1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open CAst open Names open Nameops open Glob_term open Evar_kinds (* Untyped intermediate terms, after ASTs and before constr. *) let cases_pattern_loc c = c.CAst.loc let alias_of_pat pat = DAst.with_val (function | PatVar name -> name | PatCstr(_,_,name) -> name ) pat let set_pat_alias id = DAst.map (function | PatVar Anonymous -> PatVar (Name id) | PatCstr (cstr,patl,Anonymous) -> PatCstr (cstr,patl,Name id) | pat -> assert false) let cases_predicate_names tml = List.flatten (List.map (function | (tm,(na,None)) -> [na] | (tm,(na,Some {v=(_,nal)})) -> na::nal) tml) let mkGApp ?loc p t = DAst.make ?loc @@ match DAst.get p with | GApp (f,l) -> GApp (f,l@[t]) | _ -> GApp (p,[t]) let map_glob_decl_left_to_right f (na,k,obd,ty) = let comp1 = Option.map f obd in let comp2 = f ty in (na,k,comp1,comp2) let glob_sort_name_eq g1 g2 = match g1, g2 with | GSProp, GSProp | GProp, GProp | GSet, GSet -> true | GType u1, GType u2 -> Libnames.qualid_eq u1 u2 | (GSProp|GProp|GSet|GType _), _ -> false exception ComplexSort let glob_sort_family = let open Sorts in function | UAnonymous {rigid=true} -> InType | UNamed [GSProp,0] -> InProp | UNamed [GProp,0] -> InProp | UNamed [GSet,0] -> InSet | _ -> raise ComplexSort let glob_sort_eq u1 u2 = match u1, u2 with | UAnonymous {rigid=r1}, UAnonymous {rigid=r2} -> r1 = r2 | UNamed l1, UNamed l2 -> List.equal (fun (x,m) (y,n) -> glob_sort_name_eq x y && Int.equal m n) l1 l2 | (UNamed _ | UAnonymous _), _ -> false let binding_kind_eq bk1 bk2 = match bk1, bk2 with | Explicit, Explicit -> true | Implicit, Implicit -> true | (Explicit | Implicit), _ -> false let case_style_eq s1 s2 = let open Constr in match s1, s2 with | LetStyle, LetStyle -> true | IfStyle, IfStyle -> true | LetPatternStyle, LetPatternStyle -> true | MatchStyle, MatchStyle -> true | RegularStyle, RegularStyle -> true | (LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle), _ -> false let rec cases_pattern_eq p1 p2 = match DAst.get p1, DAst.get p2 with | PatVar na1, PatVar na2 -> Name.equal na1 na2 | PatCstr (c1, pl1, na1), PatCstr (c2, pl2, na2) -> eq_constructor c1 c2 && List.equal cases_pattern_eq pl1 pl2 && Name.equal na1 na2 | (PatVar _ | PatCstr _), _ -> false let cast_type_eq eq t1 t2 = match t1, t2 with | CastConv t1, CastConv t2 -> eq t1 t2 | CastVM t1, CastVM t2 -> eq t1 t2 | CastCoerce, CastCoerce -> true | CastNative t1, CastNative t2 -> eq t1 t2 | (CastConv _ | CastVM _ | CastCoerce | CastNative _), _ -> false let matching_var_kind_eq k1 k2 = match k1, k2 with | FirstOrderPatVar ido1, FirstOrderPatVar ido2 -> Id.equal ido1 ido2 | SecondOrderPatVar id1, SecondOrderPatVar id2 -> Id.equal id1 id2 | (FirstOrderPatVar _ | SecondOrderPatVar _), _ -> false let tomatch_tuple_eq f (c1, p1) (c2, p2) = let eqp {CAst.v=(i1, na1)} {CAst.v=(i2, na2)} = eq_ind i1 i2 && List.equal Name.equal na1 na2 in let eq_pred (n1, o1) (n2, o2) = Name.equal n1 n2 && Option.equal eqp o1 o2 in f c1 c2 && eq_pred p1 p2 and cases_clause_eq f {CAst.v=(id1, p1, c1)} {CAst.v=(id2, p2, c2)} = List.equal Id.equal id1 id2 && List.equal cases_pattern_eq p1 p2 && f c1 c2 let glob_decl_eq f (na1, bk1, c1, t1) (na2, bk2, c2, t2) = Name.equal na1 na2 && binding_kind_eq bk1 bk2 && Option.equal f c1 c2 && f t1 t2 let fix_kind_eq k1 k2 = match k1, k2 with | GFix (a1, i1), GFix (a2, i2) -> Int.equal i1 i2 && Array.equal (Option.equal Int.equal) a1 a2 | GCoFix i1, GCoFix i2 -> Int.equal i1 i2 | (GFix _ | GCoFix _), _ -> false let instance_eq f (x1,c1) (x2,c2) = Id.equal x1 x2 && f c1 c2 let mk_glob_constr_eq f c1 c2 = match DAst.get c1, DAst.get c2 with | GRef (gr1, _), GRef (gr2, _) -> GlobRef.equal gr1 gr2 | GVar id1, GVar id2 -> Id.equal id1 id2 | GEvar (id1, arg1), GEvar (id2, arg2) -> Id.equal id1 id2 && List.equal (instance_eq f) arg1 arg2 | GPatVar k1, GPatVar k2 -> matching_var_kind_eq k1 k2 | GApp (f1, arg1), GApp (f2, arg2) -> f f1 f2 && List.equal f arg1 arg2 | GLambda (na1, bk1, t1, c1), GLambda (na2, bk2, t2, c2) -> Name.equal na1 na2 && binding_kind_eq bk1 bk2 && f t1 t2 && f c1 c2 | GProd (na1, bk1, t1, c1), GProd (na2, bk2, t2, c2) -> Name.equal na1 na2 && binding_kind_eq bk1 bk2 && f t1 t2 && f c1 c2 | GLetIn (na1, b1, t1, c1), GLetIn (na2, b2, t2, c2) -> Name.equal na1 na2 && f b1 b2 && Option.equal f t1 t2 && f c1 c2 | GCases (st1, c1, tp1, cl1), GCases (st2, c2, tp2, cl2) -> case_style_eq st1 st2 && Option.equal f c1 c2 && List.equal (tomatch_tuple_eq f) tp1 tp2 && List.equal (cases_clause_eq f) cl1 cl2 | GLetTuple (na1, (n1, p1), c1, t1), GLetTuple (na2, (n2, p2), c2, t2) -> List.equal Name.equal na1 na2 && Name.equal n1 n2 && Option.equal f p1 p2 && f c1 c2 && f t1 t2 | GIf (m1, (pat1, p1), c1, t1), GIf (m2, (pat2, p2), c2, t2) -> f m1 m2 && Name.equal pat1 pat2 && Option.equal f p1 p2 && f c1 c2 && f t1 t2 | GRec (kn1, id1, decl1, t1, c1), GRec (kn2, id2, decl2, t2, c2) -> fix_kind_eq kn1 kn2 && Array.equal Id.equal id1 id2 && Array.equal (fun l1 l2 -> List.equal (glob_decl_eq f) l1 l2) decl1 decl2 && Array.equal f c1 c2 && Array.equal f t1 t2 | GSort s1, GSort s2 -> glob_sort_eq s1 s2 | GHole (kn1, nam1, gn1), GHole (kn2, nam2, gn2) -> Option.equal (==) gn1 gn2 (* Only thing sensible *) && Namegen.intro_pattern_naming_eq nam1 nam2 | GCast (c1, t1), GCast (c2, t2) -> f c1 c2 && cast_type_eq f t1 t2 | GInt i1, GInt i2 -> Uint63.equal i1 i2 | (GRef _ | GVar _ | GEvar _ | GPatVar _ | GApp _ | GLambda _ | GProd _ | GLetIn _ | GCases _ | GLetTuple _ | GIf _ | GRec _ | GSort _ | GHole _ | GCast _ | GInt _), _ -> false let rec glob_constr_eq c = mk_glob_constr_eq glob_constr_eq c (** Mapping [cast_type] *) let map_cast_type f = function | CastConv a -> CastConv (f a) | CastVM a -> CastVM (f a) | CastCoerce -> CastCoerce | CastNative a -> CastNative (f a) let smartmap_cast_type f c = match c with | CastConv a -> let a' = f a in if a' == a then c else CastConv a' | CastVM a -> let a' = f a in if a' == a then c else CastVM a' | CastCoerce -> CastCoerce | CastNative a -> let a' = f a in if a' == a then c else CastNative a' let map_glob_constr_left_to_right f = DAst.map (function | GApp (g,args) -> let comp1 = f g in let comp2 = Util.List.map_left f args in GApp (comp1,comp2) | GLambda (na,bk,ty,c) -> let comp1 = f ty in let comp2 = f c in GLambda (na,bk,comp1,comp2) | GProd (na,bk,ty,c) -> let comp1 = f ty in let comp2 = f c in GProd (na,bk,comp1,comp2) | GLetIn (na,b,t,c) -> let comp1 = f b in let compt = Option.map f t in let comp2 = f c in GLetIn (na,comp1,compt,comp2) | GCases (sty,rtntypopt,tml,pl) -> let comp1 = Option.map f rtntypopt in let comp2 = Util.List.map_left (fun (tm,x) -> (f tm,x)) tml in let comp3 = Util.List.map_left (CAst.map (fun (idl,p,c) -> (idl,p,f c))) pl in GCases (sty,comp1,comp2,comp3) | GLetTuple (nal,(na,po),b,c) -> let comp1 = Option.map f po in let comp2 = f b in let comp3 = f c in GLetTuple (nal,(na,comp1),comp2,comp3) | GIf (c,(na,po),b1,b2) -> let comp1 = Option.map f po in let comp2 = f b1 in let comp3 = f b2 in GIf (f c,(na,comp1),comp2,comp3) | GRec (fk,idl,bl,tyl,bv) -> let comp1 = Array.map (Util.List.map_left (map_glob_decl_left_to_right f)) bl in let comp2 = Array.map f tyl in let comp3 = Array.map f bv in GRec (fk,idl,comp1,comp2,comp3) | GCast (c,k) -> let comp1 = f c in let comp2 = map_cast_type f k in GCast (comp1,comp2) | (GVar _ | GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _ | GInt _) as x -> x ) let map_glob_constr = map_glob_constr_left_to_right let fold_return_type f acc (na,tyopt) = Option.fold_left f acc tyopt let fold_glob_constr f acc = DAst.with_val (function | GVar _ -> acc | GApp (c,args) -> List.fold_left f (f acc c) args | GLambda (_,_,b,c) | GProd (_,_,b,c) -> f (f acc b) c | GLetIn (_,b,t,c) -> f (Option.fold_left f (f acc b) t) c | GCases (_,rtntypopt,tml,pl) -> let fold_pattern acc {CAst.v=(idl,p,c)} = f acc c in List.fold_left fold_pattern (List.fold_left f (Option.fold_left f acc rtntypopt) (List.map fst tml)) pl | GLetTuple (_,rtntyp,b,c) -> f (f (fold_return_type f acc rtntyp) b) c | GIf (c,rtntyp,b1,b2) -> f (f (f (fold_return_type f acc rtntyp) c) b1) b2 | GRec (_,_,bl,tyl,bv) -> let acc = Array.fold_left (List.fold_left (fun acc (na,k,bbd,bty) -> f (Option.fold_left f acc bbd) bty)) acc bl in Array.fold_left f (Array.fold_left f acc tyl) bv | GCast (c,k) -> let acc = match k with | CastConv t | CastVM t | CastNative t -> f acc t | CastCoerce -> acc in f acc c | (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _ | GInt _) -> acc ) let fold_return_type_with_binders f g v acc (na,tyopt) = Option.fold_left (f (Name.fold_right g na v)) acc tyopt let fold_glob_constr_with_binders g f v acc = DAst.(with_val (function | GVar _ -> acc | GApp (c,args) -> List.fold_left (f v) (f v acc c) args | GLambda (na,_,b,c) | GProd (na,_,b,c) -> f (Name.fold_right g na v) (f v acc b) c | GLetIn (na,b,t,c) -> f (Name.fold_right g na v) (Option.fold_left (f v) (f v acc b) t) c | GCases (_,rtntypopt,tml,pl) -> let fold_pattern acc {v=(idl,p,c)} = f (List.fold_right g idl v) acc c in let fold_tomatch (v',acc) (tm,(na,onal)) = ((if rtntypopt = None then v' else Option.fold_left (fun v'' {v=(_,nal)} -> List.fold_right (Name.fold_right g) nal v'') (Name.fold_right g na v') onal), f v acc tm) in let (v',acc) = List.fold_left fold_tomatch (v,acc) tml in let acc = Option.fold_left (f v') acc rtntypopt in List.fold_left fold_pattern acc pl | GLetTuple (nal,rtntyp,b,c) -> f (List.fold_right (Name.fold_right g) nal v) (f v (fold_return_type_with_binders f g v acc rtntyp) b) c | GIf (c,rtntyp,b1,b2) -> f v (f v (f v (fold_return_type_with_binders f g v acc rtntyp) c) b1) b2 | GRec (_,idl,bll,tyl,bv) -> let v' = Array.fold_right g idl v in let f' i acc fid = let v,acc = List.fold_left (fun (v,acc) (na,k,bbd,bty) -> (Name.fold_right g na v, f v (Option.fold_left (f v) acc bbd) bty)) (v,acc) bll.(i) in f v' (f v acc tyl.(i)) (bv.