1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open CErrors
open Util
open Names
open Constr
open Context
open Termops
open Univ
open Evd
open Environ
open EConstr
open Vars
open Context.Rel.Declaration

exception Elimconst

(** This module implements a call by name reduction used by (at
    least) evarconv unification and cbn tactic.

    It has an ability to "refold" constants by storing constants and
    their parameters in its stack.
*)

let () = Goptions.(declare_bool_option {
  optdepr = false;
  optname =
    "Generate weak constraints between Irrelevant universes";
  optkey = ["Cumulativity";"Weak";"Constraints"];
  optread = (fun () -> not !UState.drop_weak_constraints);
  optwrite = (fun a -> UState.drop_weak_constraints:=not a);
})


(** Support for reduction effects *)

open Mod_subst
open Libobject

type effect_name = string

(** create a persistent set to store effect functions *)

(* Table bindings a constant to an effect *)
let constant_effect_table = Summary.ref ~name:"reduction-side-effect" Cmap.empty

(* Table bindings function key to effective functions *)
let effect_table = ref String.Map.empty

(** a test to know whether a constant is actually the effect function *)
let reduction_effect_hook env sigma con c =
  try
    let funkey = Cmap.find con !constant_effect_table in
    let effect = String.Map.find funkey !effect_table in
    effect env sigma (Lazy.force c)
  with Not_found -> ()

let cache_reduction_effect (_,(con,funkey)) =
  constant_effect_table := Cmap.add con funkey !constant_effect_table

let subst_reduction_effect (subst,(con,funkey)) =
  (subst_constant subst con,funkey)

let inReductionEffect : Constant.t * string -> obj =
  declare_object @@ global_object_nodischarge "REDUCTION-EFFECT"
    ~cache:cache_reduction_effect
    ~subst:(Some subst_reduction_effect)

let declare_reduction_effect funkey f =
  if String.Map.mem funkey !effect_table then
    CErrors.anomaly Pp.(str "Cannot redeclare effect function " ++ qstring funkey ++ str ".");
  effect_table := String.Map.add funkey f !effect_table

(** A function to set the value of the print function *)
let set_reduction_effect x funkey =
  Lib.add_anonymous_leaf (inReductionEffect (x,funkey))


(** Machinery to custom the behavior of the reduction *)
module ReductionBehaviour = struct
  open Globnames
  open Names
  open Libobject

  type t = NeverUnfold | UnfoldWhen of when_flags | UnfoldWhenNoMatch of when_flags
  and when_flags = { recargs : int list ; nargs : int option }

  let more_args_when k { recargs; nargs } =
    { nargs = Option.map ((+) k) nargs;
      recargs = List.map ((+) k) recargs;
    }

  let more_args k = function
    | NeverUnfold -> NeverUnfold
    | UnfoldWhen x -> UnfoldWhen (more_args_when k x)
    | UnfoldWhenNoMatch x -> UnfoldWhenNoMatch (more_args_when k x)

  let table =
    Summary.ref (GlobRef.Map.empty : t GlobRef.Map.t) ~name:"reductionbehaviour"

  let load _ (_,(_,(r, b))) =
    table := GlobRef.Map.add r b !table

  let cache o = load 1 o

  let classify (local,_ as o) = if local then Dispose else Substitute o

  let subst (subst, (local, (r,o) as orig)) =
    let r' = subst_global_reference subst r in if r==r' then orig
    else (local,(r',o))

  let discharge = function
    | _,(false, (gr, b)) ->
      let b =
        if Lib.is_in_section gr then
          let vars = Lib.variable_section_segment_of_reference gr in
          let extra = List.length vars in
          more_args extra b
        else b
      in
      Some (false, (gr, b))
    | _ -> None

  let rebuild = function
    | req, (GlobRef.ConstRef c, _ as x) -> req, x
    | _ -> assert false

  let inRedBehaviour = declare_object {
                        (default_object "REDUCTIONBEHAVIOUR") with
                        load_function = load;
                        cache_function = cache;
                        classify_function = classify;
                        subst_function = subst;
                        discharge_function = discharge;
                        rebuild_function = rebuild;
                      }

  let set ~local r b =
    Lib.add_anonymous_leaf (inRedBehaviour (local, (r, b)))

  let get r = GlobRef.Map.find_opt r !table

  let print ref =
    let open Pp in
    let pr_global = Nametab.pr_global_env Id.Set.empty in
    match get ref with
    | None -> mt ()
    | Some b ->
       let pp_nomatch = spc () ++ str "but avoid exposing match constructs" in
       let pp_recargs recargs = spc() ++ str "when the " ++
                          pr_enum (fun x -> pr_nth (x+1)) recargs ++ str (String.plural (List.length recargs) " argument") ++
                          str (String.plural (if List.length recargs >= 2 then 1 else 2) " evaluate") ++
                          str " to a constructor" in
       let pp_nargs nargs =
         spc() ++ str "when applied to " ++ int nargs ++
         str (String.plural nargs " argument") in
       let pp_when = function
         | { recargs = []; nargs = Some 0 } ->
           str "always unfold " ++ pr_global ref
         | { recargs = []; nargs = Some n } ->
           str "unfold " ++ pr_global ref ++ pp_nargs n
         | { recargs = []; nargs = None } ->
           str "unfold " ++ pr_global ref
         | { recargs; nargs = Some n } when n > List.fold_left max 0 recargs ->
           str "unfold " ++ pr_global ref ++ pp_recargs recargs ++
           str " and" ++ pp_nargs n
         | { recargs; nargs = _ } ->
           str "unfold " ++ pr_global ref ++ pp_recargs recargs
       in
       let pp_behavior = function
         | NeverUnfold -> str "never unfold " ++ pr_global ref
         | UnfoldWhen x -> pp_when x
         | UnfoldWhenNoMatch x -> pp_when x ++ pp_nomatch
       in
       hov 2 (str "The reduction tactics " ++ pp_behavior b)

end

(** Machinery about stack of unfolded constants *)
module Cst_stack = struct
  open EConstr

(** constant * params * args

- constant applied to params = term in head applied to args
- there is at most one arguments with an empty list of args, it must be the first.
- in args, the int represents the indice of the first arg to consider *)
  type t = (constr * constr list * (int * constr array) list)  list

  let empty = []
  let is_empty = CList.is_empty

  let drop_useless = function
    | _ :: ((_,_,[])::_ as q) -> q
    | l -> l

  let add_param h cst_l =
    let append2cst = function
      | (c,params,[]) -> (c, h::params, [])
      | (c,params,((i,t)::q)) when i = pred (Array.length t) ->
        (c, params, q)
      | (c,params,(i,t)::q) ->
        (c, params, (succ i,t)::q)
    in
      drop_useless (List.map append2cst cst_l)

  let add_args cl =
    List.map (fun (a,b,args) -> (a,b,(0,cl)::args))

  let add_cst cst = function
    | (_,_,[]) :: q as l -> l
    | l -> (cst,[],[])::l

  let best_cst = function
    | (cst,params,[])::_ -> Some(cst,params)
    | _ -> None

  let reference sigma t = match best_cst t with
    | Some (c, _) when isConst sigma c -> Some (fst (destConst sigma c))
    | _ -> None

  (** [best_replace d cst_l c] makes the best replacement for [d]
      by [cst_l] in [c] *)
  let best_replace sigma d cst_l c =
    let reconstruct_head = List.fold_left
      (fun t (i,args) -> mkApp (t,Array.sub args i (Array.length args - i))) in
    List.fold_right
      (fun (cst,params,args) t -> Termops.replace_term sigma
        (reconstruct_head d args)
        (applist (cst, List.rev params))
        t) cst_l c

  let pr env sigma l =
    let open Pp in
    let p_c c = Termops.Internal.print_constr_env env sigma c in
    prlist_with_sep pr_semicolon
      (fun (c,params,args) ->
        hov 1 (str"(" ++ p_c c ++ str ")" ++ spc () ++ pr_sequence p_c params ++ spc () ++ str "(args:" ++
                 pr_sequence (fun (i,el) -> prvect_with_sep spc p_c (Array.sub el i (Array.length el - i))) args ++
                 str ")")) l
end


