1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Sorts open Util open CErrors open Names open Context open Constr open Environ open Termops open Evd open EConstr open Vars open Namegen open Retyping open Reductionops open Evarutil open Pretype_errors type unify_flags = { modulo_betaiota: bool; open_ts : TransparentState.t; closed_ts : TransparentState.t; subterm_ts : TransparentState.t; frozen_evars : Evar.Set.t; allow_K_at_toplevel : bool; with_cs : bool } type unification_kind = | TypeUnification | TermUnification (************************) (* Unification results *) (************************) type unification_result = | Success of evar_map | UnifFailure of evar_map * unification_error let is_success = function Success _ -> true | UnifFailure _ -> false let test_success unify flags b env evd c c' rhs = is_success (unify flags b env evd c c' rhs) (** A unification function parameterized by: - unification flags - the kind of unification - environment - sigma - conversion problem - the two terms to unify. *) type unifier = unify_flags -> unification_kind -> env -> evar_map -> conv_pb -> constr -> constr -> unification_result (** A conversion function: parameterized by the kind of unification, environment, sigma, conversion problem and the two terms to convert. Conversion is not allowed to instantiate evars contrary to unification. *) type conversion_check = unify_flags -> unification_kind -> env -> evar_map -> conv_pb -> constr -> constr -> bool let normalize_evar evd ev = match EConstr.kind evd (mkEvar ev) with | Evar (evk,args) -> (evk,args) | _ -> assert false let get_polymorphic_positions env sigma f = let open Declarations in match EConstr.kind sigma f with | Ind (ind, u) | Construct ((ind, _), u) -> let mib,oib = Inductive.lookup_mind_specif env ind in (match oib.mind_arity with | RegularArity _ -> assert false | TemplateArity templ -> templ.template_param_levels) | _ -> assert false let refresh_universes ?(status=univ_rigid) ?(onlyalg=false) ?(refreshset=false) pbty env evd t = let evdref = ref evd in (* direction: true for fresh universes lower than the existing ones *) let refresh_sort status ~direction s = let s = ESorts.kind !evdref s in let sigma, s' = new_sort_variable status !evdref in evdref := sigma; let evd = if direction then set_leq_sort env !evdref s' s else set_leq_sort env !evdref s s' in evdref := evd; mkSort s' in let rec refresh ~onlyalg status ~direction t = match EConstr.kind !evdref t with | Sort s -> begin match ESorts.kind !evdref s with | Type u -> (* TODO: check if max(l,u) is not ok as well *) (match Univ.universe_level u with | None -> refresh_sort status ~direction s | Some l -> (match Evd.universe_rigidity !evdref l with | UnivRigid -> if not onlyalg then refresh_sort status ~direction s else t | UnivFlexible alg -> (if alg then evdref := Evd.make_nonalgebraic_variable !evdref l); t)) | Set when refreshset && not direction -> (* Cannot make a universe "lower" than "Set", only refreshing when we want higher universes. *) refresh_sort status ~direction s | _ -> t end | Prod (na,u,v) -> let v' = refresh ~onlyalg status ~direction v in if v' == v then t else mkProd (na, u, v') | _ -> t in (* Refresh the types of evars under template polymorphic references *) let rec refresh_term_evars ~onevars ~top t = match EConstr.kind !evdref t with | App (f, args) when Termops.is_template_polymorphic_ind env !evdref f -> let pos = get_polymorphic_positions env !evdref f in refresh_polymorphic_positions args pos; t | App (f, args) when top && isEvar !evdref f -> let f' = refresh_term_evars ~onevars:true ~top:false f in let args' = Array.map (refresh_term_evars ~onevars ~top:false) args in if f' == f && args' == args then t else mkApp (f', args') | Evar (ev, a) when onevars -> let evi = Evd.find !evdref ev in let ty = evi.evar_concl in let ty' = refresh ~onlyalg univ_flexible ~direction:true ty in if ty == ty' then t else (evdref := Evd.downcast ev ty' !evdref; t) | Sort s -> (match ESorts.kind !evdref s with | Type u when not (Univ.Universe.is_levels u) -> refresh_sort Evd.univ_flexible ~direction:false s | _ -> t) | _ -> EConstr.map !evdref (refresh_term_evars ~onevars ~top:false) t and refresh_polymorphic_positions args pos = let rec aux i = function | Some l :: ls -> if i < Array.length args then ignore(refresh_term_evars ~onevars:true ~top:false args.(i)); aux (succ i) ls | None :: ls -> if i < Array.length args then ignore(refresh_term_evars ~onevars:false ~top:false args.(i)); aux (succ i) ls | [] -> () in aux 0 pos in let t' = if isArity !evdref t then match pbty with | None -> (* No cumulativity needed, but we still need to refresh the algebraics *) refresh ~onlyalg:true univ_flexible ~direction:false t | Some direction -> refresh ~onlyalg status ~direction t else refresh_term_evars ~onevars:false ~top:true t in !evdref, t' let get_type_of_refresh ?(polyprop=true) ?(lax=false) env sigma c = let ty = Retyping.get_type_of ~polyprop ~lax env sigma c in refresh_universes (Some false) env sigma ty let add_conv_oriented_pb ?(tail=true) (pbty,env,t1,t2) evd = match pbty with | Some true -> add_conv_pb ~tail (Reduction.CUMUL,env,t1,t2) evd | Some false -> add_conv_pb ~tail (Reduction.CUMUL,env,t2,t1) evd | None -> add_conv_pb ~tail (Reduction.CONV,env,t1,t2) evd (* We retype applications to ensure the universe constraints are collected *) exception IllTypedInstance of env * EConstr.types * EConstr.types let recheck_applications unify flags env evdref t = let rec aux env t = match EConstr.kind !evdref t with | App (f, args) -> let () = aux env f in let fty = Retyping.get_type_of env !evdref f in let argsty = Array.map (fun x -> aux env x; Retyping.get_type_of env !evdref x) args in let rec aux i ty = if i < Array.length argsty then match EConstr.kind !evdref (whd_all env !evdref ty) with | Prod (na, dom, codom) -> (match unify flags TypeUnification env !evdref Reduction.CUMUL argsty.(i) dom with | Success evd -> evdref := evd; aux (succ i) (subst1 args.(i) codom) | UnifFailure (evd, reason) -> Pretype_errors.error_cannot_unify env evd ~reason (argsty.(i), dom)) | _ -> raise (IllTypedInstance (env, ty, argsty.