1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Constr open Context open Termops open Univ open Evd open Environ open EConstr open Vars open Context.Rel.Declaration exception Elimconst (** This module implements a call by name reduction used by (at least) evarconv unification and cbn tactic. It has an ability to "refold" constants by storing constants and their parameters in its stack. *) let () = Goptions.(declare_bool_option { optdepr = false; optname = "Generate weak constraints between Irrelevant universes"; optkey = ["Cumulativity";"Weak";"Constraints"]; optread = (fun () -> not !UState.drop_weak_constraints); optwrite = (fun a -> UState.drop_weak_constraints:=not a); }) (** Support for reduction effects *) open Mod_subst open Libobject type effect_name = string (** create a persistent set to store effect functions *) (* Table bindings a constant to an effect *) let constant_effect_table = Summary.ref ~name:"reduction-side-effect" Cmap.empty (* Table bindings function key to effective functions *) let effect_table = ref String.Map.empty (** a test to know whether a constant is actually the effect function *) let reduction_effect_hook env sigma con c = try let funkey = Cmap.find con !constant_effect_table in let effect = String.Map.find funkey !effect_table in effect env sigma (Lazy.force c) with Not_found -> () let cache_reduction_effect (_,(con,funkey)) = constant_effect_table := Cmap.add con funkey !constant_effect_table let subst_reduction_effect (subst,(con,funkey)) = (subst_constant subst con,funkey) let inReductionEffect : Constant.t * string -> obj = declare_object @@ global_object_nodischarge "REDUCTION-EFFECT" ~cache:cache_reduction_effect ~subst:(Some subst_reduction_effect) let declare_reduction_effect funkey f = if String.Map.mem funkey !effect_table then CErrors.anomaly Pp.(str "Cannot redeclare effect function " ++ qstring funkey ++ str "."); effect_table := String.Map.add funkey f !effect_table (** A function to set the value of the print function *) let set_reduction_effect x funkey = Lib.add_anonymous_leaf (inReductionEffect (x,funkey)) (** Machinery to custom the behavior of the reduction *) module ReductionBehaviour = struct open Globnames open Names open Libobject type t = NeverUnfold | UnfoldWhen of when_flags | UnfoldWhenNoMatch of when_flags and when_flags = { recargs : int list ; nargs : int option } let more_args_when k { recargs; nargs } = { nargs = Option.map ((+) k) nargs; recargs = List.map ((+) k) recargs; } let more_args k = function | NeverUnfold -> NeverUnfold | UnfoldWhen x -> UnfoldWhen (more_args_when k x) | UnfoldWhenNoMatch x -> UnfoldWhenNoMatch (more_args_when k x) let table = Summary.ref (GlobRef.Map.empty : t GlobRef.Map.t) ~name:"reductionbehaviour" let load _ (_,(_,(r, b))) = table := GlobRef.Map.add r b !table let cache o = load 1 o let classify (local,_ as o) = if local then Dispose else Substitute o let subst (subst, (local, (r,o) as orig)) = let r' = subst_global_reference subst r in if r==r' then orig else (local,(r',o)) let discharge = function | _,(false, (gr, b)) -> let b = if Lib.is_in_section gr then let vars = Lib.variable_section_segment_of_reference gr in let extra = List.length vars in more_args extra b else b in Some (false, (gr, b)) | _ -> None let rebuild = function | req, (GlobRef.ConstRef c, _ as x) -> req, x | _ -> assert false let inRedBehaviour = declare_object { (default_object "REDUCTIONBEHAVIOUR") with load_function = load; cache_function = cache; classify_function = classify; subst_function = subst; discharge_function = discharge; rebuild_function = rebuild; } let set ~local r b = Lib.add_anonymous_leaf (inRedBehaviour (local, (r, b))) let get r = GlobRef.Map.find_opt r !table let print ref = let open Pp in let pr_global = Nametab.pr_global_env Id.Set.empty in match get ref with | None -> mt () | Some b -> let pp_nomatch = spc () ++ str "but avoid exposing match constructs" in let pp_recargs recargs = spc() ++ str "when the " ++ pr_enum (fun x -> pr_nth (x+1)) recargs ++ str (String.plural (List.length recargs) " argument") ++ str (String.plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++ str " to a constructor" in let pp_nargs nargs = spc() ++ str "when applied to " ++ int nargs ++ str (String.plural nargs " argument") in let pp_when = function | { recargs = []; nargs = Some 0 } -> str "always unfold " ++ pr_global ref | { recargs = []; nargs = Some n } -> str "unfold " ++ pr_global ref ++ pp_nargs n | { recargs = []; nargs = None } -> str "unfold " ++ pr_global ref | { recargs; nargs = Some n } when n > List.fold_left max 0 recargs -> str "unfold " ++ pr_global ref ++ pp_recargs recargs ++ str " and" ++ pp_nargs n | { recargs; nargs = _ } -> str "unfold " ++ pr_global ref ++ pp_recargs recargs in let pp_behavior = function | NeverUnfold -> str "never unfold " ++ pr_global ref | UnfoldWhen x -> pp_when x | UnfoldWhenNoMatch x -> pp_when x ++ pp_nomatch in hov 2 (str "The reduction tactics " ++ pp_behavior b) end (** Machinery about stack of unfolded constants *) module Cst_stack = struct open EConstr (** constant * params * args - constant applied to params = term in head applied to args - there is at most one arguments with an empty list of args, it must be the first. - in args, the int represents the indice of the first arg to consider *) type t = (constr * constr list * (int * constr array) list) list let empty = [] let is_empty = CList.is_empty let drop_useless = function | _ :: ((_,_,[])::_ as q) -> q | l -> l let add_param h cst_l = let append2cst = function | (c,params,[]) -> (c, h::params, []) | (c,params,((i,t)::q)) when i = pred (Array.length t) -> (c, params, q) | (c,params,(i,t)::q) -> (c, params, (succ i,t)::q) in drop_useless (List.map append2cst cst_l) let add_args cl = List.map (fun (a,b,args) -> (a,b,(0,cl)::args)) let add_cst cst = function | (_,_,[]) :: q as l -> l | l -> (cst,[],[])::l let best_cst = function | (cst,params,[])::_ -> Some(cst,params) | _ -> None let reference sigma t = match best_cst t with | Some (c, _) when isConst sigma c -> Some (fst (destConst sigma c)) | _ -> None (** [best_replace d cst_l c] makes the best replacement for [d] by [cst_l] in [c] *) let best_replace sigma d cst_l c = let reconstruct_head = List.fold_left (fun t (i,args) -> mkApp (t,Array.sub args i (Array.length args - i))) in List.fold_right (fun (cst,params,args) t -> Termops.replace_term sigma (reconstruct_head d args) (applist (cst, List.rev params)) t) cst_l c let pr env sigma l = let open Pp in let p_c c = Termops.Internal.print_constr_env env sigma c in prlist_with_sep pr_semicolon (fun (c,params,args) -> hov 1 (str"(" ++ p_c c ++ str ")" ++ spc () ++ pr_sequence p_c params ++ spc () ++ str "(args:" ++ pr_sequence (fun (i,el) -> prvect_with_sep spc p_c (Array.sub el i (Array.length el - i))) args ++ str ")")) l end (** The type of (machine) stacks (= lambda-bar-calculus' contexts) *) module Stack : sig open EConstr type 'a app_node val pr_app_node : ('a -> Pp.t) -> 'a app_node -> Pp.t type cst_member = | Cst_const of pconstant | Cst_proj of Projection.t