1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* File initially created by Christine Paulin, 1996 *) (* This file builds various inductive schemes *) open Pp open CErrors open Util open Names open Libnames open Nameops open Term open Constr open Context open Vars open Namegen open Declarations open Declareops open Inductive open Inductiveops open Environ open Reductionops open Context.Rel.Declaration type dep_flag = bool (* Errors related to recursors building *) type recursion_scheme_error = | NotAllowedCaseAnalysis of (*isrec:*) bool * Sorts.t * pinductive | NotMutualInScheme of inductive * inductive | NotAllowedDependentAnalysis of (*isrec:*) bool * inductive exception RecursionSchemeError of env * recursion_scheme_error let named_hd env t na = named_hd env (Evd.from_env env) (EConstr.of_constr t) na let name_assumption env = function | LocalAssum (na,t) -> LocalAssum (map_annot (named_hd env t) na, t) | LocalDef (na,c,t) -> LocalDef (map_annot (named_hd env c) na, c, t) let mkLambda_or_LetIn_name env d b = mkLambda_or_LetIn (name_assumption env d) b let mkProd_or_LetIn_name env d b = mkProd_or_LetIn (name_assumption env d) b let mkLambda_name env (n,a,b) = mkLambda_or_LetIn_name env (LocalAssum (n,a)) b let mkProd_name env (n,a,b) = mkProd_or_LetIn_name env (LocalAssum (n,a)) b let it_mkProd_or_LetIn_name env b l = List.fold_left (fun c d -> mkProd_or_LetIn_name env d c) b l let it_mkLambda_or_LetIn_name env b l = List.fold_left (fun c d -> mkLambda_or_LetIn_name env d c) b l let make_prod_dep dep env = if dep then mkProd_name env else mkProd let mkLambda_string s r t c = mkLambda (make_annot (Name (Id.of_string s)) r, t, c) (*******************************************) (* Building curryfied elimination *) (*******************************************) let is_private mib = match mib.mind_private with | Some true -> true | _ -> false let check_privacy_block mib = if is_private mib then user_err (str"case analysis on a private inductive type") (**********************************************************************) (* Building case analysis schemes *) (* Christine Paulin, 1996 *) let mis_make_case_com dep env sigma (ind, u as pind) (mib,mip as specif) kind = let lnamespar = Vars.subst_instance_context u mib.mind_params_ctxt in let indf = make_ind_family(pind, Context.Rel.to_extended_list mkRel 0 lnamespar) in let constrs = get_constructors env indf in let projs = get_projections env ind in let relevance = Sorts.relevance_of_sort_family kind in let () = if Option.is_empty projs then check_privacy_block mib in let () = if not (Sorts.family_leq kind (elim_sort specif)) then raise (RecursionSchemeError (env, NotAllowedCaseAnalysis (false, fst (UnivGen.fresh_sort_in_family kind), pind))) in let ndepar = mip.mind_nrealdecls + 1 in (* Pas génant car env ne sert pas à typer mais juste à renommer les Anonym *) (* mais pas très joli ... (mais manque get_sort_of à ce niveau) *) let env' = push_rel_context lnamespar env in let rec add_branch env k = if Int.equal k (Array.length mip.mind_consnames) then let nbprod = k+1 in let indf' = lift_inductive_family nbprod indf in let arsign,sort = get_arity env indf' in let r = Sorts.relevance_of_sort_family sort in let depind = build_dependent_inductive env indf' in let deparsign = LocalAssum (make_annot Anonymous r,depind)::arsign in let rci = relevance in let ci = make_case_info env (fst pind) rci RegularStyle in let pbody = appvect (mkRel (ndepar + nbprod), if dep then Context.Rel.to_extended_vect