(i))) else () in aux 0 fty | _ -> iter_with_full_binders !evdref (fun d env -> push_rel d env) aux env t in aux env t (*------------------------------------* * Restricting existing evars * *------------------------------------*) type 'a update = | UpdateWith of 'a | NoUpdate open Context.Named.Declaration let inst_of_vars sign = Array.map_of_list (get_id %> mkVar) sign let restrict_evar_key evd evk filter candidates = match filter, candidates with | None, NoUpdate -> evd, evk | _ -> let evi = Evd.find_undefined evd evk in let oldfilter = evar_filter evi in begin match filter, candidates with | Some filter, NoUpdate when Filter.equal oldfilter filter -> evd, evk | _ -> let filter = match filter with | None -> evar_filter evi | Some filter -> filter in let candidates = match candidates with | NoUpdate -> evi.evar_candidates | UpdateWith c -> Some c in restrict_evar evd evk filter candidates end (* Restrict an applied evar and returns its restriction in the same context *) (* (the filter is assumed to be at least stronger than the original one) *) let restrict_applied_evar evd (evk,argsv) filter candidates = let evd,newevk = restrict_evar_key evd evk filter candidates in let newargsv = match filter with | None -> (* optim *) argsv | Some filter -> let evi = Evd.find evd evk in let subfilter = Filter.compose (evar_filter evi) filter in Filter.filter_array subfilter argsv in evd,(newevk,newargsv) (* Restrict an evar in the current evar_map *) let restrict_evar evd evk filter candidates = fst (restrict_evar_key evd evk filter candidates) (* Restrict an evar in the current evar_map *) let restrict_instance evd evk filter argsv = match filter with None -> argsv | Some filter -> let evi = Evd.find evd evk in Filter.filter_array (Filter.compose (evar_filter evi) filter) argsv open Context.Rel.Declaration let noccur_evar env evd evk c = let cache = ref Int.Set.empty (* cache for let-ins *) in let rec occur_rec check_types (k, env as acc) c = match EConstr.kind evd c with | Evar (evk',args' as ev') -> if Evar.equal evk evk' then raise Occur else (if check_types then occur_rec false acc (existential_type evd ev'); Array.iter (occur_rec check_types acc) args') | Rel i when i > k -> if not (Int.Set.mem (i-k) !cache) then let decl = Environ.lookup_rel i env in if check_types then (cache := Int.Set.add (i-k) !cache; occur_rec false acc (lift i (EConstr.of_constr (get_type decl)))); (match decl with | LocalAssum _ -> () | LocalDef (_,b,_) -> cache := Int.Set.add (i-k) !cache; occur_rec false acc (lift i (EConstr.of_constr b))) | Proj (p,c) -> occur_rec true acc c | _ -> iter_with_full_binders evd (fun rd (k,env) -> (succ k, push_rel rd env)) (occur_rec check_types) acc c in try occur_rec false (0,env) c; true with Occur -> false (****************************************) (* Managing chains of local definitions *) (****************************************) type alias = | RelAlias of int | VarAlias of Id.t let of_alias = function | RelAlias n -> mkRel n | VarAlias id -> mkVar id let to_alias sigma c = match EConstr.kind sigma c with | Rel n -> Some (RelAlias n) | Var id -> Some (VarAlias id) | _ -> None let is_alias sigma c alias = match EConstr.kind sigma c, alias with | Var id, VarAlias id' -> Id.equal id id' | Rel n, RelAlias n' -> Int.equal n n' | _ -> false let eq_alias a b = match a, b with | RelAlias n, RelAlias m -> Int.equal m n | VarAlias id1, VarAlias id2 -> Id.equal id1 id2 | _ -> false type aliasing = EConstr.t option * alias list let empty_aliasing = None, [] let make_aliasing c = Some c, [] let push_alias (alias, l) a = (alias, a :: l) let lift_aliasing n (alias, l) = let map a = match a with | VarAlias _ -> a | RelAlias m -> RelAlias (m + n) in (Option.map (fun c -> lift n c) alias, List.map map l) type aliases = { rel_aliases : aliasing Int.Map.t; var_aliases : aliasing Id.Map.t; (** Only contains [VarAlias] *) } (* Expand rels and vars that are bound to other rels or vars so that dependencies in variables are canonically associated to the most ancient variable in its family of aliased variables *) let compute_var_aliases sign sigma = let open Context.Named.Declaration in List.fold_right (fun decl aliases -> let id = get_id decl in match decl with | LocalDef (_,t,_) -> (match EConstr.kind sigma t with | Var id' -> let aliases_of_id = try Id.Map.find id' aliases with Not_found -> empty_aliasing in Id.Map.add id (push_alias aliases_of_id (VarAlias id')) aliases | _ -> Id.Map.add id (make_aliasing t) aliases) | LocalAssum _ -> aliases) sign Id.Map.empty let compute_rel_aliases var_aliases rels sigma = snd (List.fold_right (fun decl (n,aliases) -> (n-1, match decl with | LocalDef (_,t,u) -> (match EConstr.kind sigma t with | Var id' -> let aliases_of_n = try Id.Map.find id' var_aliases with Not_found -> empty_aliasing in Int.Map.add n (push_alias aliases_of_n (VarAlias id')) aliases | Rel p -> let aliases_of_n = try Int.Map.find (p+n) aliases with Not_found -> empty_aliasing in Int.Map.add n (push_alias aliases_of_n (RelAlias (p+n))) aliases | _ -> Int.Map.add n (make_aliasing (lift n (mkCast(t,DEFAULTcast,u)))) aliases) | LocalAssum _ -> aliases) ) rels (List.length rels,Int.Map.empty)) let make_alias_map env sigma = (* We compute the chain of aliases for each var and rel *) let var_aliases = compute_var_aliases (named_context env) sigma in let rel_aliases = compute_rel_aliases var_aliases (rel_context env) sigma in { var_aliases; rel_aliases } let lift_aliases n aliases = if Int.equal n 0 then aliases else let rel_aliases = Int.Map.fold (fun p l -> Int.Map.add (p+n) (lift_aliasing n l)) aliases.rel_aliases Int.Map.empty in { aliases with rel_aliases } let get_alias_chain_of sigma aliases x = match x with | RelAlias n -> (try Int.Map.find n aliases.rel_aliases with Not_found -> empty_aliasing) | VarAlias id -> (try Id.Map.find id aliases.var_aliases with Not_found -> empty_aliasing) let normalize_alias_opt_alias sigma aliases x = match get_alias_chain_of sigma aliases x with | _, [] -> None | _, a :: _ -> Some a let normalize_alias_opt sigma aliases x = match to_alias sigma x with | None -> None | Some a -> normalize_alias_opt_alias sigma aliases a let normalize_alias sigma aliases x = match normalize_alias_opt_alias sigma aliases x with | Some a -> a | None -> x let normalize_alias_var sigma var_aliases id = let aliases = { var_aliases; rel_aliases = Int.Map.empty } in match normalize_alias sigma aliases (VarAlias id) with | VarAlias id -> id | RelAlias _ -> assert false (** var only aliases to variables *) let extend_alias sigma decl { var_aliases; rel_aliases } = let rel_aliases = Int.Map.fold (fun n l -> Int.Map.add (n+1) (lift_aliasing 1 l)) rel_aliases Int.Map.empty in let rel_aliases = match decl with | LocalDef(_,t,_) -> (match EConstr.kind sigma t with | Var id' -> let aliases_of_binder = try Id.Map.find id' var_aliases with Not_found -> empty_aliasing in Int.Map.add 1 (push_alias aliases_of_binder (VarAlias id')) rel_aliases | Rel p -> let aliases_of_binder = try Int.Map.find (p+1) rel_aliases with Not_found -> empty_aliasing in Int.Map.add 1 (push_alias aliases_of_binder (RelAlias (p+1))) rel_aliases | _ -> Int.Map.add 1 (make_aliasing (lift 1 t)) rel_aliases) | LocalAssum _ -> rel_aliases in { var_aliases; rel_aliases } let expand_alias_once sigma aliases x = match get_alias_chain_of sigma aliases x with | None, [] -> None | Some a, [] -> Some a | _, l -> Some (of_alias (List.last l)) let expansions_of_var sigma aliases x = let (_, l) = get_alias_chain_of sigma aliases x in x :: List.rev l let expansion_of_var sigma aliases x = match get_alias_chain_of sigma aliases x with | None, [] -> (false, of_alias x) | Some a, _ -> (true, a) | None, a :: _ -> (true, of_alias a) let rec expand_vars_in_term_using sigma aliases t = match EConstr.kind sigma t with | Rel n -> of_alias (normalize_alias sigma aliases (RelAlias n)) | Var id -> of_alias (normalize_alias sigma aliases (VarAlias id)) | _ -> let self aliases c = expand_vars_in_term_using sigma aliases c in map_constr_with_full_binders sigma (extend_alias sigma) self aliases t let expand_vars_in_term env sigma = expand_vars_in_term_using sigma (make_alias_map env sigma) let