type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * Cst_stack.t | Proj of Projection.t * Cst_stack.t | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t | Primitive of CPrimitives.t * (Constant.t * EInstance.t) * 'a t * CPrimitives.args_red * Cst_stack.t | Cst of cst_member * int * int list * 'a t * Cst_stack.t and 'a t = 'a member list exception IncompatibleFold2 val pr : ('a -> Pp.t) -> 'a t -> Pp.t val empty : 'a t val is_empty : 'a t -> bool val append_app : 'a array -> 'a t -> 'a t val decomp : 'a t -> ('a * 'a t) option val decomp_node_last : 'a app_node -> 'a t -> ('a * 'a t) val equal : ('a -> 'a -> bool) -> (('a, 'a) pfixpoint -> ('a, 'a) pfixpoint -> bool) -> 'a t -> 'a t -> bool val compare_shape : 'a t -> 'a t -> bool val map : ('a -> 'a) -> 'a t -> 'a t val fold2 : ('a -> constr -> constr -> 'a) -> 'a -> constr t -> constr t -> 'a val append_app_list : 'a list -> 'a t -> 'a t val strip_app : 'a t -> 'a t * 'a t val strip_n_app : int -> 'a t -> ('a t * 'a * 'a t) option val not_purely_applicative : 'a t -> bool val will_expose_iota : 'a t -> bool val list_of_app_stack : constr t -> constr list option val assign : 'a t -> int -> 'a -> 'a t val args_size : 'a t -> int val tail : int -> 'a t -> 'a t val nth : 'a t -> int -> 'a val best_state : evar_map -> constr * constr t -> Cst_stack.t -> constr * constr t val zip : ?refold:bool -> evar_map -> constr * constr t -> constr val check_native_args : CPrimitives.t -> 'a t -> bool val get_next_primitive_args : CPrimitives.args_red -> 'a t -> CPrimitives.args_red * ('a t * 'a * 'a t) option end = struct open EConstr type 'a app_node = int * 'a array * int (* first releavnt position, arguments, last relevant position *) (* Invariant that this module must ensure : (behare of direct access to app_node by the rest of Reductionops) - in app_node (i,_,j) i <= j - There is no array realocation (outside of debug printing) *) let pr_app_node pr (i,a,j) = let open Pp in surround ( prvect_with_sep pr_comma pr (Array.sub a i (j - i + 1)) ) type cst_member = | Cst_const of pconstant | Cst_proj of Projection.t type 'a member = | App of 'a app_node | Case of case_info * 'a * 'a array * Cst_stack.t | Proj of Projection.t * Cst_stack.t | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t | Primitive of CPrimitives.t * (Constant.t * EInstance.t) * 'a t * CPrimitives.args_red * Cst_stack.t | Cst of cst_member * int * int list * 'a t * Cst_stack.t and 'a t = 'a member list (* Debugging printer *) let rec pr_member pr_c member = let open Pp in let pr_c x = hov 1 (pr_c x) in match member with | App app -> str "ZApp" ++ pr_app_node pr_c app | Case (_,_,br,cst) -> str "ZCase(" ++ prvect_with_sep (pr_bar) pr_c br ++ str ")" | Proj (p,cst) -> str "ZProj(" ++ Constant.debug_print (Projection.constant p) ++ str ")" | Fix (f,args,cst) -> str "ZFix(" ++ Constr.debug_print_fix pr_c f ++ pr_comma () ++ pr pr_c args ++ str ")" | Primitive (p,c,args,kargs,cst_l) -> str "ZPrimitive(" ++ str (CPrimitives.to_string p) ++ pr_comma () ++ pr pr_c args ++ str ")" | Cst (mem,curr,remains,params,cst_l) -> str "ZCst(" ++ pr_cst_member pr_c mem ++ pr_comma () ++ int curr ++ pr_comma () ++ prlist_with_sep pr_semicolon int remains ++ pr_comma () ++ pr pr_c params ++ str ")" and pr pr_c l = let open Pp in prlist_with_sep pr_semicolon (fun x -> hov 1 (pr_member pr_c x)) l and pr_cst_member pr_c c = let open Pp in match c with | Cst_const (c, u) -> if Univ.Instance.is_empty u then Constant.debug_print c else str"(" ++ Constant.debug_print c ++ str ", " ++ Univ.Instance.pr Univ.Level.pr u ++ str")" | Cst_proj p -> str".(" ++ Constant.debug_print (Projection.constant p) ++ str")" let empty = [] let is_empty = CList.is_empty let append_app v s = let le = Array.length v in if Int.equal le 0 then s else App (0,v,pred le) :: s let decomp_node (i,l,j) sk = if i < j then (l.(i), App (succ i,l,j) :: sk) else (l.(i), sk) let decomp = function | App node::s -> Some (decomp_node node s) | _ -> None let decomp_node_last (i,l,j) sk = if i < j then (l.(j), App (i,l,pred j) :: sk) else (l.(j), sk) let equal f f_fix sk1 sk2 = let equal_cst_member x y = match x, y with | Cst_const (c1,u1), Cst_const (c2, u2) -> Constant.equal c1 c2 && Univ.Instance.equal u1 u2 | Cst_proj p1, Cst_proj p2 -> Projection.repr_equal p1 p2 | _, _ -> false in let rec equal_rec sk1 sk2 = match sk1,sk2 with | [],[] -> true | App a1 :: s1, App a2 :: s2 -> let t1,s1' = decomp_node_last a1 s1 in let t2,s2' = decomp_node_last a2 s2 in (f t1 t2) && (equal_rec s1' s2') | Case (_,t1,a1,_) :: s1, Case (_,t2,a2,_) :: s2 -> f t1 t2 && CArray.equal (fun x y -> f x y) a1 a2 && equal_rec s1 s2 | (Proj (p,_)::s1, Proj(p2,_)::s2) -> Projection.Repr.equal (Projection.repr p) (Projection.repr p2) && equal_rec s1 s2 | Fix (f1,s1,_) :: s1', Fix (f2,s2,_) :: s2' -> f_fix f1 f2 && equal_rec (List.rev s1) (List.rev s2) && equal_rec s1' s2' | Cst (c1,curr1,remains1,params1,_)::s1', Cst (c2,curr2,remains2,params2,_)::s2' -> equal_cst_member c1 c2 && equal_rec (List.rev params1) (List.rev params2) && equal_rec s1' s2' | ((App _|Case _|Proj _|Fix _|Cst _|Primitive _)::_|[]), _ -> false in equal_rec (List.rev sk1) (List.rev sk2) let compare_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> Int.equal bal 0 | (App (i,_,j)::s1, _) -> compare_rec (bal + j + 1 - i) s1 stk2 | (_, App (i,_,j)::s2) -> compare_rec (bal - j - 1 + i) stk1 s2 | (Case(c1,_,_,_)::s1, Case(c2,_,_,_)::s2) -> Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Proj (p,_)::s1, Proj(p2,_)::s2) -> Int.equal bal 0 && compare_rec 0 s1 s2 | (Fix(_,a1,_)::s1, Fix(_,a2,_)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | (Primitive(_,_,a1,_,_)::s1, Primitive(_,_,a2,_,_)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | (Cst (_,_,_,p1,_)::s1, Cst (_,_,_,p2,_)::s2) -> Int.equal bal 0 && compare_rec 0 p1 p2 && compare_rec 0 s1 s2 | ((Case _|Proj _|Fix _|Cst _|Primitive _) :: _ | []) ,_ -> false in compare_rec 0 stk1 stk2 exception IncompatibleFold2 let fold2 f o sk1 sk2 = let rec aux o sk1 sk2 = match sk1,sk2 with | [], [] -> o | App n1 :: q1, App n2 :: q2 -> let t1,l1 = decomp_node_last n1 q1 in let t2,l2 = decomp_node_last n2 q2 in aux (f o t1 t2) l1 l2 | Case (_,t1,a1,_) :: q1, Case (_,t2,a2,_) :: q2 -> aux (Array.fold_left2 f (f o t1 t2) a1 a2) q1 q2 | Proj (p1,_) :: q1, Proj (p2,_) :: q2 -> aux o q1 q2 | Fix ((_,(_,a1,b1)),s1,_) :: q1, Fix ((_,(_,a2,b2)),s2,_) :: q2 -> let o' = aux (Array.fold_left2 f (Array.fold_left2 f o b1 b2) a1 a2) (List.rev s1) (List.rev s2) in aux o' q1 q2 | Cst (cst1,_,_,params1,_) :: q1, Cst (cst2,_,_,params2,_) :: q2 -> let o' = aux o (List.rev params1) (List.rev params2) in aux o' q1 q2 | (((App _|Case _|Proj _|Fix _|Cst _|Primitive _) :: _|[]), _) -> raise IncompatibleFold2 in aux o (List.rev sk1) (List.rev sk2) let rec map f x = List.map (function | (Proj (_,_)) as e -> e | App (i,a,j) -> let le = j - i + 1 in App (0,Array.map f (Array.sub a i le), le-1) | Case (info,ty,br,alt) -> Case (info, f ty, Array.map f br, alt) | Fix ((r,(na,ty,bo)),arg,alt) -> Fix ((r,(na,Array.map f ty, Array.map f bo)),map f arg,alt) | Cst (cst,curr,remains,params,alt) -> Cst (cst,curr,remains,map f params,alt) | Primitive (p,c,args,kargs,cst_l) -> Primitive(p,c, map f args, kargs, cst_l) ) x let append_app_list l s = let a = Array.of_list l in append_app a s let rec args_size = function | App (i,_,j)::s -> j + 1 - i + args_size s | (Case _|Fix _|Proj _|Cst _|Primitive _)::_ | [] -> 0 let strip_app s = let rec aux out = function | ( App _ as e) :: s -> aux (e :: out) s | s -> List.rev out,s in aux [] s let strip_n_app n s = let rec aux n out = function | App (i,a,j) as e :: s -> let nb = j - i + 1 in if n >= nb then aux (n - nb) (e::out) s else let p = i+n in Some (CList.rev (if Int.equal n 0 then out else App (i,a,p-1) :: out), a.