1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Term open Constr open Context open Vars open Environ open Reduction open Declarations open Names open Inductive open Util open Nativecode open Nativevalues open Context.Rel.Declaration (** This module implements normalization by evaluation to OCaml code *) exception Find_at of int (* profiling *) let profiling_enabled = ref false (* for supported platforms, filename for profiler results *) let profile_filename = ref "native_compute_profile.data" let profiler_platform () = match [@warning "-8"] Sys.os_type with | "Unix" -> let in_ch = Unix.open_process_in "uname" in let uname = input_line in_ch in let _ = close_in in_ch in Format.sprintf "Unix (%s)" uname | "Win32" -> "Windows (Win32)" | "Cygwin" -> "Windows (Cygwin)" let get_profile_filename () = !profile_filename let set_profile_filename fn = profile_filename := fn (* find unused profile filename *) let get_available_profile_filename () = let profile_filename = get_profile_filename () in let dir = Filename.dirname profile_filename in let base = Filename.basename profile_filename in (* starting with OCaml 4.04, could use Filename.remove_extension and Filename.extension, which gets rid of need for exception-handling here *) let (name,ext) = try let nm = Filename.chop_extension base in let nm_len = String.length nm in let ex = String.sub base nm_len (String.length base - nm_len) in (nm,ex) with Invalid_argument _ -> (base,"") in try (* unlikely race: fn deleted, another process uses fn *) Filename.temp_file ~temp_dir:dir (name ^ "_") ext with Sys_error s -> let msg = "When trying to find native_compute profile output file: " ^ s in let _ = Feedback.msg_info (Pp.str msg) in assert false let get_profiling_enabled () = !profiling_enabled let set_profiling_enabled b = profiling_enabled := b let invert_tag cst tag reloc_tbl = try for j = 0 to Array.length reloc_tbl - 1 do let tagj,arity = reloc_tbl.(j) in if Int.equal tag tagj && (cst && Int.equal arity 0 || not(cst || Int.equal arity 0)) then raise (Find_at j) else () done;raise Not_found with Find_at j -> (j+1) let decompose_prod env t = let (name,dom,codom) = destProd (whd_all env t) in let name = map_annot (function | Anonymous -> Name (Id.of_string "x") | na -> na) name in (name,dom,codom) let app_type env c = let t = whd_all env c in try destApp t with DestKO -> (t,[||]) let find_rectype_a env c = let (t, l) = app_type env c in match kind t with | Ind ind -> (ind, l) | _ -> raise Not_found (* Instantiate inductives and parameters in constructor type *) let type_constructor mind mib u (ctx, typ) params = let typ = it_mkProd_or_LetIn typ ctx in let s = ind_subst mind mib u in let ctyp = substl s typ in let nparams = Array.length params in if Int.equal nparams 0 then ctyp else let _,ctyp = decompose_prod_n nparams ctyp in substl (List.rev (Array.to_list params)) ctyp let construct_of_constr_notnative const env tag (mind, _ as ind) u allargs = let mib,mip = lookup_mind_specif env ind in let nparams = mib.mind_nparams in let params = Array.sub allargs 0 nparams in let i = invert_tag const tag mip.mind_reloc_tbl in let ctyp = type_constructor mind mib u (mip.mind_nf_lc.(i-1)) params in (mkApp(mkConstructU((ind,i),u), params), ctyp) let construct_of_constr const env sigma tag typ = let t, l = app_type env typ in match EConstr.kind_upto sigma t with | Ind (ind,u) -> construct_of_constr_notnative const env tag ind u l | _ -> assert (Constr.equal t (Typeops.type_of_int env)); (mkInt (Uint63.of_int tag), t) let construct_of_constr_const env sigma tag typ = fst (construct_of_constr true env sigma tag typ) let construct_of_constr_block = construct_of_constr false let build_branches_type env sigma (mind,_ as _ind) mib mip u params p = let rtbl = mip.mind_reloc_tbl in (* [build_one_branch i cty] construit le type de la ieme branche (commence a 0) et les lambda correspondant aux realargs *) let build_one_branch i cty = let typi = type_constructor mind mib u cty params in let decl,indapp = Reductionops.splay_prod env sigma (EConstr.of_constr typi) in let decl = List.map (on_snd EConstr.Unsafe.to_constr) decl in let indapp = EConstr.Unsafe.to_constr indapp in let decl_with_letin,_ = decompose_prod_assum typi in let ind,cargs = find_rectype_a env indapp in let nparams = Array.length params in let carity = snd (rtbl.