free_vars_and_rels_up_alias_expansion env sigma aliases c = let acc1 = ref Int.Set.empty and acc2 = ref Id.Set.empty in let acc3 = ref Int.Set.empty and acc4 = ref Id.Set.empty in let cache_rel = ref Int.Set.empty and cache_var = ref Id.Set.empty in let is_in_cache depth = function | RelAlias n -> Int.Set.mem (n-depth) !cache_rel | VarAlias s -> Id.Set.mem s !cache_var in let put_in_cache depth = function | RelAlias n -> cache_rel := Int.Set.add (n-depth) !cache_rel | VarAlias s -> cache_var := Id.Set.add s !cache_var in let rec frec (aliases,depth) c = match EConstr.kind sigma c with | Rel _ | Var _ as ck -> let ck = match ck with | Rel n -> RelAlias n | Var id -> VarAlias id | _ -> assert false in if is_in_cache depth ck then () else begin put_in_cache depth ck; let expanded, c' = expansion_of_var sigma aliases ck in (if expanded then (* expansion, hence a let-in *) match ck with | VarAlias id -> acc4 := Id.Set.add id !acc4 | RelAlias n -> if n >= depth+1 then acc3 := Int.Set.add (n-depth) !acc3); match EConstr.kind sigma c' with | Var id -> acc2 := Id.Set.add id !acc2 | Rel n -> if n >= depth+1 then acc1 := Int.Set.add (n-depth) !acc1 | _ -> frec (aliases,depth) c end | Const _ | Ind _ | Construct _ -> acc2 := Id.Set.union (vars_of_global env (fst @@ EConstr.destRef sigma c)) !acc2 | _ -> iter_with_full_binders sigma (fun d (aliases,depth) -> (extend_alias sigma d aliases,depth+1)) frec (aliases,depth) c in frec (aliases,0) c; (!acc1,!acc2,!acc3,!acc4) (********************************) (* Managing pattern-unification *) (********************************) let expand_and_check_vars sigma aliases l = let map a = match get_alias_chain_of sigma aliases a with | None, [] -> Some a | None, a :: _ -> Some a | Some _, _ -> None in Option.List.map map l let alias_distinct l = let rec check (rels, vars) = function | [] -> true | RelAlias n :: l -> not (Int.Set.mem n rels) && check (Int.Set.add n rels, vars) l | VarAlias id :: l -> not (Id.Set.mem id vars) && check (rels, Id.Set.add id vars) l in check (Int.Set.empty, Id.Set.empty) l let get_actual_deps env evd aliases l t = if occur_meta_or_existential evd t then (* Probably no restrictions on allowed vars in presence of evars *) l else (* Probably strong restrictions coming from t being evar-closed *) let (fv_rels,fv_ids,_,_) = free_vars_and_rels_up_alias_expansion env evd aliases t in List.filter (function | VarAlias id -> Id.Set.mem id fv_ids | RelAlias n -> Int.Set.mem n fv_rels ) l open Context.Named.Declaration let remove_instance_local_defs evd evk args = let evi = Evd.find evd evk in let len = Array.length args in let rec aux sign i = match sign with | [] -> let () = assert (i = len) in [] | LocalAssum _ :: sign -> let () = assert (i < len) in (Array.unsafe_get args i) :: aux sign (succ i) | LocalDef _ :: sign -> aux sign (succ i) in aux (evar_filtered_context evi) 0 (* Check if an applied evar "?X[args] l" is a Miller's pattern *) let find_unification_pattern_args env evd l t = let aliases = make_alias_map env evd in match expand_and_check_vars evd aliases l with | Some l as x when alias_distinct (get_actual_deps env evd aliases l t) -> x | _ -> None let is_unification_pattern_meta env evd nb m l t = (* Variables from context and rels > nb are implicitly all there *) (* so we need to be a rel <= nb *) let map a = match EConstr.kind evd a with | Rel n -> if n <= nb then Some (RelAlias n) else None | _ -> None in match Option.List.map map l with | Some l -> begin match find_unification_pattern_args env evd l t with | Some _ as x when not (occur_metavariable evd m t) -> x | _ -> None end | None -> None let is_unification_pattern_evar env evd (evk,args) l t = match Option.List.map (fun c -> to_alias evd c) l with | Some l when noccur_evar env evd evk t -> let args = remove_instance_local_defs evd evk args in let args = Option.List.map (fun c -> to_alias evd c) args in begin match args with | None -> None | Some args -> let n = List.length args in match find_unification_pattern_args env evd (args @ l) t with | Some l -> Some (List.skipn n l) | _ -> None end | _ -> None let is_unification_pattern_pure_evar env evd (evk,args) t = let is_ev = is_unification_pattern_evar env evd (evk,args) [] t in match is_ev with | None -> false | Some _ -> true let is_unification_pattern (env,nb) evd f l t = match EConstr.kind evd f with | Meta m -> is_unification_pattern_meta env evd nb m l t | Evar ev -> is_unification_pattern_evar env evd ev l t | _ -> None (* From a unification problem "?X l = c", build "\x1...xn.(term1 l2)" (pattern unification). It is assumed that l is made of rel's that are distinct and not bound to aliases. *) (* It is also assumed that c does not contain metas because metas *implicitly* depend on Vars but lambda abstraction will not reflect this dependency: ?X x = ?1 (?1 is a meta) will return \_.?1 while it should return \y. ?1{x\y} (non constant function if ?1 depends on x) (BB) *) let solve_pattern_eqn env sigma l c = let c' = List.fold_right (fun a c -> let c' = subst_term sigma (lift 1 (of_alias a)) (lift 1 c) in match a with (* Rem: if [a] links to a let-in, do as if it were an assumption *) | RelAlias n -> let open Context.Rel.Declaration in let d = map_constr (lift n) (lookup_rel n env) in mkLambda_or_LetIn d c' | VarAlias id -> let d = lookup_named id env in mkNamedLambda_or_LetIn d c' ) l c in (* Warning: we may miss some opportunity to eta-reduce more since c' is not in normal form *) shrink_eta c' (*****************************************) (* Refining/solving unification problems *) (*****************************************) (* Knowing that [Gamma |- ev : T] and that [ev] is applied to [args], * [make_projectable_subst ev args] builds the substitution [Gamma:=args]. * If a variable and an alias of it are bound to the same instance, we skip * the alias (we just use eq_constr -- instead of conv --, since anyway, * only instances that are variables -- or evars -- are later considered; * moreover, we can bet that similar instances came at some time from * the very same substitution. The removal of aliased duplicates is * useful to ensure the uniqueness of a projection. *) let make_projectable_subst aliases sigma evi args = let sign = evar_filtered_context evi in let evar_aliases = compute_var_aliases sign sigma in let (_,full_subst,cstr_subst,_) = List.fold_right_i (fun i decl (args,all,cstrs,revmap) -> match decl,args with | LocalAssum ({binder_name=id},c), a::rest -> let revmap = Id.Map.add id i revmap in let cstrs = let a',args = decompose_app_vect sigma a in match EConstr.kind sigma a' with | Construct cstr -> let l = try Constrmap.find (fst cstr) cstrs with Not_found -> [] in Constrmap.add (fst cstr) ((args,id)::l) cstrs | _ -> cstrs in let all = Int.Map.add i [a,normalize_alias_opt sigma aliases a,id] all in (rest,all,cstrs,revmap) | LocalDef ({binder_name=id},c,_), a::rest -> let revmap = Id.Map.add id i revmap in (match EConstr.kind sigma c with | Var id' -> let idc = normalize_alias_var sigma evar_aliases id' in let ic, sub = try let ic = Id.Map.find idc revmap in ic, Int.Map.find ic all with Not_found -> i, [] (* e.g. [idc] is a filtered variable: treat [id] as an assumption *) in if List.exists (fun (c,_,_) -> EConstr.eq_constr sigma a c) sub then (rest,all,cstrs,revmap) else let all = Int.Map.add ic ((a,normalize_alias_opt sigma aliases a,id)::sub) all in (rest,all,cstrs,revmap) | _ -> let all = Int.Map.add i [a,normalize_alias_opt sigma aliases a,id] all in (rest,all,cstrs,revmap)) | _ -> anomaly (Pp.str "Instance does not match its signature.")) 