressions *) let a = subst_term sigma (clos_norm_flags unfold_side_red env sigma rcom) c in if not (EConstr.eq_constr sigma a c) then Vars.subst1 com a else (* Then reason on the non beta-iota-zeta form for compatibility - even if it is probably a useless configuration *) let a = subst_term sigma rcom c in Vars.subst1 com a let fold_commands cl env sigma c = List.fold_right (fun com c -> fold_one_com com env sigma c) (List.rev cl) c (* call by value reduction functions *) let cbv_norm_flags flags env sigma t = cbv_norm (create_cbv_infos flags env sigma) t let cbv_beta = cbv_norm_flags beta let cbv_betaiota = cbv_norm_flags betaiota let cbv_betadeltaiota env sigma = cbv_norm_flags all env sigma let compute = cbv_betadeltaiota (* Pattern *) (* gives [na:ta]c' such that c converts to ([na:ta]c' a), abstracting only * the specified occurrences. *) let abstract_scheme env sigma (locc,a) (c, sigma) = let ta = Retyping.get_type_of env sigma a in let na = named_hd env sigma ta Anonymous in let na = make_annot na Sorts.Relevant in (* TODO relevance *) if occur_meta sigma ta then user_err Pp.(str "Cannot find a type for the generalisation."); if occur_meta sigma a then mkLambda (na,ta,c), sigma else let c', sigma' = subst_closed_term_occ env sigma (AtOccs locc) a c in mkLambda (na,ta,c'), sigma' let pattern_occs loccs_trm = begin fun env sigma c -> let abstr_trm, sigma = List.fold_right (abstract_scheme env sigma) loccs_trm (c,sigma) in try let _ = Typing.unsafe_type_of env sigma abstr_trm in (sigma, applist(abstr_trm, List.map snd loccs_trm)) with Type_errors.TypeError (env',t) -> raise (ReductionTacticError (InvalidAbstraction (env,sigma,abstr_trm,(env',t)))) end (* Used in several tactics. *) let check_privacy env ind = let spec = Inductive.lookup_mind_specif env (fst ind) in if Inductive.is_private spec then user_err (str "case analysis on a private type.") else ind let check_not_primitive_record env ind = let spec = Inductive.lookup_mind_specif env (fst ind) in if Inductive.is_primitive_record spec then user_err (str "case analysis on a primitive record type: " ++ str "use projections or let instead.") else ind (* put t as t'=(x1:A1)..(xn:An)B with B an inductive definition of name name return name, B and t' *) let reduce_to_ind_gen allow_product env sigma t = let rec elimrec env t l = let t = hnf_constr env sigma t in match EConstr.kind sigma (fst (decompose_app_vect sigma t)) with | Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t l) | Prod (n,ty,t') -> let open Context.Rel.Declaration in if allow_product then elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l) else user_err (str"Not an inductive definition.") | _ -> (* Last chance: we allow to bypass the Opaque flag (as it was partially the case between V5.10 and V8.1 *) let t' = whd_all env sigma t in match EConstr.kind sigma (fst (decompose_app_vect sigma t')) with | Ind ind-> (check_privacy env ind, it_mkProd_or_LetIn t' l) | _ -> user_err (str"Not an inductive product.") in elimrec env t [] let reduce_to_quantified_ind env sigma c = reduce_to_ind_gen true env sigma c let reduce_to_atomic_ind env sigma c = reduce_to_ind_gen false env sigma c let find_hnf_rectype env sigma t = let ind,t = reduce_to_atomic_ind env sigma t in ind, snd (decompose_app sigma t) (* Reduce the weak-head redex [beta,iota/fix/cofix[all],cast,zeta,simpl/delta] or raise [NotStepReducible] if not a weak-head redex *) exception NotStepReducible let one_step_reduce env sigma c = let rec redrec (x, stack) = match EConstr.kind sigma x with | Lambda (n,t,c) -> (match stack with | [] -> raise NotStepReducible | a :: rest -> (Vars.subst1 a c, rest)) | App (f,cl) -> redrec (f, (Array.to_list cl)@stack) | LetIn (_,f,_,cl) -> (Vars.subst1 f cl,stack) | Cast (c,_,_) -> redrec (c,stack) | Case (ci,p,c,lf) -> (try (special_red_case env sigma (whd_simpl_stack env sigma) (ci,p,c,lf), stack) with Redelimination -> raise NotStepReducible) | Fix fix -> (try match reduce_fix (whd_construct_stack env) sigma fix stack with | Reduced s' -> s' | NotReducible -> raise NotStepReducible with Redelimination -> raise NotStepReducible) | _ when isEvalRef env sigma x -> let ref,u = destEvalRefU sigma x in (try fst (red_elim_const env sigma ref u stack) with Redelimination -> match reference_opt_value env sigma ref u with | Some d -> (d, stack) | None -> raise NotStepReducible) | _ -> raise NotStepReducible in applist (redrec (c,[])) let error_cannot_recognize ref = user_err (str "Cannot recognize a statement based on " ++ Nametab.pr_global_env Id.Set.empty ref ++ str".") let reduce_to_ref_gen allow_product env sigma ref t = if isIndRef ref then let ((mind,u),t) = reduce_to_ind_gen allow_product env sigma t in begin match ref with | GlobRef.IndRef mind' when eq_ind mind mind' -> t | _ -> error_cannot_recognize ref end else (* lazily reduces to match the head of [t] with the expected [ref] *) let rec elimrec env t l = let c, _ = decompose_app_vect sigma t in match EConstr.kind sigma c with | Prod (n,ty,t') -> if allow_product then let open Context.Rel.Declaration in elimrec (push_rel (LocalAssum (n,ty)) env) t' ((LocalAssum (n,ty))::l) else error_cannot_recognize ref | _ -> try if GlobRef.equal (fst (global_of_constr sigma c)) ref then it_mkProd_or_LetIn t l else raise Not_found with Not_found -> try let t' = nf_betaiota env sigma (one_step_reduce env sigma t) in elimrec env t' l with NotStepReducible -> error_cannot_recognize ref in elimrec env t [] let reduce_to_quantified_ref = reduce_to_ref_gen true let reduce_to_atomic_ref = reduce_to_ref_gen false