(** The type of (machine) stacks (= lambda-bar-calculus' contexts) *)
module Stack :
sig
  open EConstr
  type 'a app_node
  val pr_app_node : ('a -> Pp.t) -> 'a app_node -> Pp.t

  type cst_member =
    | Cst_const of pconstant
    | Cst_proj of Projection.t

  type 'a member =
  | App of 'a app_node
  | Case of case_info * 'a * 'a array * Cst_stack.t
  | Proj of Projection.t * Cst_stack.t
  | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t
  | Primitive of CPrimitives.t * (Constant.t * EInstance.t) * 'a t * CPrimitives.args_red * Cst_stack.t
  | Cst of cst_member * int * int list * 'a t * Cst_stack.t

  and 'a t = 'a member list

  exception IncompatibleFold2

  val pr : ('a -> Pp.t) -> 'a t -> Pp.t
  val empty : 'a t
  val is_empty : 'a t -> bool
  val append_app : 'a array -> 'a t -> 'a t
  val decomp : 'a t -> ('a * 'a t) option
  val decomp_node_last : 'a app_node -> 'a t -> ('a * 'a t)
  val equal : ('a -> 'a -> bool) -> (('a, 'a) pfixpoint -> ('a, 'a) pfixpoint -> bool)
    -> 'a t -> 'a t -> bool
  val compare_shape : 'a t -> 'a t -> bool
  val map : ('a -> 'a) -> 'a t -> 'a t
  val fold2 : ('a -> constr -> constr -> 'a) -> 'a ->
    constr t -> constr t -> 'a
  val append_app_list : 'a list -> 'a t -> 'a t
  val strip_app : 'a t -> 'a t * 'a t
  val strip_n_app : int -> 'a t -> ('a t * 'a * 'a t) option
  val not_purely_applicative : 'a t -> bool
  val will_expose_iota : 'a t -> bool
  val list_of_app_stack : constr t -> constr list option
  val assign : 'a t -> int -> 'a -> 'a t
  val args_size : 'a t -> int
  val tail : int -> 'a t -> 'a t
  val nth : 'a t -> int -> 'a
  val best_state : evar_map -> constr * constr t -> Cst_stack.t -> constr * constr t
  val zip : ?refold:bool -> evar_map -> constr * constr t -> constr
  val check_native_args : CPrimitives.t -> 'a t -> bool
  val get_next_primitive_args : CPrimitives.args_red -> 'a t -> CPrimitives.args_red * ('a t * 'a * 'a t) option
end =
struct
  open EConstr
  type 'a app_node = int * 'a array * int
  (* first releavnt position, arguments, last relevant position *)

  (*
     Invariant that this module must ensure :
     (behare of direct access to app_node by the rest of Reductionops)
     - in app_node (i,_,j) i <= j
     - There is no array realocation (outside of debug printing)
   *)

  let pr_app_node pr (i,a,j) =
    let open Pp in surround (
                     prvect_with_sep pr_comma pr (Array.sub a i (j - i + 1))
                     )


  type cst_member =
    | Cst_const of pconstant
    | Cst_proj of Projection.t

  type 'a member =
  | App of 'a app_node
  | Case of case_info * 'a * 'a array * Cst_stack.t
  | Proj of Projection.t * Cst_stack.t
  | Fix of ('a, 'a) pfixpoint * 'a t * Cst_stack.t
  | Primitive of CPrimitives.t * (Constant.t * EInstance.t) * 'a t * CPrimitives.args_red * Cst_stack.t
  | Cst of cst_member * int * int list * 'a t * Cst_stack.t

  and 'a t = 'a member list

  (* Debugging printer *)
  let rec pr_member pr_c member =
    let open Pp in
    let pr_c x = hov 1 (pr_c x) in
    match member with
    | App app -> str "ZApp" ++ pr_app_node pr_c app
    | Case (_,_,br,cst) ->
       str "ZCase(" ++
         prvect_with_sep (pr_bar) pr_c br
       ++ str ")"
    | Proj (p,cst) ->
      str "ZProj(" ++ Constant.debug_print (Projection.constant p) ++ str ")"
    | Fix (f,args,cst) ->
       str "ZFix(" ++ Constr.debug_print_fix pr_c f
       ++ pr_comma () ++ pr pr_c args ++ str ")"
    | Primitive (p,c,args,kargs,cst_l) ->
      str "ZPrimitive(" ++ str (CPrimitives.to_string p)
      ++ pr_comma () ++ pr pr_c args ++ str ")"
    | Cst (mem,curr,remains,params,cst_l) ->
      str "ZCst(" ++ pr_cst_member pr_c mem ++ pr_comma () ++ int curr
      ++ pr_comma () ++
        prlist_with_sep pr_semicolon int remains ++
        pr_comma () ++ pr pr_c params ++ str ")"
  and pr pr_c l =
    let open Pp in
    prlist_with_sep pr_semicolon (fun x -> hov 1 (pr_member pr_c x)) l

  and pr_cst_member pr_c c =
    let open Pp in
      match c with
      | Cst_const (c, u) ->
        if Univ.Instance.is_empty u then Constant.debug_print c
        else str"(" ++ Constant.debug_print c ++ str ", " ++
          Univ.Instance.pr Univ.Level.pr u ++ str")"
      | Cst_proj p ->
        str".(" ++ Constant.debug_print (Projection.constant p) ++ str")"

  let empty = []
  let is_empty = CList.is_empty

  let append_app v s =
    let le = Array.length v in
    if Int.equal le 0 then s else App (0,v,pred le) :: s

  let decomp_node (i,l,j) sk =
    if i < j then (l.(i), App (succ i,l,j) :: sk)
    else (l.(i), sk)

  let decomp = function
    | App node::s -> Some (decomp_node node s)
    | _ -> None

  let decomp_node_last (i,l,j) sk =
    if i < j then (l.(j), App (i,l,pred j) :: sk)
    else (l.(j), sk)

  let equal f f_fix sk1 sk2 =
    let equal_cst_member x y =
      match x, y with
      | Cst_const (c1,u1), Cst_const (c2, u2) ->
        Constant.equal c1 c2 && Univ.Instance.equal u1 u2
      | Cst_proj p1, Cst_proj p2 -> Projection.repr_equal p1 p2
      | _, _ -> false
    in
    let rec equal_rec sk1 sk2 =
      match sk1,sk2 with
      | [],[] -> true
      | App a1 :: s1, App a2 :: s2 ->
        let t1,s1' = decomp_node_last a1 s1 in
        let t2,s2' = decomp_node_last a2 s2 in
        (f t1 t2) && (equal_rec s1' s2')
      | Case (_,t1,a1,_) :: s1, Case (_,t2,a2,_) :: s2 ->
        f t1 t2 && CArray.equal (fun x y -> f x y) a1 a2 && equal_rec s1 s2
      | (Proj (p,_)::s1, Proj(p2,_)::s2) ->
        Projection.Repr.equal (Projection.repr p) (Projection.repr p2)
        && equal_rec s1 s2
      | Fix (f1,s1,_) :: s1', Fix (f2,s2,_) :: s2' ->
        f_fix f1 f2
          && equal_rec (List.rev s1) (List.rev s2)
          && equal_rec s1' s2'
      | Cst (c1,curr1,remains1,params1,_)::s1', Cst (c2,curr2,remains2,params2,_)::s2' ->
        equal_cst_member c1 c2
          && equal_rec (List.rev params1) (List.rev params2)
          && equal_rec s1' s2'
      | ((App _|Case _|Proj _|Fix _|Cst _|Primitive _)::_|[]), _ -> false
    in equal_rec (List.rev sk1) (List.rev sk2)

  let compare_shape stk1 stk2 =
    let rec compare_rec bal stk1 stk2 =
      match (stk1,stk2) with
        ([],[]) -> Int.equal bal 0
      | (App (i,_,j)::s1, _) -> compare_rec (bal + j + 1 - i) s1 stk2
      | (_, App (i,_,j)::s2) -> compare_rec (bal - j - 1 + i) stk1 s2
      | (Case(c1,_,_,_)::s1, Case(c2,_,_,_)::s2) ->
        Int.equal bal 0 (* && c1.ci_ind  = c2.ci_ind *) && compare_rec 0 s1 s2
      | (Proj (p,_)::s1, Proj(p2,_)::s2) ->
        Int.equal bal 0 && compare_rec 0 s1 s2
      | (Fix(_,a1,_)::s1, Fix(_,a2,_)::s2) ->
        Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
      | (Primitive(_,_,a1,_,_)::s1, Primitive(_,_,a2,_,_)::s2) ->
        Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2
      | (Cst (_,_,_,p1,_)::s1, Cst (_,_,_,p2,_)::s2) ->
        Int.equal bal 0 && compare_rec 0 p1 p2 && compare_rec 0 s1 s2
      | ((Case _|Proj _|Fix _|Cst _|Primitive _) :: _ | []) ,_ -> false in
    compare_rec 0 stk1 stk2

  exception IncompatibleFold2
  let fold2 f o sk1 sk2 =
    let rec aux o sk1 sk2 =
      match sk1,sk2 with
      | [], [] -> o
      | App n1 :: q1, App n2 :: q2 ->
        let t1,l1 = decomp_node_last n1 q1 in
        let t2,l2 = decomp_node_last n2 q2 in
        aux (f o t1 t2) l1 l2
      | Case (_,t1,a1,_) :: q1, Case (_,t2,a2,_) :: q2 ->
        aux (Array.fold_left2 f (f o t1 t2) a1 a2) q1 q2
      | Proj (p1,_) :: q1, Proj (p2,_) :: q2 ->
        aux o q1 q2
      | Fix ((_,(_,a1,b1)),s1,_) :: q1, Fix ((_,(_,a2,b2)),s2,_) :: q2 ->
        let o' = aux (Array.fold_left2 f (Array.fold_left2 f o b1 b2) a1 a2) (List.rev s1) (List.rev s2) in
        aux o' q1 q2
      | Cst (cst1,_,_,params1,_) :: q1, Cst (cst2,_,_,params2,_) :: q2 ->
        let o' = aux o (List.rev params1) (List.rev params2) in
        aux o' q1 q2
      | (((App _|Case _|Proj _|Fix _|Cst _|Primitive _) :: _|[]), _) ->
              raise IncompatibleFold2
    in aux o (List.rev sk1) (List.rev sk2)