0 sign (Array.rev_to_list args,Int.Map.empty,Constrmap.empty,Id.Map.empty) in (full_subst,cstr_subst) (*------------------------------------* * operations on the evar constraints * *------------------------------------*) (* We have a unification problem Σ; Γ |- ?e[u1..uq] = t : s where ?e is not yet * declared in Σ but yet known to be declarable in some context x1:T1..xq:Tq. * [define_evar_from_virtual_equation ... Γ Σ t (x1:T1..xq:Tq) .. (u1..uq) (x1..xq)] * declares x1:T1..xq:Tq |- ?e : s such that ?e[u1..uq] = t holds. *) let define_evar_from_virtual_equation define_fun env evd src t_in_env ty_t_in_sign sign filter inst_in_env = let (evd, evar_in_env) = new_evar_instance sign evd ty_t_in_sign ~filter ~src inst_in_env in let t_in_env = whd_evar evd t_in_env in let (evk, _) = destEvar evd evar_in_env in let evd = define_fun env evd None (destEvar evd evar_in_env) t_in_env in let ctxt = named_context_of_val sign in let inst_in_sign = inst_of_vars (Filter.filter_list filter ctxt) in let evar_in_sign = mkEvar (evk, inst_in_sign) in (evd,whd_evar evd evar_in_sign) (* We have x1..xq |- ?e1 : τ and had to solve something like * Σ; Γ |- ?e1[u1..uq] = (...\y1 ... \yk ... c), where c is typically some * ?e2[v1..vn], hence flexible. We had to go through k binders and now * virtually have x1..xq, y1'..yk' | ?e1' : τ' and the equation * Γ, y1..yk |- ?e1'[u1..uq y1..yk] = c. * [materialize_evar Γ evd k (?e1[u1..uq]) τ'] extends Σ with the declaration * of ?e1' and returns both its instance ?e1'[x1..xq y1..yk] in an extension * of the context of e1 so that e1 can be instantiated by * (...\y1' ... \yk' ... ?e1'[x1..xq y1'..yk']), * and the instance ?e1'[u1..uq y1..yk] so that the remaining equation * ?e1'[u1..uq y1..yk] = c can be registered * * Note that, because invert_definition does not check types, we need to * guess the types of y1'..yn' by inverting the types of y1..yn along the * substitution u1..uq. *) exception MorePreciseOccurCheckNeeeded let materialize_evar define_fun env evd k (evk1,args1) ty_in_env = if Evd.is_defined evd evk1 then (* Some circularity somewhere (see e.g. #3209) *) raise MorePreciseOccurCheckNeeeded; let (evk1,args1) = destEvar evd (mkEvar (evk1,args1)) in let evi1 = Evd.find_undefined evd evk1 in let env1,rel_sign = env_rel_context_chop k env in let sign1 = evar_hyps evi1 in let filter1 = evar_filter evi1 in let src = subterm_source evk1 evi1.evar_source in let ids1 = List.map get_id (named_context_of_val sign1) in let avoid = Environ.ids_of_named_context_val sign1 in let inst_in_sign = List.map mkVar (Filter.filter_list filter1 ids1) in let open Context.Rel.Declaration in let (sign2,filter2,inst2_in_env,inst2_in_sign,_,evd,_) = List.fold_right (fun d (sign,filter,inst_in_env,inst_in_sign,env,evd,avoid) -> let LocalAssum (na,t_in_env) | LocalDef (na,_,t_in_env) = d in let id = map_annot (fun na -> next_name_away na avoid) na in let evd,t_in_sign = let s = Retyping.get_sort_of env evd t_in_env in let evd,ty_t_in_sign = refresh_universes ~status:univ_flexible (Some false) env evd (mkSort s) in define_evar_from_virtual_equation define_fun env evd src t_in_env ty_t_in_sign sign filter inst_in_env in let evd,d' = match d with | LocalAssum _ -> evd, Context.Named.Declaration.LocalAssum (id,t_in_sign) | LocalDef (_,b,_) -> let evd,b = define_evar_from_virtual_equation define_fun env evd src b t_in_sign sign filter inst_in_env in evd, Context.Named.Declaration.LocalDef (id,b,t_in_sign) in (push_named_context_val d' sign, Filter.extend 1 filter, (mkRel 1)::(List.map (lift 1) inst_in_env), (mkRel 1)::(List.map (lift 1) inst_in_sign), push_rel d env,evd,Id.Set.add id.binder_name avoid)) rel_sign (sign1,filter1,Array.to_list args1,inst_in_sign,env1,evd,avoid) in let evd,ev2ty_in_sign = let s = Retyping.get_sort_of env evd ty_in_env in let evd,ty_t_in_sign = refresh_universes ~status:univ_flexible (Some false) env evd (mkSort s) in define_evar_from_virtual_equation define_fun env evd src ty_in_env ty_t_in_sign sign2 filter2 inst2_in_env in let (evd, ev2_in_sign) = new_evar_instance sign2 evd ev2ty_in_sign ~filter:filter2 ~src inst2_in_sign in let ev2_in_env = (fst (destEvar evd ev2_in_sign), Array.of_list inst2_in_env) in (evd, ev2_in_sign, ev2_in_env) let restrict_upon_filter evd evk p args = let oldfullfilter = evar_filter (Evd.find_undefined evd evk) in let len = Array.length args in Filter.restrict_upon oldfullfilter len (fun i -> p (Array.unsafe_get args i)) let check_evar_instance unify flags evd evk1 body = let evi = Evd.find evd evk1 in let evenv = evar_env evi in (* FIXME: The body might be ill-typed when this is called from w_merge *) (* This happens in practice, cf MathClasses build failure on 2013-3-15 *) let ty = try Retyping.get_type_of ~lax:true evenv evd body with Retyping.RetypeError _ -> user_err (Pp.(str "Ill-typed evar instance")) in match unify flags TypeUnification evenv evd Reduction.CUMUL ty evi.evar_concl with | Success evd -> evd | UnifFailure _ -> raise (IllTypedInstance (evenv,ty,evi.evar_concl)) (***************) (* Unification *) (* Inverting constructors in instances (common when inferring type of match) *) let find_projectable_constructor env evd cstr k args cstr_subst = try let l = Constrmap.find cstr cstr_subst in let args = Array.map (lift (-k)) args in let l = List.filter (fun (args',id) -> (* is_conv is maybe too strong (and source of useless computation) *) (* (at least expansion of aliases is needed) *) Array.for_all2 (fun c1 c2 -> is_conv env evd c1 c2) args args') l in List.map snd l with Not_found -> [] (* [find_projectable_vars env sigma y subst] finds all vars of [subst] * that project on [y]. It is able to find solutions to the following * two kinds of problems: * * - ?n[...;x:=y;...] = y * - ?n[...;x:=?m[args];...] = y with ?m[args] = y recursively solvable * * (see test-suite/success/Fixpoint.v for an example of application of * the second kind of problem). * * The seek for [y] is up to variable aliasing. In case of solutions that * differ only up to aliasing, the binding that requires the less * steps of alias reduction is kept. At the end, only one solution up * to aliasing is kept. * * [find_projectable_vars] also unifies against evars that themselves mention * [y] and recursively. * * In short, the following situations give the following solutions: * * problem evar ctxt soluce remark * z1; z2:=z1 |- ?ev[z1;z2] = z1 y1:A; y2:=y1 y1 \ thanks to defs kept in * z1; z2:=z1 |- ?ev[z1;z2] = z2 y1:A; y2:=y1 y2 / subst and preferring = * z1; z2:=z1 |- ?ev[z1] = z2 y1:A y1 thanks to expand_var * z1; z2:=z1 |- ?ev[z2] = z1 y1:A y1 thanks to expand_var * z3 |- ?ev[z3;z3] = z3 y1:A; y2:=y1 y2 see make_projectable_subst * * Remark: [find_projectable_vars] assumes that identical instances of * variables in the