(i)) in let crealargs = Array.sub cargs nparams (Array.length cargs - nparams) in let codom = let ndecl = List.length decl in let papp = mkApp(lift ndecl p,crealargs) in let cstr = ith_constructor_of_inductive (fst ind) (i+1) in let relargs = Array.init carity (fun i -> mkRel (carity-i)) in let params = Array.map (lift ndecl) params in let dep_cstr = mkApp(mkApp(mkConstructU (cstr,snd ind),params),relargs) in mkApp(papp,[|dep_cstr|]) in decl, decl_with_letin, codom in Array.mapi build_one_branch mip.mind_nf_lc let build_case_type p realargs c = mkApp(mkApp(p, realargs), [|c|]) (* normalisation of values *) let branch_of_switch lvl ans bs = let tbl = ans.asw_reloc in let branch i = let tag,arity = tbl.(i) in let ci = if Int.equal arity 0 then mk_const tag else mk_block tag (mk_rels_accu lvl arity) in bs ci in Array.init (Array.length tbl) branch let get_proj env (ind, proj_arg) = let mib = Environ.lookup_mind (fst ind) env in match Declareops.inductive_make_projection ind mib ~proj_arg with | None -> CErrors.anomaly (Pp.strbrk "Return type is not a primitive record") | Some p -> Projection.make p true let rec nf_val env sigma v typ = match kind_of_value v with | Vaccu accu -> nf_accu env sigma accu | Vfun f -> let lvl = nb_rel env in let name,dom,codom = try decompose_prod env typ with DestKO -> CErrors.anomaly (Pp.strbrk "Returned a functional value in a type not recognized as a product type.") in let env = push_rel (LocalAssum (name,dom)) env in let body = nf_val env sigma (f (mk_rel_accu lvl)) codom in mkLambda(name,dom,body) | Vconst n -> construct_of_constr_const env sigma n typ | Vint64 i -> i |> Uint63.of_int64 |> mkInt | Vblock b -> let capp,ctyp = construct_of_constr_block env sigma (block_tag b) typ in let args = nf_bargs env sigma b ctyp in mkApp(capp,args) and nf_type env sigma v = match kind_of_value v with | Vaccu accu -> nf_accu env sigma accu | _ -> assert false and nf_type_sort env sigma v = match kind_of_value v with | Vaccu accu -> let t,s = nf_accu_type env sigma accu in let s = try destSort (whd_all env s) with DestKO -> CErrors.anomaly (Pp.str "Value should be a sort") in t, s | _ -> assert false and nf_accu env sigma accu = let atom = atom_of_accu accu in if Int.equal (accu_nargs accu) 0 then nf_atom env sigma atom else let a,typ = nf_atom_type env sigma atom in let _, args = nf_args env sigma (args_of_accu accu) typ in mkApp(a,Array.of_list args) and nf_accu_type env sigma accu = let atom = atom_of_accu accu in if Int.equal (accu_nargs accu) 0 then nf_atom_type env sigma atom else let a,typ = nf_atom_type env sigma atom in let t, args = nf_args env sigma (args_of_accu accu) typ in mkApp(a,Array.of_list args), t and nf_args env sigma args t = let aux arg (t,l) = let _,dom,codom = try decompose_prod env t with DestKO -> CErrors.anomaly (Pp.strbrk "Returned a functional value in a type not recognized as a product type.") in let c = nf_val env sigma arg dom in (subst1 c codom, c::l) in let t,l = Array.fold_right aux args (t,[]) in t, List.rev l and nf_bargs env sigma b t = let t = ref t in let len = block_size b in Array.init len (fun i -> let _,dom,codom = try decompose_prod env !t with DestKO -> CErrors.anomaly (Pp.strbrk "Returned a functional value in a type not recognized as a product type.") in let c = nf_val env sigma (block_field b i) dom in t := subst1 c codom; c) and nf_atom env sigma atom = match atom with | Arel i -> mkRel (nb_rel env - i) | Aconstant cst -> mkConstU cst | Aind ind -> mkIndU ind | Asort s -> mkSort s | Avar id -> mkVar id | Aprod(n,dom,codom) -> let dom, sdom = nf_type_sort env sigma dom in let rdom = Sorts.relevance_of_sort sdom in let n = make_annot n rdom in let vn = mk_rel_accu (nb_rel env) in let env = push_rel (LocalAssum (n,dom)) env in let codom = nf_type env sigma (codom vn) in mkProd(n,dom,codom) | Ameta (mv,_) -> mkMeta mv | Aproj (p, c) -> let c = nf_accu env sigma c in let p = get_proj env p in mkProj(p, c) | _ -> fst (nf_atom_type env sigma atom) and nf_atom_type env sigma atom = match atom with | Arel i -> let n = (nb_rel env - i) in