  let rec map f x = List.map (function
                               | (Proj (_,_)) as e -> e
                               | App (i,a,j) ->
                                  let le = j - i + 1 in
                                  App (0,Array.map f (Array.sub a i le), le-1)
                               | Case (info,ty,br,alt) -> Case (info, f ty, Array.map f br, alt)
                               | Fix ((r,(na,ty,bo)),arg,alt) ->
                                  Fix ((r,(na,Array.map f ty, Array.map f bo)),map f arg,alt)
                               | Cst (cst,curr,remains,params,alt) ->
                                 Cst (cst,curr,remains,map f params,alt)
                               | Primitive (p,c,args,kargs,cst_l) ->
                                 Primitive(p,c, map f args, kargs, cst_l)
    ) x

  let append_app_list l s =
    let a = Array.of_list l in
    append_app a s

  let rec args_size = function
    | App (i,_,j)::s -> j + 1 - i + args_size s
    | (Case _|Fix _|Proj _|Cst _|Primitive _)::_ | [] -> 0

  let strip_app s =
    let rec aux out = function
      | ( App _ as e) :: s -> aux (e :: out) s
      | s -> List.rev out,s
    in aux [] s
  let strip_n_app n s =
    let rec aux n out = function
      | App (i,a,j) as e :: s ->
         let nb = j  - i + 1 in
         if n >= nb then
           aux (n - nb) (e::out) s
         else
           let p = i+n in
           Some (CList.rev
              (if Int.equal n 0 then out else App (i,a,p-1) :: out),
            a.(p),
            if j > p then App(succ p,a,j)::s else s)
      | s -> None
    in aux n [] s

  let not_purely_applicative args =
    List.exists (function (Fix _ | Case _ | Proj _ | Cst _) -> true
                          | App _ | Primitive _ -> false) args
  let will_expose_iota args =
    List.exists
      (function (Fix (_,_,l) | Case (_,_,_,l) |
                 Proj (_,l) | Cst (_,_,_,_,l)) when Cst_stack.is_empty l -> true | _ -> false)
      args

  let list_of_app_stack s =
    let rec aux = function
      | App (i,a,j) :: s ->
        let (args',s') = aux s in
        let a' = Array.sub a i (j - i + 1) in
        (Array.fold_right (fun x y -> x::y) a' args', s')
      | s -> ([],s) in
    let (out,s') = aux s in
    let init = match s' with [] -> true | _ -> false in
    Option.init init out

  let assign s p c =
    match strip_n_app p s with
    | Some (pre,_,sk) -> pre @ (App (0,[|c|],0)::sk)
    | None -> assert false

  let tail n0 s0 =
    let rec aux n s =
      if Int.equal n 0 then s else
        match s with
      | App (i,a,j) :: s ->
         let nb = j  - i + 1 in
         if n >= nb then
           aux (n - nb) s
         else
           let p = i+n in
           if j >= p then App(p,a,j)::s else s
        | _ -> raise (Invalid_argument "Reductionops.Stack.tail")
    in aux n0 s0

  let nth s p =
    match strip_n_app p s with
    | Some (_,el,_) -> el
    | None -> raise Not_found

  (** This function breaks the abstraction of Cst_stack ! *)
  let best_state sigma (_,sk as s) l =
    let rec aux sk def = function
      |(cst, params, []) -> (cst, append_app_list (List.rev params) sk)
      |(cst, params, (i,t)::q) -> match decomp sk with
        | Some (el,sk') when EConstr.eq_constr sigma el t.(i) ->
          if i = pred (Array.length t)
          then aux sk' def (cst, params, q)
          else aux sk' def (cst, params, (succ i,t)::q)
        | _ -> def
    in List.fold_left (aux sk) s l

  let constr_of_cst_member f sk =
    match f with
    | Cst_const (c, u) -> mkConstU (c, EInstance.make u), sk
    | Cst_proj p -> 
      match decomp sk with
      | Some (hd, sk) -> mkProj (p, hd), sk
      | None -> assert false

  let zip ?(refold=false) sigma s =
  let rec zip = function
    | f, [] -> f
    | f, (App (i,a,j) :: s) ->
       let a' = if Int.equal i 0 && Int.equal j (Array.length a - 1)
                then a
                else Array.sub a i (j - i + 1) in
       zip (mkApp (f, a'), s)
    | f, (Case (ci,rt,br,cst_l)::s) when refold ->
      zip (best_state sigma (mkCase (ci,rt,f,br), s) cst_l)
    | f, (Case (ci,rt,br,_)::s) -> zip (mkCase (ci,rt,f,br), s)
    | f, (Fix (fix,st,cst_l)::s) when refold ->
      zip (best_state sigma (mkFix fix, st @ (append_app [|f|] s)) cst_l)
  | f, (Fix (fix,st,_)::s) -> zip
    (mkFix fix, st @ (append_app [|f|] s))
  | f, (Cst (cst,_,_,params,cst_l)::s) when refold ->
    zip (best_state sigma (constr_of_cst_member cst (params @ (append_app [|f|] s))) cst_l)
  | f, (Cst (cst,_,_,params,_)::s) ->
    zip (constr_of_cst_member cst (params @ (append_app [|f|] s)))
  | f, (Proj (p,cst_l)::s) when refold ->
    zip (best_state sigma (mkProj (p,f),s) cst_l)
  | f, (Proj (p,_)::s) -> zip (mkProj (p,f),s)
  | f, (Primitive (p,c,args,kargs,cst_l)::s) ->
      zip (mkConstU c, args @ append_app [|f|] s)
  in
  zip s

  (* Check if there is enough arguments on [stk] w.r.t. arity of [op] *)
  let check_native_args op stk =
    let nargs = CPrimitives.arity op in
    let rargs = args_size stk in
    nargs <= rargs

  let get_next_primitive_args kargs stk =
    let rec nargs = function
      | [] -> 0
      | CPrimitives.Kwhnf :: _ -> 0
      | _ :: s -> 1 + nargs s
    in
    let n = nargs kargs in
    (List.skipn (n+1) kargs, strip_n_app n stk)

end

(** The type of (machine) states (= lambda-bar-calculus' cuts) *)
type state = constr * constr Stack.t

type contextual_reduction_function = env -> evar_map -> constr -> constr
type reduction_function = contextual_reduction_function
type local_reduction_function = evar_map -> constr -> constr
type e_reduction_function = env -> evar_map -> constr -> evar_map * constr

type contextual_stack_reduction_function =
    env -> evar_map -> constr -> constr * constr list
type stack_reduction_function = contextual_stack_reduction_function
type local_stack_reduction_function =
    evar_map -> constr -> constr * constr list

type contextual_state_reduction_function =
    env -> evar_map -> state -> state
type state_reduction_function = contextual_state_reduction_function
type local_state_reduction_function = evar_map -> state -> state

let pr_state env sigma (tm,sk) =
  let open Pp in
  let pr c = Termops.Internal.print_constr_env env sigma c in
  h 0 (pr tm ++ str "|" ++ cut () ++ Stack.pr pr sk)

(*************************************)
(*** Reduction Functions Operators ***)
(*************************************)

let safe_evar_value = Evarutil.safe_evar_value

let safe_meta_value sigma ev =
  try Some (Evd.meta_value sigma ev)
  with Not_found -> None

let strong_with_flags whdfun flags env sigma t =
  let push_rel_check_zeta d env =
    let open CClosure.RedFlags in
    let d = match d with
      | LocalDef (na,c,t) when not (red_set flags fZETA) -> LocalAssum (na,t)
      | d -> d in
    push_rel d env in
  let rec strongrec env t =
    map_constr_with_full_binders sigma
      push_rel_check_zeta strongrec env (whdfun flags env sigma t) in
  strongrec env t

let strong whdfun env sigma t =
  let rec strongrec env t =
    map_constr_with_full_binders sigma push_rel strongrec env (whdfun env sigma t) in
  strongrec env t

let local_strong whdfun sigma =
  let rec strongrec t = EConstr.map sigma strongrec (whdfun sigma t) in
  strongrec

let rec strong_prodspine redfun sigma c =
  let x = redfun sigma c in
  match EConstr.kind sigma x with
    | Prod (na,a,b) -> mkProd (na,a,strong_prodspine redfun sigma b)
    | _ -> x

(*************************************)
(*** Reduction using bindingss ***)
(*************************************)

let eta = CClosure.RedFlags.mkflags [CClosure.RedFlags.fETA]

(* Beta Reduction tools *)

let apply_subst recfun env sigma refold cst_l t stack =
  let rec aux env cst_l t stack =
    match (Stack.decomp stack, EConstr.kind sigma t) with
    | Some (h,stacktl), Lambda (_,_,c) ->
       let cst_l' = if refold then Cst_stack.add_param h cst_l else cst_l in
       aux (h::env) cst_l' c stacktl
    | _ -> recfun sigma cst_l (substl env t, stack)
  in aux env cst_l t stack

let stacklam recfun env sigma t stack =
  apply_subst (fun _ _ s -> recfun s) env sigma false Cst_stack.empty t stack

let beta_applist sigma (c,l) =
  let zip s = Stack.zip sigma s in
  stacklam zip [] sigma c (Stack.append_app_list l Stack.empty)

(* Iota reduction tools *)

type 'a miota_args = {
  mP      : constr;     (* the result type *)
  mconstr : constr;     (* the constructor *)
  mci     : case_info;  (* special info to re-build pattern *)
  mcargs  : 'a list;    (* the constructor's arguments *)
  mlf     : 'a array }  (* the branch code vector *)

let reducible_mind_case sigma c = match EConstr.kind sigma c with
  | Construct _ | CoFix _ -> true
  | _  -> false

(** @return c if there is a constant c whose body is bd
    @return bd else.