(p), if j > p then App(succ p,a,j)::s else s) | s -> None in aux n [] s let not_purely_applicative args = List.exists (function (Fix _ | Case _ | Proj _ | Cst _) -> true | App _ | Primitive _ -> false) args let will_expose_iota args = List.exists (function (Fix (_,_,l) | Case (_,_,_,l) | Proj (_,l) | Cst (_,_,_,_,l)) when Cst_stack.is_empty l -> true | _ -> false) args let list_of_app_stack s = let rec aux = function | App (i,a,j) :: s -> let (args',s') = aux s in let a' = Array.sub a i (j - i + 1) in (Array.fold_right (fun x y -> x::y) a' args', s') | s -> ([],s) in let (out,s') = aux s in let init = match s' with [] -> true | _ -> false in Option.init init out let assign s p c = match strip_n_app p s with | Some (pre,_,sk) -> pre @ (App (0,[|c|],0)::sk) | None -> assert false let tail n0 s0 = let rec aux n s = if Int.equal n 0 then s else match s with | App (i,a,j) :: s -> let nb = j - i + 1 in if n >= nb then aux (n - nb) s else let p = i+n in if j >= p then App(p,a,j)::s else s | _ -> raise (Invalid_argument "Reductionops.Stack.tail") in aux n0 s0 let nth s p = match strip_n_app p s with | Some (_,el,_) -> el | None -> raise Not_found (** This function breaks the abstraction of Cst_stack ! *) let best_state sigma (_,sk as s) l = let rec aux sk def = function |(cst, params, []) -> (cst, append_app_list (List.rev params) sk) |(cst, params, (i,t)::q) -> match decomp sk with | Some (el,sk') when EConstr.eq_constr sigma el t.(i) -> if i = pred (Array.length t) then aux sk' def (cst, params, q) else aux sk' def (cst, params, (succ i,t)::q) | _ -> def in List.fold_left (aux sk) s l let constr_of_cst_member f sk = match f with | Cst_const (c, u) -> mkConstU (c, EInstance.make u), sk | Cst_proj p -> match decomp sk with | Some (hd, sk) -> mkProj (p, hd), sk | None -> assert false let zip ?(refold=false) sigma s = let rec zip = function | f, [] -> f | f, (App (i,a,j) :: s) -> let a' = if Int.equal i 0 && Int.equal j (Array.length a - 1) then a else Array.sub a i (j - i + 1) in zip (mkApp (f, a'), s) | f, (Case (ci,rt,br,cst_l)::s) when refold -> zip (best_state sigma (mkCase (ci,rt,f,br), s) cst_l) | f, (Case (ci,rt,br,_)::s) -> zip (mkCase (ci,rt,f,br), s) | f, (Fix (fix,st,cst_l)::s) when refold -> zip (best_state sigma (mkFix fix, st @ (append_app [|f|] s)) cst_l) | f, (Fix (fix,st,_)::s) -> zip (mkFix fix, st @ (append_app [|f|] s)) | f, (Cst (cst,_,_,params,cst_l)::s) when refold -> zip (best_state sigma (constr_of_cst_member cst (params @ (append_app [|f|] s))) cst_l) | f, (Cst (cst,_,_,params,_)::s) -> zip (constr_of_cst_member cst (params @ (append_app [|f|] s))) | f, (Proj (p,cst_l)::s) when refold -> zip (best_state sigma (mkProj (p,f),s) cst_l) | f, (Proj (p,_)::s) -> zip (mkProj (p,f),s) | f, (Primitive (p,c,args,kargs,cst_l)::s) -> zip (mkConstU c, args @ append_app [|f|] s) in zip s (* Check if there is enough arguments on [stk] w.r.t. arity of [op] *) let check_native_args op stk = let nargs = CPrimitives.arity op in let rargs = args_size stk in nargs <= rargs let get_next_primitive_args kargs stk = let rec nargs = function | [] -> 0 | CPrimitives.Kwhnf :: _ -> 0 | _ :: s -> 1 + nargs s in let n = nargs kargs in (List.skipn (n+1) kargs, strip_n_app n stk) end (** The type of (machine) states (= lambda-bar-calculus' cuts) *) type state = constr * constr Stack.t type contextual_reduction_function = env -> evar_map -> constr -> constr type reduction_function = contextual_reduction_function type local_reduction_function = evar_map -> constr -> constr type e_reduction_function = env -> evar_map -> constr -> evar_map * constr type contextual_stack_reduction_function = env -> evar_map -> constr -> constr * constr list type stack_reduction_function = contextual_stack_reduction_function type local_stack_reduction_function = evar_map -> constr -> constr * constr list type contextual_state_reduction_function = env -> evar_map -> state -> state type state_reduction_function = contextual_state_reduction_function type local_state_reduction_function = evar_map -> state -> state let pr_state env sigma (tm,sk) = let open Pp in let pr c = Termops.Internal.print_constr_env env sigma c in h 0 (pr tm ++ str "|" ++ cut () ++ Stack.pr pr sk) (*************************************) (*** Reduction Functions Operators ***) (*************************************) let safe_evar_value = Evarutil.safe_evar_value let safe_meta_value sigma ev = try Some (Evd.meta_value sigma ev) with Not_found -> None let strong_with_flags whdfun flags env sigma t = let push_rel_check_zeta d env = let open CClosure.RedFlags in let d = match d with | LocalDef (na,c,t) when not (red_set flags fZETA) -> LocalAssum (na,t) | d -> d in push_rel d env in let rec strongrec env t = map_constr_with_full_binders sigma push_rel_check_zeta strongrec env (whdfun flags env sigma t) in strongrec env t let strong whdfun env sigma t = let rec strongrec env t = map_constr_with_full_binders sigma push_rel strongrec env (whdfun env sigma t) in strongrec env t let local_strong whdfun sigma = let rec strongrec t = EConstr.map sigma strongrec (whdfun sigma t) in strongrec let rec strong_prodspine redfun sigma c = let x = redfun sigma c in match EConstr.kind sigma x with | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b) | _ -> x (*************************************) (*** Reduction using bindingss ***) (*************************************) let eta = CClosure.RedFlags.mkflags [CClosure.RedFlags.fETA] (* Beta Reduction tools *) let apply_subst recfun env sigma refold cst_l t stack = let rec aux env cst_l t stack = match (Stack.decomp stack, EConstr.kind sigma t) with | Some (h,stacktl), Lambda (_,_,c) -> let cst_l' = if refold then Cst_stack.add_param h cst_l else cst_l in aux (h::env) cst_l' c stacktl | _ -> recfun sigma cst_l (substl env t, stack) in aux env cst_l t stack let stacklam recfun env sigma t stack = apply_subst (fun _ _ s -> recfun s) env sigma false Cst_stack.empty t stack let beta_applist sigma (c,l) = let zip s = Stack.zip sigma s in stacklam zip [] sigma c (Stack.append_app_list l Stack.empty) (* Iota reduction tools *) type 'a miota_args = { mP : constr; (* the result type *) mconstr : constr; (* the constructor *) mci : case_info; (* special info to re-build pattern *) mcargs : 'a list; (* the constructor's arguments *) mlf : 'a array } (* the branch code vector *) let reducible_mind_case sigma c = match EConstr.kind sigma c with | Construct _ | CoFix _ -> true | _ -> false (** @return c if there is a constant c whose body is bd @return bd else. It has only a meaning because internal representation of "Fixpoint f x := t" is Definition f := fix f x => t Even more fragile that we could hope because do Module M. Fixpoint f x := t. End M. Definition f := u. and say goodbye to any hope of refolding M.f this way ... *) let magicaly_constant_of_fixbody env sigma reference bd = function | Name.Anonymous -> bd | Name.Name id -> let open UnivProblem in try let (cst_mod,_) = Constant.repr2 reference in let cst = Constant.make2 cst_mod (Label.of_id id) in let (cst, u), ctx = UnivGen.fresh_constant_instance env cst in match constant_opt_value_in env (cst,u) with | None -> bd | Some t -> let csts = EConstr.eq_constr_universes env sigma (EConstr.of_constr t) bd in begin match csts with | Some csts -> let subst = Set.fold (fun cst acc -> let l, r = match cst with | ULub (u, v) | UWeak (u, v) -> u, v | UEq (u, v) | ULe (u, v) -> let get u = Option.get (Universe.level u) in get u, get v in Univ.LMap.add l r acc) csts Univ.LMap.empty in let inst = Instance.subst_fn (fun u -> Univ.LMap.find u subst) u in mkConstU (cst, EInstance.make inst) | None -> bd end with | Not_found -> bd let contract_cofix ?env sigma ?reference (bodynum,(names,types,bodies as typedbodies)) = let nbodies = Array.length bodies in let make_Fi j = let ind = nbodies-j-1 in if Int.equal bodynum ind then mkCoFix (ind,typedbodies) else let bd = mkCoFix (ind,typedbodies) in match env with | None -> bd | Some e -> match reference with | None -> bd | Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind).binder_name in let closure = List.init nbodies make_Fi in substl closure bodies.(bodynum) (** Similar to the "fix" case below *) let reduce_and_refold_cofix recfun env sigma refold cst_l cofix sk = let raw_answer = let env = if refold then Some env else None in contract_cofix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) cofix in apply_subst (fun sigma x (t,sk') -> let t' = if refold then Cst_stack.best_replace sigma (mkCoFix cofix) cst_l t else t in recfun x (t',sk')) [] sigma refold Cst_stack.empty raw_answer sk let reduce_mind_case sigma mia = match EConstr.kind sigma mia.mconstr with | Construct ((ind_sp,i),u) -> (* let ncargs = (fst mia.mci).(i-1) in*) let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in applist (mia.mlf.(i-1),real_cargs) | CoFix cofix -> let cofix_def = contract_cofix sigma cofix in mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf) | _ -> assert false (* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *) let contract_fix ?env sigma ?reference ((recindices,bodynum),(names,types,bodies as typedbodies)) = let nbodies = Array.length recindices in let make_Fi j = let ind = nbodies-j-1 in if Int.equal bodynum ind then mkFix ((recindices,ind),typedbodies) else let bd = mkFix ((recindices,ind),typedbodies) in match env with | None -> bd | Some e -> match reference with | None -> bd | Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind).binder_name in let closure = List.init nbodies make_Fi in substl closure bodies.(bodynum) (** First we substitute the Rel bodynum by the fixpoint and then we try to replace the fixpoint by the best constant from [cst_l] Other rels are directly substituted by constants "magically found from the context" in contract_fix *) let reduce_and_refold_fix recfun env sigma refold cst_l fix sk = let raw_answer = let env = if refold then Some env else None in contract_fix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) fix in apply_subst (fun sigma x (t,sk') -> let t' = if refold then Cst_stack.best_replace sigma (mkFix fix) cst_l t else t in recfun x (t',sk')) [] sigma refold Cst_stack.empty raw_answer sk let fix_recarg ((recindices,bodynum),_) stack = assert (0 <= bodynum && bodynum < Array.length recindices); let recargnum = Array.get recindices bodynum in try Some (recargnum, Stack.nth stack recargnum) with Not_found -> None open Primred module CNativeEntries = struct type elem = EConstr.t type args = EConstr.t array type evd = evar_map let get = Array.get let get_int evd e = match EConstr.kind evd e with | Int i -> i | _ -> raise Primred.NativeDestKO let mkInt env i = mkInt i let mkBool env b = let (ct,cf) = get_bool_constructors env in mkConstruct (if b then ct else cf) let mkCarry env b e = let int_ty = mkConst @@ get_int_type env in let (c0,c1) = get_carry_constructors env in mkApp (mkConstruct (if b then c1 else c0),[|int_ty;e|]) let mkIntPair env e1 e2 = let int_ty = mkConst @@ get_int_type env in let c = get_pair_constructor env in mkApp(mkConstruct c, [|int_ty;int_ty;e1;e2|]) let mkLt env = let (_eq, lt, _gt) = get_cmp_constructors env in mkConstruct lt let mkEq env = let (eq, _lt, _gt) = get_cmp_constructors env in mkConstruct eq let mkGt env = let (_eq, _lt, gt) = get_cmp_constructors env in mkConstruct gt end module CredNative = RedNative(CNativeEntries) (** Generic reduction function with environment Here is where unfolded constant are stored in order to be eventually refolded. If tactic_mode is true, it uses ReductionBehaviour, prefers refold constant instead of value and tries to infer constants fix and cofix came from. It substitutes fix and cofix by the constant they come from in contract_* in any case . *) let debug_RAKAM = ref (false) let () = Goptions.(declare_bool_option { optdepr = false; optname = "Print states of the Reductionops abstract machine"; optkey = ["Debug";"RAKAM"]; optread = (fun () -> !debug_RAKAM); optwrite = (fun a -> debug_RAKAM:=a); }) let equal_stacks sigma (x, l) (y, l') = let f_equal x y = eq_constr sigma x y in let eq_fix a b = f_equal (mkFix a) (mkFix b) in Stack.equal f_equal eq_fix l l' && f_equal x y let rec whd_state_gen ?csts ~refold ~tactic_mode flags env sigma = let open Context.Named.Declaration in let open ReductionBehaviour in let rec whrec cst_l (x, stack) = let () = if !debug_RAKAM then let open Pp in let pr c = Termops.Internal.print_constr_env env sigma c in Feedback.msg_debug (h 0 (str "<<" ++ pr x ++ str "|" ++ cut () ++ Cst_stack.pr env sigma cst_l ++ str "|" ++ cut () ++ Stack.pr pr stack ++ str ">>")) in let c0 = EConstr.kind sigma x in let fold () = let () = if !debug_RAKAM then let open Pp in Feedback.msg_debug (str "<><><><><>") in ((EConstr.of_kind c0, stack),cst_l) in match c0 with | Rel n when CClosure.RedFlags.red_set flags CClosure.RedFlags.fDELTA -> (match lookup_rel n env with | LocalDef (_,body,_) -> whrec Cst_stack.empty (lift n body, stack) | _ -> fold ()) | Var id when CClosure.RedFlags.red_set flags (CClosure.RedFlags.fVAR id) -> (match lookup_named id env with | LocalDef (_,body,_) -> whrec (if refold then Cst_stack.add_cst (mkVar id) cst_l else cst_l) (body, stack) | _ -> fold ()) | Evar ev -> fold () | Meta ev -> (match safe_meta_value sigma ev with | Some body -> whrec cst_l (body, stack) | None -> fold ()) | Const (c,u as const) -> reduction_effect_hook env sigma c (lazy (EConstr.to_constr sigma (Stack.zip sigma (x,stack)))); if CClosure.RedFlags.red_set flags (CClosure.RedFlags.fCONST c) then let u' = EInstance.kind sigma u in match