mkRel 0 deparsign else Context.Rel.to_extended_vect mkRel 1 arsign) in let p = it_mkLambda_or_LetIn_name env' ((if dep then mkLambda_name env' else mkLambda) (make_annot Anonymous r,depind,pbody)) arsign in let obj = match projs with | None -> mkCase (ci, lift ndepar p, mkRel 1, Termops.rel_vect ndepar k) | Some ps -> let term = mkApp (mkRel 2, Array.map (fun p -> mkProj (Projection.make p true, mkRel 1)) ps) in if dep then let ty = mkApp (mkRel 3, [| mkRel 1 |]) in mkCast (term, DEFAULTcast, ty) else term in it_mkLambda_or_LetIn_name env' obj deparsign else let cs = lift_constructor (k+1) constrs.(k) in let t = build_branch_type env sigma dep (mkRel (k+1)) cs in mkLambda_string "f" relevance t (add_branch (push_rel (LocalAssum (make_annot Anonymous relevance, t)) env) (k+1)) in let (sigma, s) = Evd.fresh_sort_in_family ~rigid:Evd.univ_flexible_alg sigma kind in let typP = make_arity env' sigma dep indf s in let typP = EConstr.Unsafe.to_constr typP in let c = it_mkLambda_or_LetIn_name env (mkLambda_string "P" Sorts.Relevant typP (add_branch (push_rel (LocalAssum (make_annot Anonymous Sorts.Relevant,typP)) env') 0)) lnamespar in (sigma, c) (* check if the type depends recursively on one of the inductive scheme *) (**********************************************************************) (* Building the recursive elimination *) (* Christine Paulin, 1996 *) (* * t is the type of the constructor co and recargs is the information on * the recursive calls. (It is assumed to be in form given by the user). * build the type of the corresponding branch of the recurrence principle * assuming f has this type, branch_rec gives also the term * [x1]..[xk](f xi (F xi) ...) to be put in the corresponding branch of * the case operation * FPvect gives for each inductive definition if we want an elimination * on it with which predicate and which recursive function. *) let type_rec_branch is_rec dep env sigma (vargs,depPvect,decP) tyi cs recargs = let make_prod = make_prod_dep dep in let nparams = List.length vargs in let process_pos env depK pk = let rec prec env i sign p = let p',largs = whd_allnolet_stack env sigma (EConstr.of_constr p) in let p' = EConstr.Unsafe.to_constr p' in let largs = List.map EConstr.Unsafe.to_constr largs in match kind p' with | Prod (n,t,c) -> let d = LocalAssum (n,t) in make_prod env (n,t,prec (push_rel d env) (i+1) (d::sign) c) | LetIn (n,b,t,c) when List.is_empty largs -> let d = LocalDef (n,b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::sign) c) | Ind (_,_) -> let realargs = List.skipn nparams largs in let base = applist (lift i pk,realargs) in if depK then Reduction.beta_appvect base [|applist (mkRel (i+1), Context.Rel.to_extended_list mkRel 0 sign)|] else base | _ -> let t' = whd_all env sigma (EConstr.of_constr p) in let t' = EConstr.Unsafe.to_constr t' in if Constr.equal p' t' then assert false else prec env i sign t' in prec env 0 [] in let rec process_constr env i c recargs nhyps li = if nhyps > 0 then match kind c with | Prod (n,t,c_0) -> let (optionpos,rest) = match recargs with | [] -> None,[] | ra::rest -> (match dest_recarg ra with | Mrec (_,j) when is_rec -> (depPvect.