mkRel n, Typeops.type_of_relative env n | Aconstant cst -> mkConstU cst, Typeops.type_of_constant_in env cst | Aind ind -> mkIndU ind, Inductiveops.type_of_inductive env ind | Asort s -> mkSort s, Typeops.type_of_sort s | Avar id -> mkVar id, Typeops.type_of_variable env id | Acase(ans,accu,p,bs) -> let a,ta = nf_accu_type env sigma accu in let ((mind,_),u as ind),allargs = find_rectype_a env ta in let (mib,mip) = Inductive.lookup_mind_specif env (fst ind) in let nparams = mib.mind_nparams in let params,realargs = Array.chop nparams allargs in let nparamdecls = Context.Rel.length (Inductive.inductive_paramdecls (mib,u)) in let pT = hnf_prod_applist_assum env nparamdecls (Inductiveops.type_of_inductive env ind) (Array.to_list params) in let p = nf_predicate env sigma ind mip params p pT in (* Calcul du type des branches *) let btypes = build_branches_type env sigma (fst ind) mib mip u params p in (* calcul des branches *) let bsw = branch_of_switch (nb_rel env) ans bs in let mkbranch i v = let decl,decl_with_letin,codom = btypes.(i) in let b = nf_val (Termops.push_rels_assum decl env) sigma v codom in Termops.it_mkLambda_or_LetIn_from_no_LetIn b decl_with_letin in let branchs = Array.mapi mkbranch bsw in let tcase = build_case_type p realargs a in let ci = ans.asw_ci in mkCase(ci, p, a, branchs), tcase | Afix(tt,ft,rp,s) -> let tt = Array.map (fun t -> nf_type_sort env sigma t) tt in let tt = Array.map fst tt and rt = Array.map snd tt in let name = Name (Id.of_string "Ffix") in let names = Array.map (fun s -> make_annot name (Sorts.relevance_of_sort s)) rt in let lvl = nb_rel env in let nbfix = Array.length ft in let fargs = mk_rels_accu lvl (Array.length ft) in (* Body argument of the tuple is ignored by push_rec_types *) let env = push_rec_types (names,tt,[||]) env in (* We lift here because the types of arguments (in tt) will be evaluated in an environment where the fixpoints have been pushed *) let norm_body i v = nf_val env sigma (napply v fargs) (lift nbfix tt.(i)) in let ft = Array.mapi norm_body ft in mkFix((rp,s),(names,tt,ft)), tt.(s) | Acofix(tt,ft,s,_) | Acofixe(tt,ft,s,_) -> let tt = Array.map (fun t -> nf_type_sort env sigma t) tt in let tt = Array.map fst tt and rt = Array.map snd tt in let name = Name (Id.of_string "Fcofix") in let lvl = nb_rel env in let names = Array.map (fun s -> make_annot name (Sorts.relevance_of_sort s)) rt in let fargs = mk_rels_accu lvl (Array.length ft) in let env = push_rec_types (names,tt,[||]) env in let ft = Array.mapi (fun i v -> nf_val env sigma (napply v fargs) tt.(i)) ft in mkCoFix(s,(names,tt,ft)), tt.(s) | Aprod(n,dom,codom) -> let dom,s1 = nf_type_sort env sigma dom in let r1 = Sorts.relevance_of_sort s1 in let n = make_annot n r1 in let vn = mk_rel_accu (nb_rel env) in let env = push_rel (LocalAssum (n,dom)) env in let codom,s2 = nf_type_sort env sigma (codom vn) in mkProd(n,dom,codom), Typeops.type_of_product env n s1 s2 | Aevar(evk,args) -> nf_evar env sigma evk args | Ameta(mv,ty) -> let ty = nf_type env sigma ty in mkMeta mv, ty | Aproj(p,c) -> let c,tc = nf_accu_type env sigma c in let cj = make_judge c tc in let p = get_proj env p in let uj = Typeops.judge_of_projection env p cj in uj.uj_val, uj.uj_type and nf_predicate env sigma ind mip params v pT = match kind (whd_allnolet env pT) with | LetIn (name,b,t,pT) -> let body = nf_predicate (push_rel (LocalDef (name,b,t)) env) sigma ind mip params v pT in mkLetIn (name,b,t,body) | Prod (name,dom,codom) -> begin match kind_of_value v with | Vfun f -> let k = nb_rel env in let vb = f (mk_rel_accu k) in let body = nf_predicate (push_rel (LocalAssum (name,dom)) env) sigma ind mip params vb codom in mkLambda(name,dom,body) | _ -> nf_type env sigma v end | _ -> match kind_of_value v with | Vfun f -> let k = nb_rel env in let vb = f (mk_rel_accu k) in let name = Name (Id.of_string "c") in let n = mip.mind_nrealargs in let rargs = Array.init n (fun i -> mkRel (n-i)) in let params = if Int.equal n 0 then params else Array.map (lift n) params in let dom = mkApp(mkIndU ind,Array.append params rargs) in let r = Inductive.relevance_of_inductive env (fst ind) in let name = make_annot name r in let body = nf_type (push_rel (LocalAssum (name,dom)) env) sigma vb in mkLambda(name,dom,body) | _ -> nf_type env sigma v and nf_evar env sigma evk args = let evi = try Evd.find sigma evk with Not_found -> assert false in let hyps = Environ.named_context_of_val (Evd.evar_filtered_hyps evi) in let ty = EConstr.to_constr ~abort_on_undefined_evars:false sigma @@ Evd.evar_concl evi in if List.is_empty hyps then begin assert (Int.equal (Array.length args) 0); mkEvar (evk, [||]), ty end else (* Let-bound arguments are present in the evar arguments but not in the type, so we turn the let into a product. *) let hyps = Context.Named.drop_bodies hyps in let fold accu d = Term.mkNamedProd_or_LetIn d accu in let t = List.fold_left fold ty hyps in let ty, args = nf_args env sigma args t in (* nf_args takes arguments in the reverse order but produces them in the correct one, so we have to reverse them again for the evar node *) mkEvar (evk, Array.rev_of_list args), ty let evars_of_evar_map sigma = { Nativelambda.evars_val = Evd.existential_opt_value0 sigma; Nativelambda.evars_metas = Evd.meta_type0 sigma } (* fork perf process, return profiler's process id *) let start_profiler_linux profile_fn = let coq_pid = Unix.getpid () in (* pass pid of running coqtop *) (* we don't want to see perf's console output *) let dev_null = Unix.descr_of_out_channel (open_out_bin "/dev/null") in let _ = Feedback.msg_info (Pp.str ("Profiling to file " ^ profile_fn)) in let perf = "perf" in let profiler_pid = Unix.create_process perf [|perf; "record"; "-g"; "-o"; profile_fn; "-p"; string_of_int coq_pid |] Unix.stdin dev_null dev_null in (* doesn't seem to be a way to test whether process creation succeeded *) if !Flags.debug then Feedback.msg_debug (Pp.str (Format.sprintf "Native compute profiler started, pid = %d, output to: %s" profiler_pid profile_fn)); Some profiler_pid (* kill profiler via SIGINT *) let stop_profiler_linux m_pid = match m_pid with | Some pid -> ( let _ = if !Flags.debug then Feedback.msg_debug (Pp.str "Stopping native code profiler") in try Unix.kill pid Sys.sigint; let _ = Unix.waitpid [] pid in () with Unix.Unix_error (Unix.ESRCH,"kill","") -> Feedback.msg_info (Pp.str "Could not stop native code profiler, no such process") ) | None -> () let start_profiler () = let profile_fn = get_available_profile_filename () in match profiler_platform () with "Unix (Linux)" -> start_profiler_linux profile_fn | _ -> let _ = Feedback.msg_info (Pp.str (Format.sprintf "Native_compute profiling not supported on the platform: %s" (profiler_platform ()))) in None let stop_profiler m_pid = match profiler_platform() with "Unix (Linux)" -> stop_profiler_linux m_pid | _ -> () let native_norm env sigma c ty = let c = EConstr.Unsafe.to_constr c in let ty = EConstr.Unsafe.to_constr ty in if not Coq_config.native_compiler then user_err Pp.(str "Native_compute reduction has been disabled at configure time.") else (* Format.eprintf "Numbers of free variables (named): %i\n" (List.length vl1); Format.eprintf "Numbers of free variables (rel): %i\n" (List.length vl2); *) let ml_filename, prefix = Nativelib.get_ml_filename () in let code, upd = mk_norm_code env (evars_of_evar_map sigma) prefix c in let profile = get_profiling_enabled () in let fn = Nativelib.compile ml_filename code ~profile:profile in if !Flags.debug then Feedback.msg_debug (Pp.str "Running norm ..."); let profiler_pid = if profile then start_profiler () else None in let t0 = Sys.time () in Nativelib.call_linker ~fatal:true env ~prefix fn (Some upd); let t1 = Sys.time () in if profile then stop_profiler profiler_pid; let time_info = Format.sprintf "Evaluation done in %.5f@." (t1 -. t0) in if !Flags.debug then Feedback.msg_debug (Pp.str time_info); let res = nf_val env sigma !Nativelib.rt1 ty in let t2 = Sys.time () in let time_info = Format.sprintf "Reification done in %.5f@." (t2 -. t1) in if !Flags.debug then Feedback.msg_debug (Pp.str time_info); EConstr.of_constr res let native_conv_generic pb sigma t = Nativeconv.native_conv_gen pb (evars_of_evar_map sigma) t let native_infer_conv ?(pb=Reduction.CUMUL) env sigma t1 t2 = Reductionops.infer_conv_gen (fun pb ~l2r sigma ts -> native_conv_generic pb sigma) ~catch_incon:true ~pb env sigma t1 t2