    It has only a meaning because internal representation of "Fixpoint f x
    := t" is Definition f := fix f x => t

    Even more fragile that we could hope because do Module M. Fixpoint
    f x := t. End M. Definition f := u. and say goodbye to any hope
    of refolding M.f this way ...
*)
let magicaly_constant_of_fixbody env sigma reference bd = function
  | Name.Anonymous -> bd
  | Name.Name id ->
    let open UnivProblem in
    try
      let (cst_mod,_) = Constant.repr2 reference in
      let cst = Constant.make2 cst_mod (Label.of_id id) in
      let (cst, u), ctx = UnivGen.fresh_constant_instance env cst in
      match constant_opt_value_in env (cst,u) with
      | None -> bd
      | Some t ->
        let csts = EConstr.eq_constr_universes env sigma (EConstr.of_constr t) bd in
        begin match csts with
        | Some csts ->
          let subst = Set.fold (fun cst acc ->
              let l, r = match cst with
                | ULub (u, v) | UWeak (u, v) -> u, v
                | UEq (u, v) | ULe (u, v) ->
                  let get u = Option.get (Universe.level u) in
                  get u, get v
              in
            Univ.LMap.add l r acc)
            csts Univ.LMap.empty
          in
          let inst = Instance.subst_fn (fun u -> Univ.LMap.find u subst) u in
          mkConstU (cst, EInstance.make inst)
        | None -> bd
        end
    with
    | Not_found -> bd

let contract_cofix ?env sigma ?reference (bodynum,(names,types,bodies as typedbodies)) =
  let nbodies = Array.length bodies in
  let make_Fi j =
    let ind = nbodies-j-1 in
    if Int.equal bodynum ind then mkCoFix (ind,typedbodies)
    else
      let bd = mkCoFix (ind,typedbodies) in
      match env with
      | None -> bd
      | Some e ->
        match reference with
        | None -> bd
        | Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind).binder_name in
  let closure = List.init nbodies make_Fi in
  substl closure bodies.(bodynum)

(** Similar to the "fix" case below *)
let reduce_and_refold_cofix recfun env sigma refold cst_l cofix sk =
  let raw_answer =
    let env = if refold then Some env else None in
    contract_cofix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) cofix in
  apply_subst
    (fun sigma x (t,sk') ->
      let t' =
        if refold then Cst_stack.best_replace sigma (mkCoFix cofix) cst_l t else t in
      recfun x (t',sk'))
    [] sigma refold Cst_stack.empty raw_answer sk

let reduce_mind_case sigma mia =
  match EConstr.kind sigma mia.mconstr with
    | Construct ((ind_sp,i),u) ->
(*        let ncargs = (fst mia.mci).(i-1) in*)
        let real_cargs = List.skipn mia.mci.ci_npar mia.mcargs in
        applist (mia.mlf.(i-1),real_cargs)
    | CoFix cofix ->
        let cofix_def = contract_cofix sigma cofix in
        mkCase (mia.mci, mia.mP, applist(cofix_def,mia.mcargs), mia.mlf)
    | _ -> assert false

(* contracts fix==FIX[nl;i](A1...Ak;[F1...Fk]{B1....Bk}) to produce
   Bi[Fj --> FIX[nl;j](A1...Ak;[F1...Fk]{B1...Bk})] *)

let contract_fix ?env sigma ?reference ((recindices,bodynum),(names,types,bodies as typedbodies)) =
    let nbodies = Array.length recindices in
    let make_Fi j =
      let ind = nbodies-j-1 in
      if Int.equal bodynum ind then mkFix ((recindices,ind),typedbodies)
      else
        let bd = mkFix ((recindices,ind),typedbodies) in
        match env with
        | None -> bd
        | Some e ->
          match reference with
          | None -> bd
          | Some r -> magicaly_constant_of_fixbody e sigma r bd names.(ind).binder_name in
    let closure = List.init nbodies make_Fi in
    substl closure bodies.(bodynum)

(** First we substitute the Rel bodynum by the fixpoint and then we try to
    replace the fixpoint by the best constant from [cst_l]
    Other rels are directly substituted by constants "magically found from the
    context" in contract_fix *)
let reduce_and_refold_fix recfun env sigma refold cst_l fix sk =
  let raw_answer =
    let env = if refold then Some env else None in
    contract_fix ?env sigma ?reference:(Cst_stack.reference sigma cst_l) fix in
  apply_subst
    (fun sigma x (t,sk') ->
      let t' =
        if refold then
          Cst_stack.best_replace sigma (mkFix fix) cst_l t
        else t
      in recfun x (t',sk'))
    [] sigma refold Cst_stack.empty raw_answer sk

let fix_recarg ((recindices,bodynum),_) stack =
  assert (0 <= bodynum && bodynum < Array.length recindices);
  let recargnum = Array.get recindices bodynum in
  try
    Some (recargnum, Stack.nth stack recargnum)
  with Not_found ->
    None

open Primred

module CNativeEntries =
struct

  type elem = EConstr.t
  type args = EConstr.t array
  type evd = evar_map

  let get = Array.get

  let get_int evd e =
    match EConstr.kind evd e with
    | Int i -> i
    | _ -> raise Primred.NativeDestKO

  let mkInt env i =
    mkInt i

  let mkBool env b =
    let (ct,cf) = get_bool_constructors env in
    mkConstruct (if b then ct else cf)

    let mkCarry env b e =
      let int_ty = mkConst @@ get_int_type env in
      let (c0,c1) = get_carry_constructors env in
      mkApp (mkConstruct (if b then c1 else c0),[|int_ty;e|])

    let mkIntPair env e1 e2 =
    let int_ty = mkConst @@ get_int_type env in
    let c = get_pair_constructor env in
    mkApp(mkConstruct c, [|int_ty;int_ty;e1;e2|])

  let mkLt env =
    let (_eq, lt, _gt) = get_cmp_constructors env in
    mkConstruct lt

  let mkEq env =
    let (eq, _lt, _gt) = get_cmp_constructors env in
    mkConstruct eq

  let mkGt env =
    let (_eq, _lt, gt) = get_cmp_constructors env in
    mkConstruct gt

end

module CredNative = RedNative(CNativeEntries)



(** Generic reduction function with environment

    Here is where unfolded constant are stored in order to be
    eventually refolded.

    If tactic_mode is true, it uses ReductionBehaviour, prefers
    refold constant instead of value and tries to infer constants
    fix and cofix came from.

    It substitutes fix and cofix by the constant they come from in
    contract_* in any case .
*)

let debug_RAKAM = ref (false)
let () = Goptions.(declare_bool_option {
  optdepr = false;
  optname =
    "Print states of the Reductionops abstract machine";
  optkey = ["Debug";"RAKAM"];
  optread = (fun () -> !debug_RAKAM);
  optwrite = (fun a -> debug_RAKAM:=a);
})

let equal_stacks sigma (x, l) (y, l') =
  let f_equal x y = eq_constr sigma x y in
  let eq_fix a b = f_equal (mkFix a) (mkFix b) in
  Stack.equal f_equal eq_fix l l' && f_equal x y