(i)) in Array.fold_left_i f' acc idl | GCast (c,k) -> let acc = match k with | CastConv t | CastVM t | CastNative t -> f v acc t | CastCoerce -> acc in f v acc c | (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _ | GInt _) -> acc)) let iter_glob_constr f = fold_glob_constr (fun () -> f) () let occur_glob_constr id = let rec occur barred acc c = match DAst.get c with | GVar id' -> Id.equal id id' | _ -> (* [g] looks if [id] appears in a binding position, in which case, we don't have to look in the corresponding subterm *) let g id' barred = barred || Id.equal id id' in let f barred acc c = acc || not barred && occur false acc c in fold_glob_constr_with_binders g f barred acc c in occur false false let free_glob_vars = let rec vars bound vs c = match DAst.get c with | GVar id' -> if Id.Set.mem id' bound then vs else Id.Set.add id' vs | _ -> fold_glob_constr_with_binders Id.Set.add vars bound vs c in fun rt -> let vs = vars Id.Set.empty Id.Set.empty rt in vs let glob_visible_short_qualid c = let rec aux acc c = match DAst.get c with | GRef (c,_) -> let qualid = Nametab.shortest_qualid_of_global Id.Set.empty c in let dir,id = Libnames.repr_qualid qualid in if DirPath.is_empty dir then Id.Set.add id acc else acc | _ -> fold_glob_constr aux acc c in aux Id.Set.empty c let warn_variable_collision = let open Pp in CWarnings.create ~name:"variable-collision" ~category:"ltac" (fun name -> strbrk "Collision between bound variables of name " ++ Id.print name) let add_and_check_ident id set = if Id.Set.mem id set then warn_variable_collision id; Id.Set.add id set let bound_glob_vars = let rec vars bound = fold_glob_constr_with_binders (fun id () -> bound := add_and_check_ident id !bound) (fun () () -> vars bound) () () in fun rt -> let bound = ref Id.Set.empty in vars bound rt; !bound (** Mapping of names in binders *) (* spiwack: I used a smart-style kind of mapping here, because the operation will be the identity almost all of the time (with any term outside of Ltac to begin with). But to be honest, there would probably be no significant penalty in doing reallocation as pattern-matching expressions are usually rather small. *) let map_inpattern_binders f ({loc;v=(id,nal)} as x) = let r = CList.Smart.map f nal in if r == nal then x else CAst.make ?loc (id,r) let map_tomatch_binders f ((c,(na,inp)) as x) : tomatch_tuple = let r = Option.Smart.map (fun p -> map_inpattern_binders f p) inp in if r == inp then x else c,(f na, r) let rec map_case_pattern_binders f = DAst.map (function | PatVar na as x -> let r = f na in if r == na then x else PatVar r | PatCstr (c,ps,na) as x -> let rna = f na in let rps = CList.Smart.map (fun p -> map_case_pattern_binders f p) ps in if rna == na && rps == ps then x else PatCstr(c,rps,rna) ) let map_cases_branch_binders f ({CAst.loc;v=(il,cll,rhs)} as x) : cases_clause = (* spiwack: not sure if I must do something with the list of idents. It is intended to be a superset of the free variable of the right-hand side, if I understand correctly. But I'm not sure when or how they are used. *) let r = List.Smart.map (fun cl -> map_case_pattern_binders f cl) cll in if r == cll then x else CAst.make ?loc (il,r,rhs) let map_pattern_binders f tomatch branches = CList.Smart.map (fun tm -> map_tomatch_binders f tm) tomatch, CList.Smart.map (fun br -> map_cases_branch_binders f br) branches (** /mapping of names in binders *) let map_tomatch f (c,pp) : tomatch_tuple = f