constant_value_in env (c, u') with | body -> begin let body = EConstr.of_constr body in if not tactic_mode then whrec (if refold then Cst_stack.add_cst (mkConstU const) cst_l else cst_l) (body, stack) else (* Looks for ReductionBehaviour *) match ReductionBehaviour.get (GlobRef.ConstRef c) with | None -> whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, stack) | Some behavior -> begin match behavior with | NeverUnfold -> fold () | (UnfoldWhen { nargs = Some n } | UnfoldWhenNoMatch { nargs = Some n } ) when Stack.args_size stack < n -> fold () | UnfoldWhenNoMatch { recargs } -> (* maybe unfolds *) let app_sk,sk = Stack.strip_app stack in let (tm',sk'),cst_l' = whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, app_sk) in let rec is_case x = match EConstr.kind sigma x with | Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x | App (hd, _) -> is_case hd | Case _ -> true | _ -> false in if equal_stacks sigma (x, app_sk) (tm', sk') || Stack.will_expose_iota sk' || is_case tm' then fold () else whrec cst_l' (tm', sk' @ sk) | UnfoldWhen { recargs } -> (* maybe unfolds *) begin match recargs with |[] -> (* if nargs has been specified *) (* CAUTION : the constant is NEVER refold (even when it hides a (co)fix) *) whrec cst_l (body, stack) |curr::remains -> match Stack.strip_n_app curr stack with | None -> fold () | Some (bef,arg,s') -> whrec Cst_stack.empty (arg,Stack.Cst(Stack.Cst_const (fst const, u'),curr,remains,bef,cst_l)::s') end end end | exception NotEvaluableConst (IsPrimitive p) when Stack.check_native_args p stack -> let kargs = CPrimitives.kind p in let (kargs,o) = Stack.get_next_primitive_args kargs stack in (* Should not fail thanks to [check_native_args] *) let (before,a,after) = Option.get o in whrec Cst_stack.empty (a,Stack.Primitive(p,const,before,kargs,cst_l)::after) | exception NotEvaluableConst _ -> fold () else fold () | Proj (p, c) when CClosure.RedFlags.red_projection flags p -> (let npars = Projection.npars p in if not tactic_mode then let stack' = (c, Stack.Proj (p, Cst_stack.empty (*cst_l*)) :: stack) in whrec Cst_stack.empty stack' else match ReductionBehaviour.get (GlobRef.ConstRef (Projection.constant p)) with | None -> let stack' = (c, Stack.Proj (p, cst_l) :: stack) in let stack'', csts = whrec Cst_stack.empty stack' in if equal_stacks sigma stack' stack'' then fold () else stack'', csts | Some behavior -> begin match behavior with | NeverUnfold -> fold () | (UnfoldWhen { nargs = Some n } | UnfoldWhenNoMatch { nargs = Some n }) when Stack.args_size stack < n - (npars + 1) -> fold () | UnfoldWhen { recargs } | UnfoldWhenNoMatch { recargs }-> (* maybe unfolds *) let recargs = List.map_filter (fun x -> let idx = x - npars in if idx < 0 then None else Some idx) recargs in match recargs with |[] -> (* if nargs has been specified *) (* CAUTION : the constant is NEVER refold (even when it hides a (co)fix) *) let stack' = (c, Stack.Proj (p, cst_l) :: stack) in whrec Cst_stack.empty(* cst_l *) stack' | curr::remains -> if curr == 0 then (* Try to reduce the record argument *) whrec Cst_stack.empty (c, Stack.Cst(Stack.Cst_proj p,curr,remains,Stack.empty,cst_l)::stack) else match Stack.strip_n_app curr stack with | None -> fold () | Some (bef,arg,s') -> whrec Cst_stack.empty (arg,Stack.Cst(Stack.Cst_proj p,curr,remains, Stack.append_app [|c|] bef,cst_l)::s') end) | LetIn (_,b,_,c) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fZETA -> apply_subst (fun _ -> whrec) [b] sigma refold cst_l c stack | Cast (c,_,_) -> whrec cst_l (c, stack) | App (f,cl) -> whrec (if refold then Cst_stack.add_args cl cst_l else cst_l) (f, Stack.append_app cl stack) | Lambda (na,t,c) -> (match Stack.decomp stack with | Some _ when CClosure.RedFlags.red_set flags CClosure.RedFlags.fBETA -> apply_subst (fun _ -> whrec) [] sigma refold cst_l x stack | None when CClosure.RedFlags.red_set flags CClosure.RedFlags.fETA -> let env' = push_rel (LocalAssum (na, t)) env in let whrec' = whd_state_gen ~refold ~tactic_mode flags env' sigma in (match EConstr.kind sigma (Stack.zip ~refold sigma (fst (whrec' (c, Stack.empty)))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let (x', l'),_ = whrec' (Array.last cl, Stack.empty) in match EConstr.kind sigma x', l' with | Rel 1, [] -> let lc = Array.sub cl 0 (napp-1) in let u = if Int.equal napp 1 then f else mkApp (f,lc) in if noccurn sigma 1 u then (pop u,Stack.empty),Cst_stack.empty else fold () | _ -> fold () else fold () | _ -> fold ()) | _ -> fold ()) | Case (ci,p,d,lf) -> whrec Cst_stack.empty (d, Stack.Case (ci,p,lf,cst_l) :: stack) | Fix ((ri,n),_ as f) -> (match Stack.strip_n_app ri.(n) stack with |None -> fold () |Some (bef,arg,s') -> whrec Cst_stack.empty (arg, Stack.Fix(f,bef,cst_l)::s')) | Construct ((ind,c),u) -> let use_match = CClosure.RedFlags.red_set flags CClosure.RedFlags.fMATCH in let use_fix = CClosure.RedFlags.red_set flags CClosure.RedFlags.fFIX in if use_match || use_fix then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') when use_match -> whrec Cst_stack.empty (lf.(c-1), (Stack.tail ci.ci_npar args) @ s') |args, (Stack.Proj (p,_)::s') when use_match -> whrec Cst_stack.empty (Stack.nth args (Projection.npars p + Projection.arg p), s') |args, (Stack.Fix (f,s',cst_l)::s'') when use_fix -> let x' = Stack.zip sigma (x, args) in let out_sk = s' @ (Stack.append_app [|x'|] s'') in reduce_and_refold_fix whrec env sigma refold cst_l f out_sk |args, (Stack.Cst (const,curr,remains,s',cst_l) :: s'') -> let x' = Stack.zip sigma (x, args) in begin match remains with | [] -> (match const with | Stack.Cst_const const -> (match constant_opt_value_in env const with | None -> fold () | Some body -> let const = (fst const, EInstance.make (snd const)) in let body = EConstr.of_constr body in whrec (if refold then Cst_stack.add_cst (mkConstU const) cst_l else cst_l) (body, s' @ (Stack.append_app [|x'|] s''))) | Stack.Cst_proj p -> let stack = s' @ (Stack.append_app [|x'|] s'') in match Stack.strip_n_app 0 stack with | None -> assert false | Some (_,arg,s'') -> whrec Cst_stack.empty (arg, Stack.Proj (p,cst_l) :: s'')) | next :: remains' -> match Stack.strip_n_app (next-curr-1) s'' with | None -> fold () | Some (bef,arg,s''') -> whrec Cst_stack.empty (arg, Stack.Cst (const,next,remains',s' @ (Stack.append_app [|x'|] bef),cst_l) :: s''') end |_, (Stack.App _)::_ -> assert false |_, _ -> fold () else fold () | CoFix cofix -> if CClosure.RedFlags.red_set flags CClosure.RedFlags.fCOFIX then match Stack.strip_app stack with |args, ((Stack.Case _ |Stack.Proj _)::s') -> reduce_and_refold_cofix whrec env sigma refold cst_l cofix stack |_ -> fold () else fold () | Int i -> begin match Stack.strip_app stack with | (_, Stack.Primitive(p,kn,rargs,kargs,cst_l')::s) -> let more_to_reduce = List.exists (fun k -> CPrimitives.Kwhnf = k) kargs in if more_to_reduce then let (kargs,o) = Stack.get_next_primitive_args kargs s in (* Should not fail because Primitive is put on the stack only if fully applied *) let (before,a,after) = Option.get o in whrec Cst_stack.empty (a,Stack.Primitive(p,kn,rargs @ Stack.append_app [|x|] before,kargs,cst_l')::after) else