let rec whd_state_gen ?csts ~refold ~tactic_mode flags env sigma =
  let open Context.Named.Declaration in
  let open ReductionBehaviour in
  let rec whrec cst_l (x, stack) =
    let () = if !debug_RAKAM then
        let open Pp in
        let pr c = Termops.Internal.print_constr_env env sigma c in
        Feedback.msg_debug
             (h 0 (str "<<" ++ pr x ++
                   str "|" ++ cut () ++ Cst_stack.pr env sigma cst_l ++
                   str "|" ++ cut () ++ Stack.pr pr stack ++
                   str ">>"))
    in
    let c0 = EConstr.kind sigma x in
    let fold () =
      let () = if !debug_RAKAM then
          let open Pp in Feedback.msg_debug (str "<><><><><>") in
      ((EConstr.of_kind c0, stack),cst_l)
    in
    match c0 with
    | Rel n when CClosure.RedFlags.red_set flags CClosure.RedFlags.fDELTA ->
      (match lookup_rel n env with
      | LocalDef (_,body,_) -> whrec Cst_stack.empty (lift n body, stack)
      | _ -> fold ())
    | Var id when CClosure.RedFlags.red_set flags (CClosure.RedFlags.fVAR id) ->
      (match lookup_named id env with
      | LocalDef (_,body,_) ->
        whrec (if refold then Cst_stack.add_cst (mkVar id) cst_l else cst_l) (body, stack)
      | _ -> fold ())
    | Evar ev -> fold ()
    | Meta ev ->
      (match safe_meta_value sigma ev with
      | Some body -> whrec cst_l (body, stack)
      | None -> fold ())
    | Const (c,u as const) ->
      reduction_effect_hook env sigma c
         (lazy (EConstr.to_constr sigma (Stack.zip sigma (x,stack))));
      if CClosure.RedFlags.red_set flags (CClosure.RedFlags.fCONST c) then
       let u' = EInstance.kind sigma u in
       match constant_value_in env (c, u') with
       | body ->
         begin
          let body = EConstr.of_constr body in
          if not tactic_mode
          then whrec (if refold then Cst_stack.add_cst (mkConstU const) cst_l else cst_l)
              (body, stack)
          else (* Looks for ReductionBehaviour *)
            match ReductionBehaviour.get (GlobRef.ConstRef c) with
            | None -> whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, stack)
            | Some behavior ->
              begin match behavior with
              | NeverUnfold -> fold ()
              | (UnfoldWhen { nargs = Some n } |
                 UnfoldWhenNoMatch { nargs = Some n } )
                when Stack.args_size stack < n ->
                fold ()
              | UnfoldWhenNoMatch { recargs } -> (* maybe unfolds *)
                  let app_sk,sk = Stack.strip_app stack in
                  let (tm',sk'),cst_l' =
                    whrec (Cst_stack.add_cst (mkConstU const) cst_l) (body, app_sk)
                  in
                  let rec is_case x = match EConstr.kind sigma x with
                    | Lambda (_,_, x) | LetIn (_,_,_, x) | Cast (x, _,_) -> is_case x
                    | App (hd, _) -> is_case hd
                    | Case _ -> true
                    | _ -> false in
                  if equal_stacks sigma (x, app_sk) (tm', sk')
                  || Stack.will_expose_iota sk'
                  || is_case tm'
                  then fold ()
                  else whrec cst_l' (tm', sk' @ sk)
              | UnfoldWhen { recargs } -> (* maybe unfolds *)
                begin match recargs with
                  |[] -> (* if nargs has been specified *)
                    (* CAUTION : the constant is NEVER refold
                                            (even when it hides a (co)fix) *)
                    whrec cst_l (body, stack)
                  |curr::remains -> match Stack.strip_n_app curr stack with
                    | None -> fold ()
                    | Some (bef,arg,s') ->
                      whrec Cst_stack.empty
                        (arg,Stack.Cst(Stack.Cst_const (fst const, u'),curr,remains,bef,cst_l)::s')
                end
              end
        end
       | exception NotEvaluableConst (IsPrimitive p) when Stack.check_native_args p stack ->
          let kargs = CPrimitives.kind p in
          let (kargs,o) = Stack.get_next_primitive_args kargs stack in
          (* Should not fail thanks to [check_native_args] *)
          let (before,a,after) = Option.get o in
          whrec Cst_stack.empty (a,Stack.Primitive(p,const,before,kargs,cst_l)::after)
       | exception NotEvaluableConst _ -> fold ()
      else fold ()
    | Proj (p, c) when CClosure.RedFlags.red_projection flags p ->
      (let npars = Projection.npars p in
       if not tactic_mode then
         let stack' = (c, Stack.Proj (p, Cst_stack.empty (*cst_l*)) :: stack) in
         whrec Cst_stack.empty stack'
       else match ReductionBehaviour.get (GlobRef.ConstRef (Projection.constant p)) with
         | None ->
           let stack' = (c, Stack.Proj (p, cst_l) :: stack) in
           let stack'', csts = whrec Cst_stack.empty stack' in
           if equal_stacks sigma stack' stack'' then fold ()
           else stack'', csts
         | Some behavior ->
           begin match behavior with
             | NeverUnfold -> fold ()
             | (UnfoldWhen { nargs = Some n }
               | UnfoldWhenNoMatch { nargs = Some n })
               when Stack.args_size stack < n - (npars + 1) -> fold ()
             | UnfoldWhen { recargs }
             | UnfoldWhenNoMatch { recargs }-> (* maybe unfolds *)
               let recargs = List.map_filter (fun x ->
                   let idx = x - npars in
                   if idx < 0 then None else Some idx) recargs
               in
               match recargs with
               |[] -> (* if nargs has been specified *)
                 (* CAUTION : the constant is NEVER refold
                                  (even when it hides a (co)fix) *)
                 let stack' = (c, Stack.Proj (p, cst_l) :: stack) in
                 whrec Cst_stack.empty(* cst_l *) stack'
               | curr::remains ->
                 if curr == 0 then (* Try to reduce the record argument *)
                   whrec Cst_stack.empty
                     (c, Stack.Cst(Stack.Cst_proj p,curr,remains,Stack.empty,cst_l)::stack)
                 else
                   match Stack.strip_n_app curr stack with
                   | None -> fold ()
                   | Some (bef,arg,s') ->
                     whrec Cst_stack.empty
                       (arg,Stack.Cst(Stack.Cst_proj p,curr,remains,
                                      Stack.append_app [|c|] bef,cst_l)::s')
           end)

    | LetIn (_,b,_,c) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fZETA ->
      apply_subst (fun _ -> whrec) [b] sigma refold cst_l c stack
    | Cast (c,_,_) -> whrec cst_l (c, stack)
    | App (f,cl)  ->
      whrec
        (if refold then Cst_stack.add_args cl cst_l else cst_l)
        (f, Stack.append_app cl stack)
    | Lambda (na,t,c) ->
      (match Stack.decomp stack with
      | Some _ when CClosure.RedFlags.red_set flags CClosure.RedFlags.fBETA ->
        apply_subst (fun _ -> whrec) [] sigma refold cst_l x stack
      | None when CClosure.RedFlags.red_set flags CClosure.RedFlags.fETA ->
        let env' = push_rel (LocalAssum (na, t)) env in
        let whrec' = whd_state_gen ~refold ~tactic_mode flags env' sigma in
        (match EConstr.kind sigma (Stack.zip ~refold sigma (fst (whrec' (c, Stack.empty)))) with
        | App (f,cl) ->
          let napp = Array.length cl in
          if napp > 0 then
            let (x', l'),_ = whrec' (Array.last cl, Stack.empty) in
            match EConstr.kind sigma x', l' with
            | Rel 1, [] ->
              let lc = Array.sub cl 0 (napp-1) in
              let u = if Int.equal napp 1 then f else mkApp (f,lc) in
              if noccurn sigma 1 u then (pop u,Stack.empty),Cst_stack.empty else fold ()
            | _ -> fold ()
          else fold ()
        | _ -> fold ())
      | _ -> fold ())

    | Case (ci,p,d,lf) ->
      whrec Cst_stack.empty (d, Stack.Case (ci,p,lf,cst_l) :: stack)

    | Fix ((ri,n),_ as f) ->
      (match Stack.strip_n_app ri.(n) stack with
      |None -> fold ()
      |Some (bef,arg,s') ->
        whrec Cst_stack.empty (arg, Stack.Fix(f,bef,cst_l)::s'))

    | Construct ((ind,c),u) ->
      let use_match = CClosure.RedFlags.red_set flags CClosure.RedFlags.fMATCH in
      let use_fix = CClosure.RedFlags.red_set flags CClosure.RedFlags.fFIX in
      if use_match || use_fix then
        match Stack.strip_app stack with
        |args, (Stack.Case(ci, _, lf,_)::s') when use_match ->
          whrec Cst_stack.empty (lf.(c-1), (Stack.tail ci.ci_npar args) @ s')
        |args, (Stack.Proj (p,_)::s') when use_match ->
          whrec Cst_stack.empty (Stack.nth args (Projection.npars p + Projection.arg p), s')
        |args, (Stack.Fix (f,s',cst_l)::s'') when use_fix ->
          let x' = Stack.zip sigma (x, args) in
          let out_sk = s' @ (Stack.append_app [|x'|] s'') in
          reduce_and_refold_fix whrec env sigma refold cst_l f out_sk
        |args, (Stack.Cst (const,curr,remains,s',cst_l) :: s'') ->
          let x' = Stack.zip sigma (x, args) in
          begin match remains with
          | [] -> 
            (match const with
            | Stack.Cst_const const ->
              (match constant_opt_value_in env const with
              | None -> fold ()
              | Some body ->
                let const = (fst const, EInstance.make (snd const)) in
                let body = EConstr.of_constr body in
                whrec (if refold then Cst_stack.add_cst (mkConstU const) cst_l else cst_l)
                  (body, s' @ (Stack.append_app [|x'|] s'')))
            | Stack.Cst_proj p ->
              let stack = s' @ (Stack.append_app [|x'|] s'') in
                match Stack.strip_n_app 0 stack with
                | None -> assert false
                | Some (_,arg,s'') ->
                  whrec Cst_stack.empty (arg, Stack.Proj (p,cst_l) :: s''))
          | next :: remains' -> match Stack.strip_n_app (next-curr-1) s'' with
            | None -> fold ()
            | Some (bef,arg,s''') ->
              whrec Cst_stack.empty
                (arg,
                 Stack.Cst (const,next,remains',s' @ (Stack.append_app [|x'|] bef),cst_l) :: s''')
          end
        |_, (Stack.App _)::_ -> assert false
        |_, _ -> fold ()
      else fold ()

    | CoFix cofix ->
      if CClosure.RedFlags.red_set flags CClosure.RedFlags.fCOFIX then
        match Stack.strip_app stack with
        |args, ((Stack.Case _ |Stack.Proj _)::s') ->
          reduce_and_refold_cofix whrec env sigma refold cst_l cofix stack
        |_ -> fold ()
      else fold ()

    | Int i ->
      begin match Stack.strip_app stack with
       | (_, Stack.Primitive(p,kn,rargs,kargs,cst_l')::s) ->
         let more_to_reduce = List.exists (fun k -> CPrimitives.Kwhnf = k) kargs in
         if more_to_reduce then
           let (kargs,o) = Stack.get_next_primitive_args kargs s in
           (* Should not fail because Primitive is put on the stack only if fully applied *)
           let (before,a,after) = Option.get o in
           whrec Cst_stack.empty (a,Stack.Primitive(p,kn,rargs @ Stack.append_app [|x|] before,kargs,cst_l')::after)
         else
           let n = List.length kargs in
           let (args,s) = Stack.strip_app s in
           let (args,extra_args) =
             try List.chop n args
             with List.IndexOutOfRange -> (args,[]) (* FIXME probably useless *)
           in
           let args = Array.of_list (Option.get (Stack.list_of_app_stack (rargs @ Stack.append_app [|x|] args))) in
             begin match CredNative.red_prim env sigma p args with
               | Some t -> whrec cst_l' (t,s)
               | None -> ((mkApp (mkConstU kn, args), s), cst_l)
             end
       | _ -> fold ()
      end

    | Rel _ | Var _ | LetIn _ | Proj _ -> fold ()
    | Sort _ | Ind _ | Prod _ -> fold ()
  in
  fun xs ->
  let (s,cst_l as res) = whrec (Option.default Cst_stack.empty csts) xs in
  if tactic_mode then (Stack.best_state sigma s cst_l,Cst_stack.empty) else res