c , pp let map_cases_branch f = CAst.map (fun (il,cll,rhs) -> (il , cll , f rhs)) let map_pattern f tomatch branches = List.map (fun tm -> map_tomatch f tm) tomatch, List.map (fun br -> map_cases_branch f br) branches let loc_of_glob_constr c = c.CAst.loc (**********************************************************************) (* Alpha-renaming *) exception UnsoundRenaming let collide_id l id = List.exists (fun (id',id'') -> Id.equal id id' || Id.equal id id'') l let test_id l id = if collide_id l id then raise UnsoundRenaming let test_na l na = Name.iter (test_id l) na let update_subst na l = let in_range id l = List.exists (fun (_,id') -> Id.equal id id') l in let l' = Name.fold_right Id.List.remove_assoc na l in Name.fold_right (fun id _ -> if in_range id l' then let id' = Namegen.next_ident_away_from id (fun id' -> in_range id' l') in Name id', (id,id')::l else na,l) na (na,l) let rename_var l id = try let id' = Id.List.assoc id l in (* Check that no other earlier binding hide the one found *) let _,(id'',_) = List.extract_first (fun (_,id) -> Id.equal id id') l in if Id.equal id id'' then id' else raise UnsoundRenaming with Not_found -> if List.exists (fun (_,id') -> Id.equal id id') l then raise UnsoundRenaming else id let force c = DAst.make ?loc:c.CAst.loc (DAst.get c) let rec rename_glob_vars l c = force @@ DAst.map_with_loc (fun ?loc -> function | GVar id as r -> let id' = rename_var l id in if id == id' then r else GVar id' | GRef (GlobRef.VarRef id,_) as r -> if List.exists (fun (_,id') -> Id.equal id id') l then raise UnsoundRenaming else r | GProd (na,bk,t,c) -> let na',l' = update_subst na l in GProd (na',bk,rename_glob_vars l t,rename_glob_vars l' c) | GLambda (na,bk,t,c) -> let na',l' = update_subst na l in GLambda (na',bk,rename_glob_vars l t,rename_glob_vars l' c) | GLetIn (na,b,t,c) -> let na',l' = update_subst na l in GLetIn (na',rename_glob_vars l b,Option.map (rename_glob_vars l) t,rename_glob_vars l' c) (* Lazy strategy: we fail if a collision with renaming occurs, rather than renaming further *) | GCases (ci,po,tomatchl,cls) -> let test_pred_pat (na,ino) = test_na l na; Option.iter (fun {v=(_,nal)} -> List.iter (test_na l) nal) ino in let test_clause idl = List.iter (test_id l) idl in let po = Option.map (rename_glob_vars l) po in let tomatchl = Util.List.map_left (fun (tm,x) -> test_pred_pat x; (rename_glob_vars l tm,x)) tomatchl in let cls = Util.List.map_left (CAst.map (fun (idl,p,c) -> test_clause idl; (idl,p,rename_glob_vars l c))) cls in GCases (ci,po,tomatchl,cls) | GLetTuple (nal,(na,po),c,b) -> List.iter (test_na l) (na::nal); GLetTuple (nal,(na,Option.map (rename_glob_vars l) po), rename_glob_vars l c,rename_glob_vars l b) | GIf (c,(na,po),b1,b2) -> test_na l na; GIf (rename_glob_vars l c,(na,Option.map (rename_glob_vars l) po), rename_glob_vars l b1,rename_glob_vars l b2) | GRec (k,idl,decls,bs,ts) -> Array.iter (test_id l) idl; GRec (k,idl, Array.map (List.map (fun (na,k,bbd,bty) -> test_na l na; (na,k,Option.map (rename_glob_vars l) bbd,rename_glob_vars l bty))) decls, Array.map (rename_glob_vars l) bs, Array.map (rename_glob_vars l) ts) | _ -> DAst.get (map_glob_constr (rename_glob_vars l) c) ) c (**********************************************************************) (* Conversion from glob_constr to cases pattern, if possible *) let