(j),rest) | Imbr _ -> (None,rest) | _ -> (None, rest)) in (match optionpos with | None -> make_prod env (n,t, process_constr (push_rel (LocalAssum (n,t)) env) (i+1) c_0 rest (nhyps-1) (i::li)) | Some(dep',p) -> let nP = lift (i+1+decP) p in let env' = push_rel (LocalAssum (n,t)) env in let t_0 = process_pos env' dep' nP (lift 1 t) in let r_0 = Retyping.relevance_of_type env' sigma (EConstr.of_constr t_0) in make_prod_dep (dep || dep') env (n,t, mkArrow t_0 r_0 (process_constr (push_rel (LocalAssum (make_annot Anonymous n.binder_relevance,t_0)) env') (i+2) (lift 1 c_0) rest (nhyps-1) (i::li)))) | LetIn (n,b,t,c_0) -> mkLetIn (n,b,t, process_constr (push_rel (LocalDef (n,b,t)) env) (i+1) c_0 recargs (nhyps-1) li) | _ -> assert false else if dep then let realargs = List.rev_map (fun k -> mkRel (i-k)) li in let params = List.map (lift i) vargs in let co = applist (mkConstructU cs.cs_cstr,params@realargs) in Reduction.beta_appvect c [|co|] else c in let nhyps = List.length cs.cs_args in let nP = match depPvect.(tyi) with | Some(_,p) -> lift (nhyps+decP) p | _ -> assert false in let base = appvect (nP,cs.cs_concl_realargs) in let c = it_mkProd_or_LetIn base cs.cs_args in process_constr env 0 c recargs nhyps [] let make_rec_branch_arg env sigma (nparrec,fvect,decF) f cstr recargs = let process_pos env fk = let rec prec env i hyps p = let p',largs = whd_allnolet_stack env sigma (EConstr.of_constr p) in let p' = EConstr.Unsafe.to_constr p' in let largs = List.map EConstr.Unsafe.to_constr largs in match kind p' with | Prod (n,t,c) -> let d = LocalAssum (n,t) in mkLambda_name env (n,t,prec (push_rel d env) (i+1) (d::hyps) c) | LetIn (n,b,t,c) when List.is_empty largs -> let d = LocalDef (n,b,t) in mkLetIn (n,b,t,prec (push_rel d env) (i+1) (d::hyps) c) | Ind _ -> let realargs = List.skipn nparrec largs and arg = appvect (mkRel (i+1), Context.Rel.to_extended_vect mkRel 0 hyps) in applist(lift i fk,realargs@[arg]) | _ -> let t' = whd_all env sigma (EConstr.of_constr p) in let t' = EConstr.Unsafe.to_constr t' in if Constr.equal t' p' then assert false else prec env i hyps t' in prec env 0 [] in (* ici, cstrprods est la liste des produits du constructeur instantié *) let rec process_constr env i f = function | (LocalAssum (n,t) as d)::cprest, recarg::rest -> let optionpos = match dest_recarg recarg with | Norec -> None | Imbr _ -> None | Mrec (_,i) -> fvect.(i) in (match optionpos with | None -> mkLambda_name env (n,t,process_constr (push_rel d env) (i+1) (EConstr.Unsafe.to_constr (whd_beta Evd.empty (EConstr.of_constr (applist (lift 1 f, [(mkRel 1)]))))) (cprest,rest)) | Some(_,f_0) -> let nF = lift (i+1+decF) f_0 in let env' = push_rel d env in let arg = process_pos env' nF (lift 1 t) in mkLambda_name env (n,t,process_constr env' (i+1) (EConstr.Unsafe.to_constr (whd_beta Evd.empty (EConstr.of_constr (applist (lift 1 f, [(mkRel 1); arg]))))) (cprest,rest))) | (LocalDef (n,c,t) as d)::cprest, rest -> mkLetIn (n,c,t, process_constr (push_rel d env) (i+1) (lift 1 f) (cprest,rest)) | [],[] -> f | _,[] | [],_ -> anomaly (Pp.str "process_constr.") in process_constr env 0 f (List.rev cstr.cs_args, recargs) (* Main function *) let mis_make_indrec env sigma ?(force_mutual=false) listdepkind mib u = let nparams = mib.mind_nparams in let nparrec = mib.mind_nparams_rec in let evdref = ref sigma in let lnonparrec,lnamesparrec = Termops.context_chop (nparams-nparrec) (Vars.subst_instance_context u mib.mind_params_ctxt) in let nrec = List.length listdepkind in let depPvec = Array.make mib.mind_ntypes (None : (bool * constr) option) in let _ = let rec assign k = function | [] -> () | ((indi,u),mibi,mipi,dep,_)::rest -> (Array.set depPvec (snd indi) (Some(dep,mkRel k)); assign (k-1) rest) in assign nrec listdepkind in let recargsvec = Array.map (fun mip -> mip.mind_recargs) mib.mind_packets in (* recarg information for non recursive parameters *) let rec recargparn l n = if Int.equal n 0 then l else recargparn (mk_norec::l) (n-1) in let recargpar = recargparn [] (nparams-nparrec) in let make_one_rec p = let makefix nbconstruct = let rec mrec i ln lrelevance ltyp ldef = function | ((indi,u),mibi,mipi,dep,target_sort)::rest -> let tyi = snd indi in let nctyi = Array.length mipi.mind_consnames in (* nb constructeurs du type*) (* arity in the context of the fixpoint, i.e. P1..P_nrec f1..f_nbconstruct *) let args = Context.Rel.to_extended_list mkRel (nrec+nbconstruct) lnamesparrec in let indf = make_ind_family((indi,u),args) in let arsign,s = get_arity env indf in let r = Sorts.relevance_of_sort_family s in let depind = build_dependent_inductive env indf in let deparsign = LocalAssum (make_annot Anonymous r,depind)::arsign in let nonrecpar = Context.Rel.length lnonparrec in let larsign = Context.Rel.length deparsign in let ndepar = larsign - nonrecpar in let dect = larsign+nrec+nbconstruct in (* constructors in context of the Cases expr, i.e. P1..P_nrec f1..f_nbconstruct F_1..F_nrec a_1..a_nar x:I *) let args' = Context.Rel.to_extended_list mkRel (dect+nrec) lnamesparrec in let args'' = Context.Rel.to_extended_list mkRel ndepar lnonparrec in let indf' = make_ind_family((indi,u),args'@args'') in let branches = let constrs = get_constructors env indf' in let fi = Termops.rel_vect (dect-i-nctyi) nctyi in let vecfi = Array.map (fun f -> appvect (f, Context.Rel.to_extended_vect mkRel ndepar lnonparrec)) fi in Array.map3 (make_rec_branch_arg env !evdref (nparrec,depPvec,larsign)) vecfi constrs (dest_subterms recargsvec.(tyi)) in let j = (match depPvec.(tyi) with | Some (_,c) when isRel c -> destRel c | _ -> assert false) in (* Predicate in the context of the case *) let depind' = build_dependent_inductive env indf' in let arsign',s = get_arity env indf' in let r = Sorts.relevance_of_sort_family s in let deparsign' = LocalAssum (make_annot Anonymous r,depind')::arsign' in let pargs = let nrpar = Context.Rel.to_extended_list mkRel (2*ndepar) lnonparrec and nrar = if dep then Context.Rel.to_extended_list mkRel 0 deparsign' else Context.Rel.to_extended_list mkRel 1 arsign' in nrpar@nrar in (* body of i-th component of the mutual fixpoint *) let target_relevance = Sorts.relevance_of_sort_family target_sort in let deftyi = let rci = target_relevance in let ci = make_case_info env indi rci RegularStyle in let concl = applist (mkRel (dect+j+ndepar),pargs) in let pred = it_mkLambda_or_LetIn_name env ((if dep then mkLambda_name env else mkLambda) (make_annot Anonymous r,depind',concl)) arsign' in let obj = Inductiveops.make_case_or_project env !evdref indf ci (EConstr.of_constr pred) (EConstr.mkRel 1) (Array.map EConstr.of_constr branches) in let obj = EConstr.to_constr !evdref obj in it_mkLambda_or_LetIn_name env obj (Termops.lift_rel_context nrec deparsign) in (* type of i-th component of the mutual fixpoint *) let typtyi = let concl = let pargs = if dep then Context.Rel.to_extended_vect mkRel 0 deparsign else Context.Rel.to_extended_vect mkRel 1 arsign in appvect (mkRel (nbconstruct+ndepar+nonrecpar+j),pargs) in it_mkProd_or_LetIn_name env concl deparsign in mrec (i+nctyi) (Context.Rel.nhyps arsign ::ln) (target_relevance::lrelevance) (typtyi::ltyp) (deftyi::ldef) rest | [] -> let fixn = Array.of_list (List.rev ln) in let fixtyi = Array.of_list (List.rev ltyp) in let fixdef = Array.of_list (List.rev ldef) in let lrelevance = CArray.rev_of_list lrelevance in let names = Array.map (fun r -> make_annot (Name(Id.of_string "F")) r) lrelevance in mkFix ((fixn,p),(names,fixtyi,fixdef)) in mrec 0 [] [] [] [] in let rec make_branch env i = function | ((indi,u),mibi,mipi,dep,sfam)::rest -> let tyi = snd indi in let nconstr = Array.length mipi.mind_consnames in let rec onerec env j = if Int.equal j nconstr then make_branch env (i+j) rest else let recarg = (dest_subterms recargsvec.