(** reduction machine without global env and refold machinery *)
let local_whd_state_gen flags sigma =
  let rec whrec (x, stack) =
    let c0 = EConstr.kind sigma x in
    let s = (EConstr.of_kind c0, stack) in
    match c0 with
    | LetIn (_,b,_,c) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fZETA ->
      stacklam whrec [b] sigma c stack
    | Cast (c,_,_) -> whrec (c, stack)
    | App (f,cl)  -> whrec (f, Stack.append_app cl stack)
    | Lambda (_,_,c) ->
      (match Stack.decomp stack with
      | Some (a,m) when CClosure.RedFlags.red_set flags CClosure.RedFlags.fBETA ->
        stacklam whrec [a] sigma c m
      | None when CClosure.RedFlags.red_set flags CClosure.RedFlags.fETA ->
        (match EConstr.kind sigma (Stack.zip sigma (whrec (c, Stack.empty))) with
        | App (f,cl) ->
          let napp = Array.length cl in
          if napp > 0 then
            let x', l' = whrec (Array.last cl, Stack.empty) in
            match EConstr.kind sigma x', l' with
            | Rel 1, [] ->
              let lc = Array.sub cl 0 (napp-1) in
              let u = if Int.equal napp 1 then f else mkApp (f,lc) in
              if noccurn sigma 1 u then (pop u,Stack.empty) else s
            | _ -> s
          else s
        | _ -> s)
      | _ -> s)

    | Proj (p,c) when CClosure.RedFlags.red_projection flags p ->
      (whrec (c, Stack.Proj (p, Cst_stack.empty) :: stack))

    | Case (ci,p,d,lf) ->
      whrec (d, Stack.Case (ci,p,lf,Cst_stack.empty) :: stack)

    | Fix ((ri,n),_ as f) ->
      (match Stack.strip_n_app ri.(n) stack with
      |None -> s
      |Some (bef,arg,s') -> whrec (arg, Stack.Fix(f,bef,Cst_stack.empty)::s'))

    | Evar ev -> s
    | Meta ev ->
      (match safe_meta_value sigma ev with
        Some c -> whrec (c,stack)
      | None -> s)

    | Construct ((ind,c),u) ->
      let use_match = CClosure.RedFlags.red_set flags CClosure.RedFlags.fMATCH in
      let use_fix = CClosure.RedFlags.red_set flags CClosure.RedFlags.fFIX in
      if use_match || use_fix then
        match Stack.strip_app stack with
        |args, (Stack.Case(ci, _, lf,_)::s') when use_match ->
          whrec (lf.(c-1), (Stack.tail ci.ci_npar args) @ s')
        |args, (Stack.Proj (p,_) :: s') when use_match ->
          whrec (Stack.nth args (Projection.npars p + Projection.arg p), s')
        |args, (Stack.Fix (f,s',cst)::s'') when use_fix ->
          let x' = Stack.zip sigma (x,args) in
          whrec (contract_fix sigma f, s' @ (Stack.append_app [|x'|] s''))
        |_, (Stack.App _|Stack.Cst _)::_ -> assert false
        |_, _ -> s
      else s

    | CoFix cofix ->
      if CClosure.RedFlags.red_set flags CClosure.RedFlags.fCOFIX then
        match Stack.strip_app stack with
        |args, ((Stack.Case _ | Stack.Proj _)::s') ->
          whrec (contract_cofix sigma cofix, stack)
        |_ -> s
      else s

    | Rel _ | Var _ | Sort _ | Prod _ | LetIn _ | Const _  | Ind _ | Proj _
      | Int _ -> s

  in
  whrec

let raw_whd_state_gen flags env =
  let f sigma s = fst (whd_state_gen ~refold:false
                         ~tactic_mode:false
                         flags env sigma s) in
  f

let stack_red_of_state_red f =
  let f sigma x = EConstr.decompose_app sigma (Stack.zip sigma (f sigma (x, Stack.empty))) in
  f

(* Drops the Cst_stack *)
let iterate_whd_gen refold flags env sigma s =
  let rec aux t =
  let (hd,sk),_ = whd_state_gen ~refold ~tactic_mode:false flags env sigma (t,Stack.empty) in
  let whd_sk = Stack.map aux sk in
  Stack.zip sigma ~refold (hd,whd_sk)
  in aux s

let red_of_state_red f sigma x =
  Stack.zip sigma (f sigma (x,Stack.empty))

(* 0. No Reduction Functions *)

let whd_nored_state = local_whd_state_gen CClosure.nored
let whd_nored_stack = stack_red_of_state_red whd_nored_state
let whd_nored = red_of_state_red whd_nored_state

(* 1. Beta Reduction Functions *)

let whd_beta_state = local_whd_state_gen CClosure.beta
let whd_beta_stack = stack_red_of_state_red whd_beta_state
let whd_beta = red_of_state_red whd_beta_state

let whd_betalet_state = local_whd_state_gen CClosure.betazeta
let whd_betalet_stack = stack_red_of_state_red whd_betalet_state
let whd_betalet = red_of_state_red whd_betalet_state

(* 2. Delta Reduction Functions *)

let whd_delta_state e = raw_whd_state_gen CClosure.delta e
let whd_delta_stack env = stack_red_of_state_red (whd_delta_state env)
let whd_delta env = red_of_state_red  (whd_delta_state env)

let whd_betadeltazeta_state e = raw_whd_state_gen CClosure.betadeltazeta e
let whd_betadeltazeta_stack env =
  stack_red_of_state_red (whd_betadeltazeta_state env)
let whd_betadeltazeta env =
  red_of_state_red (whd_betadeltazeta_state env)


(* 3. Iota reduction Functions *)

let whd_betaiota_state = local_whd_state_gen CClosure.betaiota
let whd_betaiota_stack = stack_red_of_state_red whd_betaiota_state
let whd_betaiota = red_of_state_red whd_betaiota_state

let whd_betaiotazeta_state = local_whd_state_gen CClosure.betaiotazeta
let whd_betaiotazeta_stack = stack_red_of_state_red whd_betaiotazeta_state
let whd_betaiotazeta = red_of_state_red whd_betaiotazeta_state

let whd_all_state env = raw_whd_state_gen CClosure.all env
let whd_all_stack env =
  stack_red_of_state_red (whd_all_state env)
let whd_all env =
  red_of_state_red (whd_all_state env)

let whd_allnolet_state env = raw_whd_state_gen CClosure.allnolet env
let whd_allnolet_stack env =
  stack_red_of_state_red (whd_allnolet_state env)
let whd_allnolet env =
  red_of_state_red (whd_allnolet_state env)

(* 4. Ad-hoc eta reduction, does not substitute evars *)

let shrink_eta c = Stack.zip Evd.empty (local_whd_state_gen eta Evd.empty (c,Stack.empty))

(* 5. Zeta Reduction Functions *)

let whd_zeta_state = local_whd_state_gen CClosure.zeta
let whd_zeta_stack = stack_red_of_state_red whd_zeta_state
let whd_zeta = red_of_state_red whd_zeta_state

(****************************************************************************)
(*                   Reduction Functions                                    *)
(****************************************************************************)

(* Replacing defined evars for error messages *)
let whd_evar = Evarutil.whd_evar
let nf_evar = Evarutil.nf_evar

(* lazy reduction functions. The infos must be created for each term *)
(* Note by HH [oct 08] : why would it be the job of clos_norm_flags to add
   a [nf_evar] here *)
let clos_norm_flags flgs env sigma t =
  try
    let evars ev = safe_evar_value sigma ev in
    EConstr.of_constr (CClosure.norm_val
      (CClosure.create_clos_infos ~evars flgs env)
      (CClosure.create_tab ())
      (CClosure.inject (EConstr.Unsafe.to_constr t)))
  with e when is_anomaly e -> user_err Pp.(str "Tried to normalize ill-typed term")

let clos_whd_flags flgs env sigma t =
  try
    let evars ev = safe_evar_value sigma ev in
    EConstr.of_constr (CClosure.whd_val
      (CClosure.create_clos_infos ~evars flgs env)
      (CClosure.create_tab ())
      (CClosure.inject (EConstr.Unsafe.to_constr t)))
  with e when is_anomaly e -> user_err Pp.(str "Tried to normalize ill-typed term")

let nf_beta = clos_norm_flags CClosure.beta
let nf_betaiota = clos_norm_flags CClosure.betaiota
let nf_betaiotazeta = clos_norm_flags CClosure.betaiotazeta
let nf_zeta = clos_norm_flags CClosure.zeta
let nf_all env sigma =
  clos_norm_flags CClosure.all env sigma