is_gvar id c = match DAst.get c with | GVar id' -> Id.equal id id' | _ -> false let rec cases_pattern_of_glob_constr env na c = (* Forcing evaluation to ensure that the possible raising of Not_found is not delayed *) let c = DAst.force c in DAst.map (function | GVar id -> begin match na with | Name _ -> (* Unable to manage the presence of both an alias and a variable *) raise Not_found | Anonymous -> PatVar (Name id) end | GHole (_,_,_) -> PatVar na | GRef (GlobRef.ConstructRef cstr,_) -> PatCstr (cstr,[],na) | GApp (c, l) -> begin match DAst.get c with | GRef (GlobRef.ConstructRef cstr,_) -> let nparams = Inductiveops.inductive_nparams env (fst cstr) in let _,l = List.chop nparams l in PatCstr (cstr,List.map (cases_pattern_of_glob_constr env Anonymous) l,na) | _ -> raise Not_found end | GLetIn (Name id as na',b,None,e) when is_gvar id e && na = Anonymous -> (* A canonical encoding of aliases *) DAst.get (cases_pattern_of_glob_constr env na' b) | _ -> raise Not_found ) c open Declarations open Context (* Keep only patterns which are not bound to a local definitions *) let drop_local_defs params decls args = let decls = List.skipn (Rel.length params) (List.rev decls) in let rec aux decls args = match decls, args with | [], [] -> [] | Rel.Declaration.LocalDef _ :: decls, pat :: args -> begin match DAst.get pat with | PatVar Anonymous -> aux decls args | _ -> raise Not_found (* The pattern is used, one cannot drop it *) end | Rel.Declaration.LocalAssum _ :: decls, a :: args -> a :: aux decls args | _ -> assert false in aux decls args let add_patterns_for_params_remove_local_defs env (ind,j) l = let (mib,mip) = Inductive.lookup_mind_specif env ind in let nparams = mib.Declarations.mind_nparams in let l = if mip.mind_consnrealdecls.(j-1) = mip.mind_consnrealargs.(j-1) then (* Optimisation *) l else let (ctx, _) = mip.mind_nf_lc.(j - 1) in drop_local_defs mib.mind_params_ctxt ctx l in Util.List.addn nparams (DAst.make @@ PatVar Anonymous) l let add_alias ?loc na c = match na with | Anonymous -> c | Name id -> GLetIn (na,DAst.make ?loc c,None,DAst.make ?loc (GVar id)) (* Turn a closed cases pattern into a glob_constr *) let rec glob_constr_of_cases_pattern_aux env isclosed x = DAst.map_with_loc (fun ?loc -> function | PatCstr (cstr,[],na) -> add_alias ?loc na (GRef (GlobRef.ConstructRef cstr,None)) | PatCstr (cstr,l,na) -> let ref = DAst.make ?loc @@ GRef (GlobRef.ConstructRef cstr,None) in let l = add_patterns_for_params_remove_local_defs env cstr l in add_alias ?loc na (GApp (ref, List.map (glob_constr_of_cases_pattern_aux env isclosed) l)) | PatVar (Name id) when not isclosed -> GVar id | PatVar Anonymous when not isclosed -> GHole (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=Define false; },Namegen.IntroAnonymous,None) | _ -> raise Not_found ) x let glob_constr_of_closed_cases_pattern env p = match DAst.get p with | PatCstr (cstr,l,na) -> let loc = p.CAst.loc in na,glob_constr_of_cases_pattern_aux env true (DAst.make ?loc @@ PatCstr (cstr,l,Anonymous)) | _ -> raise Not_found let glob_constr_of_cases_pattern env p = glob_constr_of_cases_pattern_aux env false p (* This has to be in some file... *) open Ltac_pretype let empty_lvar : ltac_var_map = { ltac_constrs = Id.Map.empty; ltac_uconstrs = Id.Map.empty; ltac_idents = Id.Map.empty; ltac_genargs = Id.Map.empty; }