same set of aliased variables are already removed (see * [make_projectable_subst]) *) type evar_projection = | ProjectVar | ProjectEvar of EConstr.existential * evar_info * Id.t * evar_projection exception NotUnique exception NotUniqueInType of (Id.t * evar_projection) list let rec assoc_up_to_alias sigma aliases y yc = function | [] -> raise Not_found | (c,cc,id)::l -> if is_alias sigma c y then id else match l with | _ :: _ -> assoc_up_to_alias sigma aliases y yc l | [] -> (* Last chance, we reason up to alias conversion *) match (normalize_alias_opt sigma aliases c) with | Some cc when eq_alias yc cc -> id | _ -> if is_alias sigma c yc then id else raise Not_found let rec find_projectable_vars with_evars aliases sigma y subst = let yc = normalize_alias sigma aliases y in let is_projectable idc idcl (subst1,subst2 as subst') = (* First test if some [id] aliased to [idc] is bound to [y] in [subst] *) try let id = assoc_up_to_alias sigma aliases y yc idcl in (id,ProjectVar)::subst1,subst2 with Not_found -> (* Then test if [idc] is (indirectly) bound in [subst] to some evar *) (* projectable on [y] *) if with_evars then let f (c,_,id) = isEvar sigma c in let idcl' = List.filter f idcl in match idcl' with | [c,_,id] -> begin let (evk,argsv as t) = destEvar sigma c in let evi = Evd.find sigma evk in let subst,_ = make_projectable_subst aliases sigma evi argsv in let l = find_projectable_vars with_evars aliases sigma y subst in match l with | [id',p] -> (subst1,(id,ProjectEvar (t,evi,id',p))::subst2) | _ -> subst' end | [] -> subst' | _ -> anomaly (Pp.str "More than one non var in aliases class of evar instance.") else subst' in let subst1,subst2 = Int.Map.fold is_projectable subst ([],[]) in (* We return the substitution with ProjectVar first (from most recent to oldest var), followed by ProjectEvar (from most recent to oldest var too) *) subst1 @ subst2 (* [filter_solution] checks if one and only one possible projection exists * among a set of solutions to a projection problem *) let filter_solution = function | [] -> raise Not_found | (id,p)::_::_ -> raise NotUnique | [id,p] -> (mkVar id, p) let project_with_effects aliases sigma effects t subst = let c, p = filter_solution (find_projectable_vars false aliases sigma t subst) in effects := p :: !effects; c open Context.Named.Declaration let rec find_solution_type evarenv = function | (id,ProjectVar)::l -> get_type (lookup_named id evarenv) | [id,ProjectEvar _] -> (* bugged *) get_type (lookup_named id evarenv) | (id,ProjectEvar _)::l -> find_solution_type evarenv l | [] -> assert false (* In case the solution to a projection problem requires the instantiation of * subsidiary evars, [do_projection_effects] performs them; it * also try to instantiate the type of those subsidiary evars if their * type is an evar too. * * Note: typing creates new evar problems, which induces a recursive dependency * with [define]. To avoid a too large set of recursive functions, we * pass [define] to [do_projection_effects] as a parameter. *) let rec do_projection_effects unify flags define_fun env ty evd = function | ProjectVar -> evd | ProjectEvar ((evk,argsv),evi,id,p) -> let evd = check_evar_instance unify flags evd evk (mkVar id) in let evd = Evd.define evk (EConstr.mkVar id) evd in (* TODO: simplify constraints involving evk *) let evd = do_projection_effects unify flags define_fun env ty evd p in let ty = whd_all env evd (Lazy.force ty) in if not (isSort evd ty) then (* Don't try to instantiate if a sort because if evar_concl is an evar it may commit to a univ level which is not the right one (however, regarding coercions, because t is obtained by unif, we know that no coercion can be inserted) *) let subst = make_pure_subst evi argsv in let ty' = replace_vars subst evi.evar_concl in if isEvar evd ty' then define_fun env evd (Some false) (destEvar evd ty') ty else evd else evd (* Assuming Σ; Γ, y1..yk |- c, [invert_arg_from_subst Γ k Σ [x1:=u1..xn:=un] c] * tries to return φ(x1..xn) such that equation φ(u1..un) = c is valid. * The strategy is to imitate the structure of c and then to invert * the variables of c (i.e. rels or vars of Γ) using the algorithm * implemented by project_with_effects/find_projectable_vars. * It returns either a unique solution or says whether 0 or more than * 1 solutions is found. * * Precondition: Σ; Γ, y1..yk |- c /\ Σ; Γ |- u1..un * Postcondition: if φ(x1..xn) is returned then * Σ; Γ, y1..yk |- φ(u1..un) = c /\ x1..xn |- φ(x1..xn) * * The effects correspond to evars instantiated while trying to project. * * [invert_arg_from_subst] is used on instances of evars. Since the * evars are flexible, these instances are potentially erasable. This * is why we don't investigate whether evars in the instances of evars * are unifiable, to the contrary of [invert_definition]. *) type projectibility_kind = | NoUniqueProjection | UniqueProjection of EConstr.constr * evar_projection list type projectibility_status = | CannotInvert | Invertible of projectibility_kind let invert_arg_from_subst evd aliases k0 subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders = let effects = ref [] in let rec aux k t = match EConstr.kind evd t with | Rel i when i>k0+k -> aux' k (RelAlias (i-k)) | Var id -> aux' k (VarAlias id) | _ -> map_with_binders evd succ aux k t and aux' k t = try project_with_effects aliases evd effects t subst_in_env_extended_with_k_binders with Not_found -> match expand_alias_once evd aliases t with | None -> raise Not_found | Some c -> aux k (lift k c) in try let c = aux 0 c_in_env_extended_with_k_binders in Invertible (UniqueProjection (c,!effects)) with | Not_found -> CannotInvert | NotUnique -> Invertible NoUniqueProjection let invert_arg fullenv evd aliases k evk subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders = let res = invert_arg_from_subst evd aliases k subst_in_env_extended_with_k_binders c_in_env_extended_with_k_binders in match res with | Invertible (UniqueProjection (c,_)) when not (noccur_evar fullenv evd evk c) -> CannotInvert | _ -> res exception NotEnoughInformationToInvert let extract_unique_projection = function | Invertible (UniqueProjection (c,_)) -> c | _ -> (* For instance, there are evars with non-invertible arguments and *) (* we cannot arbitrarily restrict these evars before knowing if there *) (* will really be used; it can also be due to some argument *) (* (typically a rel) that is not inversible and that cannot be *) (* inverted either because it is needed for typing the conclusion *) (* of the evar to project *) raise NotEnoughInformationToInvert let extract_candidates sols = try UpdateWith (List.map (function (id,ProjectVar) -> mkVar id | _ -> raise Exit) sols) with Exit -> NoUpdate let invert_invertible_arg fullenv evd aliases k (evk,argsv) args' = let evi = Evd.find_undefined evd evk in let subst,_ = make_projectable_subst aliases evd evi argsv in let invert arg = let p = invert_arg fullenv evd aliases k evk subst arg in extract_unique_projection p in Array.map invert args' (* Redefines an evar with a smaller context (i.e. it may depend on less * variables) such that c becomes closed. * Example: in "fun (x:?1) (y:list ?2[x]) => x = y :> ?3[x,y] /\ x = nil bool" * ?3 <-- ?1 no pb: env of ?3 is larger than ?1's * ?1 <-- list ?2 pb: ?2 may depend on x, but not ?1. * What we do is that ?2 is defined by a new evar ?4 whose context will be * a prefix of ?2's env, included in ?1's env. * * If "hyps |- ?e : T" and "filter" selects a subset hyps' of hyps then * [do_restrict_hyps evd ?e filter] sets ?e:=?e'[hyps'] and returns ?e' * such that "hyps' |- ?e : T" *) let set_of_evctx l = List.fold_left (fun s decl -> Id.Set.add (get_id decl) s) Id.Set.empty l let filter_effective_candidates evd evi filter candidates = match filter with | None -> candidates | Some filter -> let ids = set_of_evctx (Filter.filter_list filter (evar_context evi)) in List.filter (fun a -> Id.Set.subset (collect_vars evd a) ids) candidates let filter_candidates evd evk filter candidates_update = let evi = Evd.find_undefined evd evk in let candidates = match candidates_update with | NoUpdate -> evi.evar_candidates | UpdateWith c -> Some c in match candidates with | None -> NoUpdate | Some l -> let l' = filter_effective_candidates evd evi filter l in if List.length l = List.length l' && candidates_update = NoUpdate then NoUpdate else UpdateWith l' (* Given a filter refinement for the evar [evk], restrict it so that dependencies are preserved *) let closure_of_filter evd evk = function | None -> None | Some filter -> let evi = Evd.find_undefined evd evk in let vars = collect_vars evd (evar_concl evi) in let test b decl = b || Id.Set.mem (get_id decl) vars || match decl with | LocalAssum _ -> false | LocalDef (_,c,_) -> not (isRel evd c || isVar evd c) in let newfilter = Filter.map_along test filter (evar_context evi) in (* Now ensure that restriction is at least what is was originally *) let newfilter = Option.cata (Filter.map_along (&&) newfilter) newfilter (Filter.repr (evar_filter evi)) in if Filter.equal newfilter (evar_filter evi) then None else Some newfilter (* The filter is assumed to be at least stronger than the original one *) let restrict_hyps evd evk filter candidates = (* What to do with dependencies? Assume we have x:A, y:B(x), z:C(x,y) |- ?e:T(x,y,z) and restrict on y. - If y is in a non-erasable position in C(x,y) (i.e. it is not below an occurrence of x in the hnf of C), then z should be removed too. - If y is in a non-erasable position in T(x,y,z) then the problem is unsolvable. Computing whether y is erasable or not may be costly and the interest for this early detection in practice is not obvious. We let it for future work. In any case, thanks to the use of filters, the whole (unrestricted) context remains consistent. *) let candidates = filter_candidates evd evk (Some filter) candidates in let typablefilter = closure_of_filter evd evk (Some filter) in (typablefilter,candidates) exception EvarSolvedWhileRestricting of evar_map * EConstr.constr let do_restrict_hyps evd (evk,args as ev) filter candidates = let filter,candidates = match filter with | None -> None,candidates | Some filter -> restrict_hyps evd evk filter candidates in match candidates,filter with | UpdateWith [], _ -> user_err Pp.(str "Not solvable.") | UpdateWith [nc],_ -> let evd = Evd.define evk nc evd in raise (EvarSolvedWhileRestricting (evd,mkEvar ev)) | NoUpdate, None -> evd,ev | _ -> restrict_applied_evar evd ev filter candidates (* [postpone_non_unique_projection] postpones equation of the form ?e[?] = c *) (* ?e is assumed to have no candidates *) let postpone_non_unique_projection env evd pbty (evk,argsv as ev) sols rhs = let rhs = expand_vars_in_term env evd rhs in let filter a = match EConstr.kind evd a with | Rel n -> not (noccurn evd n rhs) | Var id -> local_occur_var evd id rhs || List.exists (fun (id', _) -> Id.equal id id') sols | _ -> true in let filter = restrict_upon_filter evd evk filter argsv in (* Keep only variables that occur in rhs *) (* This is not safe: is the variable is a local def, its body *) (* may contain references to variables that are removed, leading to *) (* an ill-formed context. We would actually need a notion of filter *) (* that says that the body is hidden. Note that expand_vars_in_term *) (* expands only rels and vars aliases, not rels or vars bound to an *) (* arbitrary complex term *) let filter = closure_of_filter evd evk filter in let candidates = extract_candidates sols in match candidates with | NoUpdate -> (* We made an approximation by not expanding a local definition *) let evd,ev = restrict_applied_evar evd ev filter NoUpdate in let pb = (pbty,env,mkEvar ev,rhs) in add_conv_oriented_pb pb evd | UpdateWith c -> restrict_evar evd evk filter (UpdateWith c) (* [solve_evar_evar f Γ Σ ?e1[u1..un] ?e2[v1..vp]] applies an heuristic * to solve the equation Σ; Γ ⊢ ?e1[u1..un] = ?e2[v1..vp]: * - if there are at most one φj for each vj s.t. vj = φj(u1..un), * we first restrict ?e2 to the subset v_k1..v_kq of the vj that are * inversible and we set ?e1[x1..xn] := ?e2[φk1(x1..xn)..φkp(x1..xn)] * (this is a case of pattern-unification) * - symmetrically if there are at most one ψj for each uj s.t. * uj = ψj(v1..vp), * - otherwise, each position i s.t. ui does not occur in v1..vp has to * be restricted and similarly for the vi, and we leave the equation * as an open equation (performed by [postpone_evar]) * * Warning: the notion of unique φj is relative to some given class * of unification problems * * Note: argument f is the function used to instantiate evars. *) let filter_compatible_candidates unify flags env evd evi args rhs c = let c' = instantiate_evar_array evi c args in match unify flags TermUnification env evd Reduction.CONV rhs c' with | Success evd -> Some (c,evd) | UnifFailure _ -> None (* [restrict_candidates ... filter ev1 ev2] restricts the candidates of ev1, removing those not compatible with the filter, as well as those not convertible to some candidate of ev2 *) exception DoesNotPreserveCandidateRestriction let restrict_candidates unify flags env evd filter1 (evk1,argsv1) (evk2,argsv2) = let evi1 = Evd.find evd evk1 in let evi2 = Evd.find evd evk2 in match evi1.evar_candidates, evi2.evar_candidates with | _, None -> filter_candidates evd evk1 filter1 NoUpdate | None, Some _ -> raise DoesNotPreserveCandidateRestriction | Some l1, Some l2 -> let l1 = filter_effective_candidates evd evi1 filter1 l1 in let l1' = List.filter (fun c1 -> let c1' = instantiate_evar_array evi1 c1 argsv1 in let filter c2 = let compatibility = filter_compatible_candidates unify flags env evd evi2 argsv2 c1' c2 in match compatibility with | None -> false | Some _ -> true in let filtered = List.filter filter l2 in match filtered with [] -> false | _ -> true) l1 in if Int.equal (List.length l1) (List.length l1') then NoUpdate else UpdateWith l1' exception CannotProject of evar_map * EConstr.existential (* Assume that FV(?n[x1:=t1..xn:=tn]) belongs to some set U. Can ?n be instantiated by a term u depending essentially on xi such that the FV(u[x1:=t1..xn:=tn]) are in the set U? - If ti is a variable, it has to be in U. - If ti is a constructor, its parameters cannot be erased even if u matches on it, so we have to discard ti if the parameters contain variables not in U. - If ti is