(tyi)).(j) in let recarg = recargpar@recarg in let vargs = Context.Rel.to_extended_list mkRel (nrec+i+j) lnamesparrec in let cs = get_constructor ((indi,u),mibi,mipi,vargs) (j+1) in let p_0 = type_rec_branch true dep env !evdref (vargs,depPvec,i+j) tyi cs recarg in let r_0 = Sorts.relevance_of_sort_family sfam in mkLambda_string "f" r_0 p_0 (onerec (push_rel (LocalAssum (make_annot Anonymous r_0,p_0)) env) (j+1)) in onerec env 0 | [] -> makefix i listdepkind in let rec put_arity env i = function | ((indi,u),_,_,dep,kinds)::rest -> let indf = make_ind_family ((indi,u), Context.Rel.to_extended_list mkRel i lnamesparrec) in let s = let sigma, res = Evd.fresh_sort_in_family ~rigid:Evd.univ_flexible_alg !evdref kinds in evdref := sigma; res in let typP = make_arity env !evdref dep indf s in let typP = EConstr.Unsafe.to_constr typP in mkLambda_string "P" Sorts.Relevant typP (put_arity (push_rel (LocalAssum (anonR,typP)) env) (i+1) rest) | [] -> make_branch env 0 listdepkind in (* Body on make_one_rec *) let ((indi,u),mibi,mipi,dep,kind) = List.nth listdepkind p in if force_mutual || (mis_is_recursive_subset (List.map (fun ((indi,u),_,_,_,_) -> snd indi) listdepkind) mipi.mind_recargs) then let env' = push_rel_context lnamesparrec env in it_mkLambda_or_LetIn_name env (put_arity env' 0 listdepkind) lnamesparrec else let evd = !evdref in let (evd, c) = mis_make_case_com dep env evd (indi,u) (mibi,mipi) kind in evdref := evd; c in (* Body of mis_make_indrec *) !evdref, List.init nrec make_one_rec (**********************************************************************) (* This builds elimination predicate for Case tactic *) let build_case_analysis_scheme env sigma pity dep kind = let (mib,mip) = lookup_mind_specif env (fst pity) in if dep && not (Inductiveops.has_dependent_elim mib) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (false, fst pity))); mis_make_case_com dep env sigma pity (mib,mip) kind let is_in_prop mip = match inductive_sort_family mip with | InProp -> true | _ -> false let build_case_analysis_scheme_default env sigma pity kind = let (mib,mip) = lookup_mind_specif env (fst pity) in let dep = not (is_in_prop mip || not (Inductiveops.has_dependent_elim mib)) in mis_make_case_com dep env sigma pity (mib,mip) kind (**********************************************************************) (* [modify_sort_scheme s rec] replaces the sort of the scheme [rec] by [s] *) let change_sort_arity sort = let rec drec a = match kind a with | Cast (c,_,_) -> drec c | Prod (n,t,c) -> let s, c' = drec c in s, mkProd (n, t, c') | LetIn (n,b,t,c) -> let s, c' = drec c in s, mkLetIn (n,b,t,c') | Sort s -> s, mkSort sort | _ -> assert false in drec (* Change the sort in the type of an inductive definition, builds the corresponding eta-expanded term *) let weaken_sort_scheme env evd set sort npars term ty = let evdref = ref evd in let rec drec np elim = match kind elim with | Prod (n,t,c) -> if Int.equal np 0 then let osort, t' = change_sort_arity sort t in evdref := (if set then Evd.set_eq_sort else Evd.set_leq_sort) env !evdref sort osort; mkProd (n, t', c), mkLambda (n, t', mkApp(term,Termops.rel_vect 0 (npars+1))) else let c',term' = drec (np-1) c in mkProd (n, t, c'), mkLambda (n, t, term') | LetIn (n,b,t,c) -> let c',term' = drec np c in mkLetIn (n,b,t,c'), mkLetIn (n,b,t,term') | _ -> anomaly ~label:"weaken_sort_scheme" (Pp.str "wrong elimination type.") in let ty, term = drec npars ty in !evdref, ty, term (**********************************************************************) (* Interface to build complex Scheme *) (* Check inductive types only occurs once (otherwise we obtain a meaning less scheme) *) let check_arities env listdepkind = let _ = List.fold_left (fun ln (((_,ni as mind),u),mibi,mipi,dep,kind) -> let kelim = elim_sort (mibi,mipi) in if not (Sorts.family_leq kind kelim) then raise (RecursionSchemeError (env, NotAllowedCaseAnalysis (true, fst (UnivGen.fresh_sort_in_family kind),(mind,u)))) else if Int.List.mem ni ln then raise (RecursionSchemeError (env, NotMutualInScheme (mind,mind))) else ni::ln) [] listdepkind in true let build_mutual_induction_scheme env sigma ?(force_mutual=false) = function | ((mind,u),dep,s)::lrecspec -> let (mib,mip) = lookup_mind_specif env mind in if dep && not (Inductiveops.has_dependent_elim mib) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (true, mind))); let (sp,tyi) = mind in let listdepkind = ((mind,u),mib,mip,dep,s):: (List.map (function ((mind',u'),dep',s') -> let (sp',_) = mind' in if MutInd.equal sp sp' then let (mibi',mipi') = lookup_mind_specif env mind' in ((mind',u'),mibi',mipi',dep',s') else raise (RecursionSchemeError (env, NotMutualInScheme (mind,mind')))) lrecspec) in let _ = check_arities env listdepkind in mis_make_indrec env sigma ~force_mutual listdepkind mib u | _ -> anomaly (Pp.str "build_induction_scheme expects a non empty list of inductive types.") let build_induction_scheme env sigma pind dep kind = let (mib,mip) = lookup_mind_specif env (fst pind) in if dep && not (Inductiveops.has_dependent_elim mib) then raise (RecursionSchemeError (env, NotAllowedDependentAnalysis (true, fst pind))); let sigma, l = mis_make_indrec env sigma [(pind,mib,mip,dep,kind)] mib (snd pind) in sigma, List.hd l (*s Eliminations. *) let elimination_suffix = function | InSProp -> "_sind" | InProp -> "_ind" | InSet -> "_rec" | InType -> "_rect" let case_suffix = "_case" let make_elimination_ident id s = add_suffix id (elimination_suffix s) (* Look up function for the default elimination constant *) let lookup_eliminator env ind_sp s = let kn,i = ind_sp in let mpu = KerName.modpath @@ MutInd.user kn in let mpc = KerName.modpath @@ MutInd.canonical kn in let ind_id = (lookup_mind kn env).mind_packets.(i).mind_typename in let id = add_suffix ind_id (elimination_suffix s) in let l = Label.of_id id in let knu = KerName.make mpu l in let knc = KerName.make mpc l in (* Try first to get an eliminator defined in the same section as the *) (* inductive type *) let cst = Constant.make knu knc in if mem_constant cst env then GlobRef.ConstRef cst else (* Then try to get a user-defined eliminator in some other places *) (* using short name (e.g. for "eq_rec") *) try Nametab.locate (qualid_of_ident id) with Not_found -> user_err ~hdr:"default_elim" (strbrk "Cannot find the elimination combinator " ++ Id.print id ++ strbrk ", the elimination of the inductive definition " ++ Nametab.pr_global_env Id.Set.empty (GlobRef.IndRef ind_sp) ++ strbrk " on sort " ++ Sorts.pr_sort_family s ++ strbrk " is probably not allowed.")