(********************************************************************)
(*                         Conversion                               *)
(********************************************************************)
(*
let fkey = CProfile.declare_profile "fhnf";;
let fhnf info v = CProfile.profile2 fkey fhnf info v;;

let fakey = CProfile.declare_profile "fhnf_apply";;
let fhnf_apply info k h a = CProfile.profile4 fakey fhnf_apply info k h a;;
*)

let is_transparent e k =
  match Conv_oracle.get_strategy (Environ.oracle e) k with
  | Conv_oracle.Opaque -> false
  | _ -> true

(* Conversion utility functions *)

type conversion_test = Constraint.t -> Constraint.t

let pb_is_equal pb = pb == Reduction.CONV

let pb_equal = function
  | Reduction.CUMUL -> Reduction.CONV
  | Reduction.CONV -> Reduction.CONV

let report_anomaly e =
  let msg = Pp.(str "Conversion test raised an anomaly:" ++
                spc () ++ CErrors.print e) in
  let e = UserError (None,msg) in
  let e = CErrors.push e in
  iraise e

let f_conv ?l2r ?reds env ?evars x y =
  let inj = EConstr.Unsafe.to_constr in
  Reduction.conv ?l2r ?reds env ?evars (inj x) (inj y)

let f_conv_leq ?l2r ?reds env ?evars x y =
  let inj = EConstr.Unsafe.to_constr in
  Reduction.conv_leq ?l2r ?reds env ?evars (inj x) (inj y)

let test_trans_conversion (f: constr Reduction.extended_conversion_function) reds env sigma x y =
  try
    let evars ev = safe_evar_value sigma ev in
    let _ = f ~reds env ~evars:(evars, Evd.universes sigma) x y in
    true
  with Reduction.NotConvertible -> false
    | e when is_anomaly e -> report_anomaly e

let is_conv ?(reds=TransparentState.full) env sigma = test_trans_conversion f_conv reds env sigma
let is_conv_leq ?(reds=TransparentState.full) env sigma = test_trans_conversion f_conv_leq reds env sigma
let is_fconv ?(reds=TransparentState.full) = function
  | Reduction.CONV -> is_conv ~reds
  | Reduction.CUMUL -> is_conv_leq ~reds

let check_conv ?(pb=Reduction.CUMUL) ?(ts=TransparentState.full) env sigma x y =
  let f = match pb with
    | Reduction.CONV -> f_conv
    | Reduction.CUMUL -> f_conv_leq
  in
    try f ~reds:ts env ~evars:(safe_evar_value sigma, Evd.universes sigma) x y; true
    with Reduction.NotConvertible -> false
    | Univ.UniverseInconsistency _ -> false
    | e when is_anomaly e -> report_anomaly e

let sigma_compare_sorts env pb s0 s1 sigma =
  match pb with
  | Reduction.CONV -> Evd.set_eq_sort env sigma s0 s1
  | Reduction.CUMUL -> Evd.set_leq_sort env sigma s0 s1

let sigma_compare_instances ~flex i0 i1 sigma =
  try Evd.set_eq_instances ~flex sigma i0 i1
  with Evd.UniversesDiffer
     | Univ.UniverseInconsistency _ ->
        raise Reduction.NotConvertible

let sigma_check_inductive_instances cv_pb variance u1 u2 sigma =
  match Evarutil.compare_cumulative_instances cv_pb variance u1 u2 sigma with
  | Inl sigma -> sigma
  | Inr _ ->
    raise Reduction.NotConvertible

let sigma_univ_state = 
  let open Reduction in
  { compare_sorts = sigma_compare_sorts;
    compare_instances = sigma_compare_instances;
    compare_cumul_instances = sigma_check_inductive_instances; }

let infer_conv_gen conv_fun ?(catch_incon=true) ?(pb=Reduction.CUMUL)
    ?(ts=TransparentState.full) env sigma x y =
  (* FIXME *)
  try
      let ans = match pb with
      | Reduction.CUMUL ->
          EConstr.leq_constr_universes env sigma x y
      | Reduction.CONV ->
          EConstr.eq_constr_universes env sigma x y
      in
      let ans = match ans with
      | None -> None
      | Some cstr ->
        try Some (Evd.add_universe_constraints sigma cstr)
        with Univ.UniverseInconsistency _ | Evd.UniversesDiffer -> None
      in
      match ans with
      | Some sigma -> ans
      | None ->
        let x = EConstr.Unsafe.to_constr x in
        let y = EConstr.Unsafe.to_constr y in
        let sigma' = 
          conv_fun pb ~l2r:false sigma ts
            env (sigma, sigma_univ_state) x y in
        Some sigma'
  with
  | Reduction.NotConvertible -> None
  | Univ.UniverseInconsistency _ when catch_incon -> None
  | e when is_anomaly e -> report_anomaly e

let infer_conv = infer_conv_gen (fun pb ~l2r sigma ->
      Reduction.generic_conv pb ~l2r (safe_evar_value sigma))

(* This reference avoids always having to link C code with the kernel *)
let vm_infer_conv = ref (infer_conv ~catch_incon:true ~ts:TransparentState.full)
let set_vm_infer_conv f = vm_infer_conv := f
let vm_infer_conv ?(pb=Reduction.CUMUL) env t1 t2 =
  !vm_infer_conv ~pb env t1 t2

(********************************************************************)
(*             Special-Purpose Reduction                            *)
(********************************************************************)

let whd_meta sigma c = match EConstr.kind sigma c with
  | Meta p -> (try meta_value sigma p with Not_found -> c)
  | _ -> c

let default_plain_instance_ident = Id.of_string "H"

(* Try to replace all metas. Does not replace metas in the metas' values
 * Differs from (strong whd_meta). *)
let plain_instance sigma s c =
  let rec irec n u = match EConstr.kind sigma u with
    | Meta p -> (try lift n (Metamap.find p s) with Not_found -> u)
    | App (f,l) when isCast sigma f ->
        let (f,_,t) = destCast sigma f in
        let l' = Array.Fun1.Smart.map irec n l in
        (match EConstr.kind sigma f with
        | Meta p ->
            (* Don't flatten application nodes: this is used to extract a
               proof-term from a proof-tree and we want to keep the structure
               of the proof-tree *)
            (try let g = Metamap.find p s in
            match EConstr.kind sigma g with
            | App _ ->
                let l' = Array.Fun1.Smart.map lift 1 l' in
                let r = Sorts.Relevant in (* TODO fix relevance *)
                let na = make_annot (Name default_plain_instance_ident) r in
                mkLetIn (na,g,t,mkApp(mkRel 1, l'))
            | _ -> mkApp (g,l')
            with Not_found -> mkApp (f,l'))
        | _ -> mkApp (irec n f,l'))
    | Cast (m,_,_) when isMeta sigma m ->
        (try lift n (Metamap.find (destMeta sigma m) s) with Not_found -> u)
    | _ ->
        map_with_binders sigma succ irec n u
  in
  if Metamap.is_empty s then c
  else irec 0 c

(* [instance] is used for [res_pf]; the call to [local_strong whd_betaiota]
   has (unfortunately) different subtle side effects:

   - ** Order of subgoals **
     If the lemma is a case analysis with parameters, it will move the
     parameters as first subgoals (e.g. "case H" applied on
     "H:D->A/\B|-C" will present the subgoal |-D first while w/o
     betaiota the subgoal |-D would have come last).

   - ** Betaiota-contraction in statement **
     If the lemma has a parameter which is a function and this
     function is applied in the lemma, then the _strong_ betaiota will
     contract the application of the function to its argument (e.g.
     "apply (H (fun x => x))" in "H:forall f, f 0 = 0 |- 0=0" will
     result in applying the lemma 0=0 in which "(fun x => x) 0" has
     been contracted). A goal to rewrite may then fail or succeed
     differently.

   - ** Naming of hypotheses **
     If a lemma is a function of the form "fun H:(forall a:A, P a)
     => .. F H .." where the expected type of H is "forall b:A, P b",
     then, without reduction, the application of the lemma will
     generate a subgoal "forall a:A, P a" (and intro will use name
     "a"), while with reduction, it will generate a subgoal "forall
     b:A, P b" (and intro will use name "b").