rigid, we have to discard it if it contains variables in U. Note: when restricting as part of an equation ?n[x1:=t1..xn:=tn] = ?m[...] then, occurrences of ?m in the ti can be seen, like variables, as occurrences of subterms to eventually discard so as to be allowed to keep ti. *) let rec is_constrainable_in top env evd k (ev,(fv_rels,fv_ids) as g) t = let f,args = decompose_app_vect evd t in match EConstr.kind evd f with | Construct ((ind,_),u) -> let n = Inductiveops.inductive_nparams env ind in if n > Array.length args then true (* We don't try to be more clever *) else let params = fst (Array.chop n args) in Array.for_all (is_constrainable_in false env evd k g) params | Ind _ -> Array.for_all (is_constrainable_in false env evd k g) args | Prod (na,t1,t2) -> is_constrainable_in false env evd k g t1 && is_constrainable_in false env evd k g t2 | Evar (ev',_) -> top || not (Evar.equal ev' ev) (*If ev' needed, one may also try to restrict it*) | Var id -> Id.Set.mem id fv_ids | Rel n -> n <= k || Int.Set.mem n fv_rels | Sort _ -> true | _ -> (* We don't try to be more clever *) true let has_constrainable_free_vars env evd aliases force k ev (fv_rels,fv_ids,let_rels,let_ids) t = match to_alias evd t with | Some t -> let expanded, t' = expansion_of_var evd aliases t in if expanded then (* t is a local definition, we keep it only if appears in the list *) (* of let-in variables effectively occurring on the right-hand side, *) (* which is the only reason to keep it when inverting arguments *) match t with | VarAlias id -> Id.Set.mem id let_ids | RelAlias n -> Int.Set.mem n let_rels else begin match t with | VarAlias id -> Id.Set.mem id fv_ids | RelAlias n -> n <= k || Int.Set.mem n fv_rels end | None -> (* t is an instance for a proper variable; we filter it along *) (* the free variables allowed to occur *) (not force || noccur_evar env evd ev t) && is_constrainable_in true env evd k (ev,(fv_rels,fv_ids)) t exception EvarSolvedOnTheFly of evar_map * EConstr.constr (* Try to project evk1[argsv1] on evk2[argsv2], if [ev1] is a pattern on the common domain of definition *) let project_evar_on_evar force unify flags env evd aliases k2 pbty (evk1,argsv1 as ev1) (evk2,argsv2 as ev2) = (* Apply filtering on ev1 so that fvs(ev1) are in fvs(ev2). *) let fvs2 = free_vars_and_rels_up_alias_expansion env evd aliases (mkEvar ev2) in let filter1 = restrict_upon_filter evd evk1 (has_constrainable_free_vars env evd aliases force k2 evk2 fvs2) argsv1 in let candidates1 = try restrict_candidates unify flags env evd filter1 ev1 ev2 with DoesNotPreserveCandidateRestriction -> let evd,ev1' = do_restrict_hyps evd ev1 filter1 NoUpdate in raise (CannotProject (evd,ev1')) in let evd,(evk1',args1 as ev1') = try do_restrict_hyps evd ev1 filter1 candidates1 with EvarSolvedWhileRestricting (evd,ev1) -> raise (EvarSolvedOnTheFly (evd,ev1)) in (* Only try pruning on variable substitutions, postpone otherwise. *) (* Rules out non-linear instances. *) if Option.is_empty pbty && is_unification_pattern_pure_evar env evd ev2 (mkEvar ev1) then try evd,mkEvar (evk1',invert_invertible_arg env evd aliases k2 ev2 args1) with NotEnoughInformationToInvert -> raise (CannotProject (evd,ev1')) else raise (CannotProject (evd,ev1')) let update_evar_info ev1 ev2 evd = (* We update the source of obligation evars during evar-evar unifications. *) let loc, evs1 = evar_source ev1 evd in let evi = Evd.find evd ev2 in Evd.add evd ev2 {evi with evar_source = loc, evs1} let solve_evar_evar_l2r force f unify flags env evd aliases pbty ev1 (evk2,_ as ev2) = try let evd,body = project_evar_on_evar force unify flags env evd aliases 0 pbty ev1 ev2 in let evd' = Evd.define_with_evar evk2 body evd in let evd' = if is_obligation_evar evd evk2 then update_evar_info evk2 (fst (destEvar evd' body)) evd' else evd' in check_evar_instance unify flags evd' evk2 body with EvarSolvedOnTheFly (evd,c) -> f env evd pbty ev2 c let opp_problem = function None -> None | Some b -> Some (not b) let preferred_orientation evd evk1 evk2 = if is_obligation_evar evd evk1 then true else if is_obligation_evar evd evk2 then false else true let solve_evar_evar_aux force f unify flags env evd pbty (evk1,args1 as ev1) (evk2,args2 as ev2) = let aliases = make_alias_map env evd in let frozen_ev1 = Evar.Set.mem evk1 flags.frozen_evars in let frozen_ev2 = Evar.Set.mem evk2 flags.frozen_evars in if preferred_orientation evd evk1 evk2 then try if not frozen_ev1 then solve_evar_evar_l2r force f unify flags env evd aliases (opp_problem pbty) ev2 ev1 else raise (CannotProject (evd,ev2)) with CannotProject (evd,ev2) -> try if not frozen_ev2 then solve_evar_evar_l2r force f unify flags env evd aliases pbty ev1 ev2 else raise (CannotProject (evd,ev1)) with CannotProject (evd,ev1) -> add_conv_oriented_pb ~tail:true (pbty,env,mkEvar ev1,mkEvar ev2) evd else try if not frozen_ev2 then solve_evar_evar_l2r force f unify flags env evd aliases pbty ev1 ev2 else raise (CannotProject (evd,ev1)) with CannotProject (evd,ev1) -> try if not frozen_ev1 then solve_evar_evar_l2r force f unify flags env evd aliases (opp_problem pbty) ev2 ev1 else raise (CannotProject (evd,ev2)) with CannotProject (evd,ev2) -> add_conv_oriented_pb ~tail:true (pbty,env,mkEvar ev1,mkEvar ev2) evd (** Precondition: evk1 is not frozen *) let solve_evar_evar ?(force=false) f unify flags env evd pbty (evk1,args1 as ev1) (evk2,args2 as ev2) = let pbty = if force then None else pbty in let evi = Evd.find evd evk1 in let downcast evk t evd = downcast evk t evd in let evd = try (* ?X : Π Δ. Type i = ?Y : Π Δ'. Type j. The body of ?X and ?Y just has to be of type Π Δ. Type k for some k <= i, j. *) let evienv = Evd.evar_env evi in let concl1 = EConstr.Unsafe.to_constr evi.evar_concl in let ctx1, i = Reduction.dest_arity evienv concl1 in let ctx1 = List.map (fun c -> map_rel_decl EConstr.of_constr c) ctx1 in let evi2 = Evd.find evd evk2 in let evi2env = Evd.evar_env evi2 in let concl2 = EConstr.Unsafe.to_constr evi2.evar_concl in let ctx2, j = Reduction.dest_arity evi2env concl2 in let ctx2 = List.map (fun c -> map_rel_decl EConstr.of_constr c) ctx2 in let ui, uj = univ_of_sort i, univ_of_sort j in if i == j || Evd.check_eq evd ui uj then (* Shortcut, i = j *) evd else if Evd.check_leq evd ui uj then let t2 = it_mkProd_or_LetIn (mkSort i) ctx2 in downcast evk2 t2 evd else if Evd.check_leq evd uj ui then let t1 = it_mkProd_or_LetIn (mkSort j) ctx1 in downcast evk1 t1 evd else let evd, k = Evd.new_sort_variable univ_flexible_alg evd in let t1 = it_mkProd_or_LetIn (mkSort k) ctx1 in let t2 = it_mkProd_or_LetIn (mkSort k) ctx2 in let evd = Evd.set_leq_sort env (Evd.set_leq_sort env evd k i) k j in downcast evk2 t2 (downcast evk1 t1 evd) with Reduction.NotArity -> evd in solve_evar_evar_aux force f unify flags env evd pbty ev1 ev2 (* Solve pbs ?e[t1..tn] = ?e[u1..un] which arise often in fixpoint * definitions. We try to unify the ti with the ui pairwise. The pairs * that don't unify are discarded (i.e. ?e is redefined so that it does not * depend on these args). *) let solve_refl ?