let n = List.length kargs in let (args,s) = Stack.strip_app s in let (args,extra_args) = try List.chop n args with List.IndexOutOfRange -> (args,[]) (* FIXME probably useless *) in let args = Array.of_list (Option.get (Stack.list_of_app_stack (rargs @ Stack.append_app [|x|] args))) in begin match CredNative.red_prim env sigma p args with | Some t -> whrec cst_l' (t,s) | None -> ((mkApp (mkConstU kn, args), s), cst_l) end | _ -> fold () end | Rel _ | Var _ | LetIn _ | Proj _ -> fold () | Sort _ | Ind _ | Prod _ -> fold () in fun xs -> let (s,cst_l as res) = whrec (Option.default Cst_stack.empty csts) xs in if tactic_mode then (Stack.best_state sigma s cst_l,Cst_stack.empty) else res (** reduction machine without global env and refold machinery *) let local_whd_state_gen flags sigma = let rec whrec (x, stack) = let c0 = EConstr.kind sigma x in let s = (EConstr.of_kind c0, stack) in match c0 with | LetIn (_,b,_,c) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fZETA -> stacklam whrec [b] sigma c stack | Cast (c,_,_) -> whrec (c, stack) | App (f,cl) -> whrec (f, Stack.append_app cl stack) | Lambda (_,_,c) -> (match Stack.decomp stack with | Some (a,m) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fBETA -> stacklam whrec [a] sigma c m | None when CClosure.RedFlags.red_set flags CClosure.RedFlags.fETA -> (match EConstr.kind sigma (Stack.zip sigma (whrec (c, Stack.empty))) with | App (f,cl) -> let napp = Array.length cl in if napp > 0 then let x', l' = whrec (Array.last cl, Stack.empty) in match EConstr.kind sigma x', l' with | Rel 1, [] -> let lc = Array.sub cl 0 (napp-1) in let u = if Int.equal napp 1 then f else mkApp (f,lc) in if noccurn sigma 1 u then (pop u,Stack.empty) else s | _ -> s else s | _ -> s) | _ -> s) | Proj (p,c) when CClosure.RedFlags.red_projection flags p -> (whrec (c, Stack.Proj (p, Cst_stack.empty) :: stack)) | Case (ci,p,d,lf) -> whrec (d, Stack.Case (ci,p,lf,Cst_stack.empty) :: stack) | Fix ((ri,n),_ as f) -> (match Stack.strip_n_app ri.(n) stack with |None -> s |Some (bef,arg,s') -> whrec (arg, Stack.Fix(f,bef,Cst_stack.empty)::s')) | Evar ev -> s | Meta ev -> (match safe_meta_value sigma ev with Some c -> whrec (c,stack) | None -> s) | Construct ((ind,c),u) -> let use_match = CClosure.RedFlags.red_set flags CClosure.RedFlags.fMATCH in let use_fix = CClosure.RedFlags.red_set flags CClosure.RedFlags.fFIX in if use_match || use_fix then match Stack.strip_app stack with |args, (Stack.Case(ci, _, lf,_)::s') when use_match -> whrec (lf.(c-1), (Stack.tail ci.ci_npar args) @ s') |args, (Stack.Proj (p,_) :: s') when use_match -> whrec (Stack.nth args (Projection.npars p + Projection.arg p), s') |args, (Stack.Fix (f,s',cst)::s'') when use_fix -> let x' = Stack.zip sigma (x,args) in whrec (contract_fix sigma f, s' @ (Stack.append_app [|x'|] s'')) |_, (Stack.App _|Stack.Cst _)::_ -> assert false |_, _ -> s else s | CoFix cofix -> if CClosure.RedFlags.red_set flags CClosure.RedFlags.fCOFIX then match Stack.strip_app stack with |args, ((Stack.Case _ | Stack.Proj _)::s') -> whrec (contract_cofix sigma cofix, stack) |_ -> s else s | Rel _ | Var _ | Sort _ | Prod _ | LetIn _ | Const _ | Ind _ | Proj _ | Int _ -> s in whrec let raw_whd_state_gen flags env = let f sigma s = fst (whd_state_gen ~refold:false ~tactic_mode:false flags env sigma s) in f let stack_red_of_state_red f = let f sigma x = EConstr.decompose_app sigma (Stack.zip sigma (f sigma (x, Stack.empty))) in f (* Drops the Cst_stack *) let iterate_whd_gen refold flags env sigma s = let rec aux t = let (hd,sk),_ = whd_state_gen ~refold ~tactic_mode:false flags env sigma (t,Stack.empty) in let whd_sk = Stack.map aux sk in Stack.zip sigma ~refold (hd,whd_sk) in aux s let red_of_state_red f sigma x = Stack.zip sigma (f sigma (x,Stack.empty)) (* 0. No Reduction Functions *) let whd_nored_state = local_whd_state_gen CClosure.nored let whd_nored_stack = stack_red_of_state_red whd_nored_state let whd_nored = red_of_state_red whd_nored_state (* 1. Beta Reduction Functions *) let whd_beta_state = local_whd_state_gen CClosure.beta let whd_beta_stack = stack_red_of_state_red whd_beta_state let whd_beta = red_of_state_red whd_beta_state let whd_betalet_state = local_whd_state_gen CClosure.betazeta let whd_betalet_stack = stack_red_of_state_red whd_betalet_state let whd_betalet = red_of_state_red whd_betalet_state (* 2. Delta Reduction Functions *) let whd_delta_state e = raw_whd_state_gen CClosure.delta e let whd_delta_stack env = stack_red_of_state_red (whd_delta_state env) let whd_delta env = red_of_state_red (whd_delta_state env) let whd_betadeltazeta_state e = raw_whd_state_gen CClosure.betadeltazeta e let whd_betadeltazeta_stack env = stack_red_of_state_red (whd_betadeltazeta_state env) let whd_betadeltazeta env = red_of_state_red (whd_betadeltazeta_state env) (* 3. Iota reduction Functions *) let whd_betaiota_state = local_whd_state_gen CClosure.betaiota let whd_betaiota_stack = stack_red_of_state_red whd_betaiota_state let whd_betaiota = red_of_state_red whd_betaiota_state let whd_betaiotazeta_state = local_whd_state_gen CClosure.betaiotazeta let whd_betaiotazeta_stack = stack_red_of_state_red whd_betaiotazeta_state let whd_betaiotazeta = red_of_state_red whd_betaiotazeta_state let whd_all_state env = raw_whd_state_gen CClosure.all env let whd_all_stack env = stack_red_of_state_red (whd_all_state env) let whd_all env = red_of_state_red (whd_all_state env) let whd_allnolet_state env = raw_whd_state_gen CClosure.allnolet env let whd_allnolet_stack env = stack_red_of_state_red (whd_allnolet_state env) let whd_allnolet env = red_of_state_red (whd_allnolet_state env) (* 4. Ad-hoc eta reduction, does not substitute evars *) let shrink_eta c = Stack.zip Evd.empty (local_whd_state_gen eta Evd.empty (c,Stack.empty)) (* 5. Zeta Reduction Functions *) let whd_zeta_state = local_whd_state_gen CClosure.zeta let whd_zeta_stack = stack_red_of_state_red whd_zeta_state let whd_zeta = red_of_state_red whd_zeta_state (****************************************************************************) (* Reduction Functions *) (****************************************************************************) (* Replacing defined evars for error messages *) let whd_evar = Evarutil.whd_evar let nf_evar = Evarutil.nf_evar (* lazy reduction functions. The infos must be created for each term *) (* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add a [nf_evar] here *) let clos_norm_flags flgs env sigma t = try let evars ev = safe_evar_value sigma ev in EConstr.of_constr (CClosure.norm_val (CClosure.create_clos_infos ~evars flgs env) (CClosure.create_tab ()) (CClosure.inject (EConstr.Unsafe.to_constr t))) with e when is_anomaly e -> user_err Pp.(str "Tried to normalize ill-typed term") let clos_whd_flags flgs env sigma t = try let evars ev = safe_evar_value sigma ev in EConstr.of_constr (CClosure.whd_val (CClosure.create_clos_infos ~evars flgs env) (CClosure.create_tab ()) (CClosure.inject (EConstr.Unsafe.to_constr t))) with e when is_anomaly e -> user_err Pp.