   - ** First-order pattern-matching **
     If a lemma has the type "(fun x => p) t" then rewriting t may fail
     if the type of the lemma is first beta-reduced (this typically happens
     when rewriting a single variable and the type of the lemma is obtained
     by meta_instance (with empty map) which itself calls instance with this
     empty map).
 *)

let instance sigma s c =
  (* if s = [] then c else *)
  local_strong whd_betaiota sigma (plain_instance sigma s c)

(* pseudo-reduction rule:
 * [hnf_prod_app env s (Prod(_,B)) N --> B[N]
 * with an HNF on the first argument to produce a product.
 * if this does not work, then we use the string S as part of our
 * error message. *)

let hnf_prod_app env sigma t n =
  match EConstr.kind sigma (whd_all env sigma t) with
    | Prod (_,_,b) -> subst1 n b
    | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.")

let hnf_prod_appvect env sigma t nl =
  Array.fold_left (fun acc t -> hnf_prod_app env sigma acc t) t nl

let hnf_prod_applist env sigma t nl =
  List.fold_left (fun acc t -> hnf_prod_app env sigma acc t) t nl

let hnf_lam_app env sigma t n =
  match EConstr.kind sigma (whd_all env sigma t) with
    | Lambda (_,_,b) -> subst1 n b
    | _ -> anomaly ~label:"hnf_lam_app" (Pp.str "Need an abstraction.")

let hnf_lam_appvect env sigma t nl =
  Array.fold_left (fun acc t -> hnf_lam_app env sigma acc t) t nl

let hnf_lam_applist env sigma t nl =
  List.fold_left (fun acc t -> hnf_lam_app env sigma acc t) t nl

let splay_prod env sigma =
  let rec decrec env m c =
    let t = whd_all env sigma c in
    match EConstr.kind sigma t with
      | Prod (n,a,c0) ->
         decrec (push_rel (LocalAssum (n,a)) env) ((n,a)::m) c0
      | _ -> m,t
  in
  decrec env []

let splay_lam env sigma =
  let rec decrec env m c =
    let t = whd_all env sigma c in
    match EConstr.kind sigma t with
      | Lambda (n,a,c0) ->
         decrec (push_rel (LocalAssum (n,a)) env) ((n,a)::m) c0
      | _ -> m,t
  in
  decrec env []

let splay_prod_assum env sigma =
  let rec prodec_rec env l c =
    let t = whd_allnolet env sigma c in
    match EConstr.kind sigma t with
    | Prod (x,t,c)  ->
        prodec_rec (push_rel (LocalAssum (x,t)) env)
          (Context.Rel.add (LocalAssum (x,t)) l) c
    | LetIn (x,b,t,c) ->
        prodec_rec (push_rel (LocalDef (x,b,t)) env)
          (Context.Rel.add (LocalDef (x,b,t)) l) c
    | Cast (c,_,_)    -> prodec_rec env l c
    | _               -> 
      let t' = whd_all env sigma t in
        if EConstr.eq_constr sigma t t' then l,t
        else prodec_rec env l t'
  in
  prodec_rec env Context.Rel.empty

let splay_arity env sigma c =
  let l, c = splay_prod env sigma c in
  match EConstr.kind sigma c with
    | Sort s -> l,s
    | _ -> invalid_arg "splay_arity"

let sort_of_arity env sigma c = snd (splay_arity env sigma c)

let splay_prod_n env sigma n =
  let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else
    match EConstr.kind sigma (whd_all env sigma c) with
      | Prod (n,a,c0) ->
          decrec (push_rel (LocalAssum (n,a)) env)
            (m-1) (Context.Rel.add (LocalAssum (n,a)) ln) c0
      | _                      -> invalid_arg "splay_prod_n"
  in
  decrec env n Context.Rel.empty

let splay_lam_n env sigma n =
  let rec decrec env m ln c = if Int.equal m 0 then (ln,c) else
    match EConstr.kind sigma (whd_all env sigma c) with
      | Lambda (n,a,c0) ->
          decrec (push_rel (LocalAssum (n,a)) env)
            (m-1) (Context.Rel.add (LocalAssum (n,a)) ln) c0
      | _                      -> invalid_arg "splay_lam_n"
  in
  decrec env n Context.Rel.empty

let is_sort env sigma t =
  match EConstr.kind sigma (whd_all env sigma t) with
  | Sort s -> true
  | _ -> false

(* reduction to head-normal-form allowing delta/zeta only in argument
   of case/fix (heuristic used by evar_conv) *)

let whd_betaiota_deltazeta_for_iota_state ts env sigma s =
  let refold = false in
  let tactic_mode = false in
  let rec whrec csts s =
    let (t, stack as s),csts' = whd_state_gen ~csts ~refold ~tactic_mode CClosure.betaiota env sigma s in
    match Stack.strip_app stack with
      |args, (Stack.Case _ :: _ as stack') ->
        let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode
          (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in
        if reducible_mind_case sigma t_o then whrec csts_o (t_o, stack_o@stack') else s,csts'
      |args, (Stack.Fix _ :: _ as stack') ->
        let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode
          (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in
        if isConstruct sigma t_o then whrec csts_o (t_o, stack_o@stack') else s,csts'
      |args, (Stack.Proj (p,_) :: stack'') ->
        let (t_o,stack_o),csts_o = whd_state_gen ~csts:csts' ~refold ~tactic_mode
          (CClosure.RedFlags.red_add_transparent CClosure.all ts) env sigma (t,args) in
        if isConstruct sigma t_o then
          whrec Cst_stack.empty (Stack.nth stack_o (Projection.npars p + Projection.arg p), stack'')
        else s,csts'
      |_, ((Stack.App _|Stack.Cst _|Stack.Primitive _) :: _|[]) -> s,csts'
  in
  fst (whrec Cst_stack.empty s)

let find_conclusion env sigma =
  let rec decrec env c =
    let t = whd_all env sigma c in
    match EConstr.kind sigma t with
      | Prod (x,t,c0) -> decrec (push_rel (LocalAssum (x,t)) env) c0
      | Lambda (x,t,c0) -> decrec (push_rel (LocalAssum (x,t)) env) c0
      | t -> t
  in
  decrec env

let is_arity env sigma c =
  match find_conclusion env sigma c with
    | Sort _ -> true
    | _ -> false

(*************************************)
(* Metas *)

let meta_value evd mv =
  let rec valrec mv =
    match meta_opt_fvalue evd mv with
    | Some (b,_) ->
      let metas = Metamap.bind valrec b.freemetas in
      instance evd metas b.rebus
    | None -> mkMeta mv
  in
  valrec mv

let meta_instance sigma b =
  let fm = b.freemetas in
  if Metaset.is_empty fm then b.rebus
  else
    let c_sigma = Metamap.bind (fun mv -> meta_value sigma mv) fm in
    instance sigma c_sigma b.rebus

let nf_meta sigma c =
  let cl = mk_freelisted c in
  meta_instance sigma { cl with rebus = cl.rebus }

(* Instantiate metas that create beta/iota redexes *)

let meta_reducible_instance evd b =
  let fm = b.freemetas in
  let fold mv accu =
    let fvalue = try meta_opt_fvalue evd mv with Not_found -> None in
    match fvalue with
    | None -> accu
    | Some (g, (_, s)) -> Metamap.add mv (g.rebus, s) accu
  in
  let metas = Metaset.fold fold fm Metamap.empty in
  let rec irec u =
    let u = whd_betaiota Evd.empty u (* FIXME *) in
    match EConstr.kind evd u with
    | Case (ci,p,c,bl) when EConstr.isMeta evd (strip_outer_cast evd c) ->
        let m = destMeta evd (strip_outer_cast evd c) in
        (match
          try
            let g, s = Metamap.find m metas in
            let is_coerce = match s with CoerceToType -> true | _ -> false in
            if isConstruct evd g || not is_coerce then Some g else None
          with Not_found -> None
          with
            | Some g -> irec (mkCase (ci,p,g,bl))
            | None -> mkCase (ci,irec p,c,Array.map irec bl))
    | App (f,l) when EConstr.isMeta evd (strip_outer_cast evd f) ->
        let m = destMeta evd (strip_outer_cast evd f) in
        (match
          try
            let g, s = Metamap.find m metas in
            let is_coerce = match s with CoerceToType -> true | _ -> false in
            if isLambda evd g || not is_coerce then Some g else None
          with Not_found -> None
         with
           | Some g -> irec (mkApp (g,l))
           | None -> mkApp (f,Array.map irec l))
    | Meta m ->
        (try let g, s = Metamap.find m metas in
          let is_coerce = match s with CoerceToType -> true | _ -> false in
          if not is_coerce then irec g else u
         with Not_found -> u)
    | Proj (p,c) when isMeta evd c || isCast evd c && isMeta evd (pi1 (destCast evd c)) (* What if two nested casts? *) ->
      let m = try destMeta evd c with _ -> destMeta evd (pi1 (destCast evd c)) (* idem *) in
          (match
          try
            let g, s = Metamap.find m metas in
            let is_coerce = match s with CoerceToType -> true | _ -> false in
            if isConstruct evd g || not is_coerce then Some g else None
          with Not_found -> None
          with
            | Some g -> irec (mkProj (p,g))
            | None -> mkProj (p,c))
    | _ -> EConstr.map evd irec u
  in
  if Metaset.is_empty fm then (* nf_betaiota? *) b.rebus
  else irec b.rebus

let betazetaevar_applist sigma n c l =
  let rec stacklam n env t stack =
    if Int.equal n 0 then applist (substl env t, stack) else
    match EConstr.kind sigma t, stack with
    | Lambda(_,_,c), arg::stacktl -> stacklam (n-1) (arg::env) c stacktl
    | LetIn(_,b,_,c), _ -> stacklam (n-1) (substl env b::env) c stack
    | Evar _, _ -> applist (substl env t, stack)
    | _ -> anomaly (Pp.str "Not enough lambda/let's.") in
  stacklam n [] c l