(str "Tried to normalize ill-typed term") let nf_beta = clos_norm_flags CClosure.beta let nf_betaiota = clos_norm_flags CClosure.betaiota let nf_betaiotazeta = clos_norm_flags CClosure.betaiotazeta let nf_zeta = clos_norm_flags CClosure.zeta let nf_all env sigma = clos_norm_flags CClosure.all env sigma (********************************************************************) (* Conversion *) (********************************************************************) (* let fkey = CProfile.declare_profile "fhnf";; let fhnf info v = CProfile.profile2 fkey fhnf info v;; let fakey = CProfile.declare_profile "fhnf_apply";; let fhnf_apply info k h a = CProfile.profile4 fakey fhnf_apply info k h a;; *) let is_transparent e k = match Conv_oracle.get_strategy (Environ.oracle e) k with | Conv_oracle.Opaque -> false | _ -> true (* Conversion utility functions *) type conversion_test = Constraint.t -> Constraint.t let pb_is_equal pb = pb == Reduction.CONV let pb_equal = function | Reduction.CUMUL -> Reduction.CONV | Reduction.CONV -> Reduction.CONV let report_anomaly e = let msg = Pp.(str "Conversion test raised an anomaly:" ++ spc () ++ CErrors.print e) in let e = UserError (None,msg) in let e = CErrors.push e in iraise e let f_conv ?l2r ?reds env ?evars x y = let inj = EConstr.Unsafe.to_constr in Reduction.conv ?l2r ?reds env ?evars (inj x) (inj y) let f_conv_leq ?l2r ?reds env ?evars x y = let inj = EConstr.Unsafe.to_constr in Reduction.conv_leq ?l2r ?reds env ?evars (inj x) (inj y) let test_trans_conversion (f: constr Reduction.extended_conversion_function) reds env sigma x y = try let evars ev = safe_evar_value sigma ev in let _ = f ~reds env ~evars:(evars, Evd.universes sigma) x y in true with Reduction.NotConvertible -> false | e when is_anomaly e -> report_anomaly e let is_conv ?(reds=TransparentState.full) env sigma = test_trans_conversion f_conv reds env sigma let is_conv_leq ?(reds=TransparentState.full) env sigma = test_trans_conversion f_conv_leq reds env sigma let is_fconv ?(reds=TransparentState.full) = function | Reduction.CONV -> is_conv ~reds | Reduction.CUMUL -> is_conv_leq ~reds let check_conv ?(pb=Reduction.CUMUL) ?(ts=TransparentState.full) env sigma x y = let f = match pb with | Reduction.CONV -> f_conv | Reduction.CUMUL -> f_conv_leq in try f ~reds:ts env ~evars:(safe_evar_value sigma, Evd.universes sigma) x y; true with Reduction.NotConvertible -> false | Univ.UniverseInconsistency _ -> false | e when is_anomaly e -> report_anomaly e let sigma_compare_sorts env pb s0 s1 sigma = match pb with | Reduction.CONV -> Evd.set_eq_sort env sigma s0 s1 | Reduction.CUMUL -> Evd.set_leq_sort env sigma s0 s1 let sigma_compare_instances ~flex i0 i1 sigma = try Evd.set_eq_instances ~flex sigma i0 i1 with Evd.UniversesDiffer | Univ.UniverseInconsistency _ -> raise Reduction.NotConvertible let sigma_check_inductive_instances cv_pb variance u1 u2 sigma = match Evarutil.compare_cumulative_instances cv_pb variance u1 u2 sigma with | Inl sigma -> sigma | Inr _ -> raise Reduction.NotConvertible let sigma_univ_state = let open Reduction in { compare_sorts = sigma_compare_sorts; compare_instances = sigma_compare_instances; compare_cumul_instances = sigma_check_inductive_instances; } let infer_conv_gen conv_fun ?(catch_incon=true) ?(pb=Reduction.CUMUL) ?(ts=TransparentState.full) env sigma x y = (* FIXME *) try let ans = match pb with | Reduction.CUMUL -> EConstr.leq_constr_universes env sigma x y | Reduction.CONV -> EConstr.eq_constr_universes env sigma x y in let ans = match ans with | None -> None | Some cstr -> try Some (Evd.add_universe_constraints sigma cstr) with Univ.UniverseInconsistency _ | Evd.UniversesDiffer -> None in match ans with | Some sigma -> ans | None -> let x = EConstr.Unsafe.to_constr x in let y = EConstr.Unsafe.to_constr y in let sigma' = conv_fun pb ~l2r:false sigma ts env (sigma, sigma_univ_state) x y in Some sigma' with | Reduction.NotConvertible -> None | Univ.UniverseInconsistency _ when catch_incon -> None | e when is_anomaly e -> report_anomaly e let infer_conv = infer_conv_gen (fun pb ~l2r sigma -> Reduction.generic_conv pb ~l2r (safe_evar_value sigma)) (* This reference avoids always having to link C code with the kernel *) let vm_infer_conv = ref (infer_conv ~catch_incon:true ~ts:TransparentState.full) let set_vm_infer_conv f = vm_infer_conv := f let vm_infer_conv ?(pb=Reduction.CUMUL) env t1 t2 = !vm_infer_conv ~pb env t1 t2 (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) let whd_meta sigma c = match EConstr.kind sigma c with | Meta p -> (try meta_value sigma p with Not_found -> c) | _ -> c let default_plain_instance_ident = Id.of_string "H" (* Try to replace all metas. Does not replace metas in the metas' values * Differs from (strong whd_meta). *) let plain_instance sigma s c = let rec irec n u = match EConstr.kind sigma u with | Meta p -> (try lift n (Metamap.find p s) with Not_found -> u) | App (f,l) when isCast sigma f -> let (f,_,t) = destCast sigma f in let l' = Array.Fun1.Smart.map irec n l in (match EConstr.kind sigma f with | Meta p -> (* Don't flatten application nodes: this is used to extract a proof-term from a proof-tree and we want to keep the structure of the proof-tree *) (try let g = Metamap.find p s in match EConstr.kind sigma g with | App _ -> let l' = Array.Fun1.Smart.map lift 1 l' in let r = Sorts.Relevant in (* TODO fix relevance *) let na = make_annot (Name default_plain_instance_ident) r in mkLetIn (na,g,t,mkApp(mkRel 1, l')) | _ -> mkApp (g,l') with Not_found -> mkApp (f,l')) | _ -> mkApp (irec n f,l')) | Cast (m,_,_) when isMeta sigma m -> (try lift n (Metamap.find (destMeta sigma m) s) with Not_found -> u) | _ -> map_with_binders sigma succ irec n u in if Metamap.is_empty s then c else irec 0 c (* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota] has (unfortunately) different subtle side effects: - ** Order of subgoals ** If the lemma is a case analysis with parameters, it will move the parameters as first subgoals (e.g. "case H" applied on "H:D->A/\B|-C" will present the subgoal |-D first while w/o betaiota the subgoal |-D would have come last). - ** Betaiota-contraction in statement ** If the lemma has a parameter which is a function and this function is applied in the lemma, then the _strong_ betaiota will contract the application of the function to its argument (e.g. "apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will result in applying the lemma 0=0 in which "(fun x => x) 0" has been contracted). A goal to rewrite may then fail or succeed differently. - ** Naming of hypotheses ** If a lemma is a function of the form "fun H:(forall a:A, P a) => .. F H .." where the expected type of H is "forall b:A, P b", then, without reduction, the application of the lemma will generate a subgoal "forall a:A, P a" (and intro will use name "a"), while with reduction, it will generate a subgoal "forall b:A, P b" (and intro will use name "b"). - ** First-order pattern-matching ** If a lemma has the type "(fun x => p) t" then rewriting t may fail if the type of the lemma is first beta-reduced (this typically happens when rewriting a single variable and the type of the lemma is obtained by meta_instance (with empty map) which itself calls instance with this empty map). *) let instance sigma s c = (* if s = [] then c else *) local_strong whd_betaiota sigma (plain_instance sigma s c) (* pseudo-reduction rule: * [hnf_prod_app env s (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env sigma t n = match EConstr.kind sigma (whd_all env sigma t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.") let hnf_prod_appvect env sigma t nl = Array.fold_left (fun acc t -> hnf_prod_app env sigma acc t) t nl let hnf_prod_applist env sigma t nl = List.fold_left (fun acc t -> hnf_prod_app env sigma acc t) t nl let hnf_lam_app env sigma t n = match EConstr.kind sigma (whd_all env sigma t) with | Lambda (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_lam_app" (Pp.str "Need an abstraction.") let hnf_lam_appvect env sigma t nl = Array.fold_left (fun acc t -> hnf_lam_app env sigma acc t) t nl let hnf_lam_applist env sigma t nl = List.fold_left (fun acc t -> hnf_lam_app env sigma acc t) t nl let splay_prod env sigma = let rec decrec env m c = let t = whd_all env sigma c in match EConstr.kind sigma t with | Prod (n,a,c0) -> decrec (push_rel (LocalAssum (n,a)) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_lam env sigma = let rec decrec env m c = let t = whd_all env sigma c in match EConstr.kind sigma t with | Lambda (n,a,c0) -> decrec (push_rel (LocalAssum (n,a)) env) ((n,a)::m) c0 | _ -> m,t in decrec env [] let splay_prod_assum env sigma = let rec prodec_rec env l c = let t = whd_allnolet env sigma c in match EConstr.kind sigma t with | Prod (x,t,c) -> prodec_rec (push_rel (LocalAssum (x,t)) env) (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> prodec_rec (push_rel (LocalDef (x,b,t)) env) (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> prodec_rec env l c | _ -> let t' = whd_all env sigma t in if EConstr.eq_constr sigma t t' then l,t else prodec_rec env l t' in prodec_rec env Context.Rel.empty let splay_arity env sigma c = let l, c = splay_prod env sigma c in match EConstr.kind sigma c with | Sort s -> l,s | _ -> invalid_arg "splay_arity" let sort_of_arity env sigma c = snd (splay_arity env sigma c) let splay_prod_n env sigma n = let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else match EConstr.kind sigma (whd_all env sigma c) with | Prod (n,a,c0) -> decrec (push_rel (LocalAssum (n,a)) env) (m-1) (Context.Rel.add (LocalAssum (n,a)) ln) c0 | _ -> invalid_arg "splay_prod_n" in decrec env n Context.Rel.empty let splay_lam_n env sigma n = let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else match EConstr.kind sigma (whd_all env sigma c) with | Lambda (n,a,c0) -> decrec (push_rel (LocalAssum (n,a)) env) (m-1) (Context.Rel.add (LocalAssum (n,a)) ln) c0 | _ -> invalid_arg "splay_lam_n" in decrec env n Context.Rel.empty let is_sort env sigma t = match EConstr.kind sigma (whd_all env sigma t) with | Sort s -> true | _ -> false (* reduction to head-normal-form allowing delta/zeta only in argument of case/fix (heuristic used by evar_conv) *) let whd_betaiota_deltazeta_for_iota_state ts env sigma s = let refold = false in let tactic_mode = false in let rec whrec csts s = let (t, stack as s),csts' = whd_state_gen ~csts ~refold ~tactic_mode CClosure.betaiota env sigma s in match Stack.strip_app stack with |args, (Stack.Case _ :: _ as stack') -> let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in if reducible_mind_case sigma t_o then whrec csts_o (t_o, stack_o@stack') else s,csts' |args, (Stack.Fix _ :: _ as stack') -> let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in if isConstruct sigma t_o then whrec csts_o (t_o, stack_o@stack') else s,csts' |args, (Stack.Proj (p,_) :: stack'') -> let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in if isConstruct sigma t_o then whrec Cst_stack.empty (Stack.nth stack_o (Projection.npars p + Projection.arg p), stack'') else s,csts' |_, ((Stack.App _|Stack.Cst _|Stack.Primitive _) :: _|[]) -> s,csts' in fst (whrec Cst_stack.empty s) let find_conclusion env sigma = let rec decrec env c = let t = whd_all env sigma c in match EConstr.kind sigma t with | Prod (x,t,c0) -> decrec (push_rel (LocalAssum (x,t)) env) c0 | Lambda (x,t,c0) -> decrec (push_rel (LocalAssum (x,t)) env) c0 | t -> t in decrec env let is_arity env sigma c = match find_conclusion env sigma c with | Sort _ -> true | _ -> false (*************************************) (* Metas *) let meta_value evd mv = let rec valrec mv = match meta_opt_fvalue evd mv with | Some (b,_) -> let metas = Metamap.bind valrec b.freemetas in instance evd metas b.rebus | None -> mkMeta mv in valrec mv let meta_instance sigma b = let fm = b.freemetas in if Metaset.is_empty fm then b.rebus else let c_sigma = Metamap.bind (fun mv -> meta_value sigma mv) fm in instance sigma c_sigma b.rebus let nf_meta sigma c = let cl = mk_freelisted c in meta_instance sigma { cl with rebus = cl.rebus } (* Instantiate metas that create beta/iota redexes *) let meta_reducible_instance evd b = let fm = b.freemetas in let fold mv accu = let fvalue = try meta_opt_fvalue evd mv with Not_found -> None in match fvalue with | None -> accu | Some (g, (_, s)) -> Metamap.add mv (g.rebus, s) accu in let metas = Metaset.fold fold fm Metamap.empty in let rec irec u = let u = whd_betaiota Evd.empty u (* FIXME *) in match EConstr.kind evd u with | Case (ci,p,c,bl) when EConstr.isMeta evd (strip_outer_cast evd c) -> let m = destMeta evd (strip_outer_cast evd c) in (match try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if isConstruct evd g || not is_coerce then Some g else None with Not_found -> None with | Some g -> irec (mkCase (ci,p,g,bl)) | None -> mkCase (ci,irec p,c,Array.map irec bl)) | App (f,l) when EConstr.isMeta evd (strip_outer_cast evd f) -> let m = destMeta evd (strip_outer_cast evd f) in (match try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if isLambda evd g || not is_coerce then Some g else None with Not_found -> None with | Some g -> irec (mkApp (g,l)) | None -> mkApp (f,Array.map irec l)) | Meta m -> (try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if not is_coerce then irec g else u with Not_found -> u) | Proj (p,c) when isMeta evd c || isCast evd c && isMeta evd (pi1 (destCast evd c)) (* What if two nested casts? *) -> let m = try destMeta evd c with _ -> destMeta evd (pi1 (destCast evd c)) (* idem *) in (match try let g, s = Metamap.find m metas in let is_coerce = match s with CoerceToType -> true | _ -> false in if isConstruct evd g || not is_coerce then Some g else None with Not_found -> None with | Some g -> irec (mkProj (p,g)) | None -> mkProj (p,c)) | _ -> EConstr.map evd irec u in if Metaset.is_empty fm then (* nf_betaiota? *) b.rebus else irec b.rebus let betazetaevar_applist sigma n c l = let rec stacklam n env t stack = if Int.equal n 0 then applist (substl env t, stack) else match EConstr.kind sigma t, stack with | Lambda(_,_,c), arg::stacktl -> stacklam (n-1) (arg::env) c stacktl | LetIn(_,b,_,c), _ -> stacklam (n-1) (substl env b::env) c stack | Evar _, _ -> applist (substl env t, stack) | _ -> anomaly (Pp.str "Not enough lambda/let's.") in stacklam n [] c l