(can_drop=false) unify flags env evd pbty evk argsv1 argsv2 = let evdref = ref evd in let eq_constr c1 c2 = match EConstr.eq_constr_universes env !evdref c1 c2 with | None -> false | Some cstr -> try evdref := Evd.add_universe_constraints !evdref cstr; true with UniversesDiffer -> false in if Array.equal eq_constr argsv1 argsv2 then !evdref else (* Filter and restrict if needed *) let args = Array.map2 (fun a1 a2 -> (a1, a2)) argsv1 argsv2 in let untypedfilter = restrict_upon_filter evd evk (fun (a1,a2) -> unify flags TermUnification env evd Reduction.CONV a1 a2) args in let candidates = filter_candidates evd evk untypedfilter NoUpdate in let filter = closure_of_filter evd evk untypedfilter in let evd',ev1 = restrict_applied_evar evd (evk,argsv1) filter candidates in let frozen = Evar.Set.mem evk flags.frozen_evars in if Evar.equal (fst ev1) evk && (frozen || can_drop) then (* No refinement needed *) evd' else (* either progress, or not allowed to drop, e.g. to preserve possibly *) (* informative equations such as ?e[x:=?y]=?e[x:=?y'] where we don't know *) (* if e can depend on x until ?y is not resolved, or, conversely, we *) (* don't know if ?y has to be unified with ?y, until e is resolved *) if frozen then (* We cannot prune a frozen evar *) add_conv_oriented_pb (pbty,env,mkEvar (evk, argsv1),mkEvar (evk,argsv2)) evd else let argsv2 = restrict_instance evd' evk filter argsv2 in let ev2 = (fst ev1,argsv2) in (* Leave a unification problem *) add_conv_oriented_pb (pbty,env,mkEvar ev1,mkEvar ev2) evd' (* If the evar can be instantiated by a finite set of candidates known in advance, we check which of them apply *) exception NoCandidates exception IncompatibleCandidates let solve_candidates unify flags env evd (evk,argsv) rhs = let evi = Evd.find evd evk in match evi.evar_candidates with | None -> raise NoCandidates | Some l -> let l' = List.map_filter (fun c -> filter_compatible_candidates unify flags env evd evi argsv rhs c) l in match l' with | [] -> raise IncompatibleCandidates | [c,evd] -> (* solve_candidates might have been called recursively in the mean *) (* time and the evar been solved by the filtering process *) if Evd.is_undefined evd evk then let evd' = Evd.define evk c evd in check_evar_instance unify flags evd' evk c else evd | l when List.length l < List.length l' -> let candidates = List.map fst l in restrict_evar evd evk None (UpdateWith candidates) | l -> evd let occur_evar_upto_types sigma n c = let c = EConstr.Unsafe.to_constr c in let seen = ref Evar.Set.empty in (* FIXME: Is that supposed to be evar-insensitive? *) let rec occur_rec c = match Constr.kind c with | Evar (sp,_) when Evar.equal sp n -> raise Occur | Evar (sp,args as e) -> if Evar.Set.mem sp !seen then Array.iter occur_rec args else ( seen := Evar.Set.add sp !seen; Option.iter occur_rec (existential_opt_value0 sigma e); occur_rec (Evd.existential_type0 sigma e)) | _ -> Constr.iter occur_rec c in try occur_rec c; false with Occur -> true let instantiate_evar unify flags evd evk body = (* Check instance freezing the evar to be defined, as checking could involve the same evar definition problem again otherwise *) let flags = { flags with frozen_evars = Evar.Set.add evk flags.frozen_evars } in let evd' = check_evar_instance unify flags evd evk body in Evd.define evk body evd' (* We try to instantiate the evar assuming the body won't depend * on arguments that are not Rels or Vars, or appearing several times * (i.e. we tackle a generalization of Miller-Pfenning patterns unification) * * 1) Let "env |- ?ev[hyps:=args] = rhs" be the unification problem * 2) We limit it to a patterns unification problem "env |- ev[subst] = rhs" * where only Rel's and Var's are relevant in subst * 3) We recur on rhs, "imitating" the term, and failing if some Rel/Var is * not in the scope of ?ev. For instance, the problem * "y:nat |- ?x[] = y" where "|- ?1:nat" is not satisfiable because * ?1 would be instantiated by y which is not in the scope of ?1. * 4) We try to "project" the term if the process of imitation fails * and that only one projection is possible * * Note: we don't assume rhs in normal form, it may fail while it would * have succeeded after some reductions. * * This is the work of [invert_definition Γ Σ ?ev[hyps:=args] c] * Precondition: Σ; Γ, y1..yk |- c /\ Σ; Γ |- u1..un * Postcondition: if φ(x1..xn) is returned then * Σ; Γ, y1..yk |- φ(u1..un) = c /\ x1..xn |- φ(x1..xn) *) exception NotInvertibleUsingOurAlgorithm of EConstr.constr exception NotEnoughInformationToProgress of (Id.t * evar_projection) list exception NotEnoughInformationEvarEvar of EConstr.constr exception OccurCheckIn of evar_map * EConstr.constr exception MetaOccurInBodyInternal let rec invert_definition unify flags choose imitate_defs env evd pbty (evk,argsv as ev) rhs = let aliases = make_alias_map env evd in let evdref = ref evd in let progress = ref false in let evi = Evd.find evd evk in let subst,cstr_subst = make_projectable_subst aliases evd evi argsv in (* Projection *) let project_variable t = (* Evar/Var problem: unifiable iff variable projectable from ev subst *) try let sols = find_projectable_vars true aliases !evdref t subst in let c, p = match sols with | [] -> raise Not_found | [id,p] -> (mkVar id, p) | (id,p)::_ -> if choose then (mkVar id, p) else raise (NotUniqueInType sols) in let ty = lazy (Retyping.get_type_of env !evdref (of_alias t)) in let evd = do_projection_effects unify flags (evar_define unify flags ~choose) env ty !evdref p in evdref := evd; c with | Not_found -> raise (NotInvertibleUsingOurAlgorithm (of_alias t)) | NotUniqueInType sols -> if not !progress then raise (NotEnoughInformationToProgress sols); (* No unique projection but still restrict to where it is possible *) (* materializing is necessary, but is restricting useful? *) let ty = find_solution_type (evar_filtered_env evi) sols in let ty' = instantiate_evar_array evi ty argsv in let (evd,evar,(evk',argsv' as ev')) = materialize_evar (evar_define unify flags ~choose) env !evdref 0 ev ty' in let ts = expansions_of_var evd aliases t in let test c = isEvar evd c || List.exists (is_alias evd c) ts in let filter = restrict_upon_filter evd evk test argsv' in let filter = closure_of_filter evd evk' filter in let candidates = extract_candidates sols in let evd = match candidates with | NoUpdate -> let evd, ev'' = restrict_applied_evar evd ev' filter NoUpdate in add_conv_oriented_pb ~tail:false (None,env,mkEvar ev'',of_alias t) evd | UpdateWith _ -> restrict_evar evd evk' filter candidates in evdref := evd; evar in let rec imitate (env',k as envk) t = match EConstr.kind !evdref t with | Rel i when i>k -> let open Context.Rel.Declaration in (match Environ.lookup_rel (i-k) env' with | LocalAssum _ -> project_variable (RelAlias (i-k)) | LocalDef (_,b,_) -> try project_variable (RelAlias (i-k)) with NotInvertibleUsingOurAlgorithm _ when imitate_defs -> imitate envk (lift i (EConstr.of_constr b))) | Var id -> (match Environ.lookup_named id env' with | LocalAssum _ -> project_variable (VarAlias id) | LocalDef (_,b,_) -> try project_variable (VarAlias id) with NotInvertibleUsingOurAlgorithm _ when imitate_defs -> imitate envk (EConstr.of_constr b)) | LetIn (na,b,u,c) -> imitate envk (subst1 b c) | Evar (evk',args' as ev') -> if Evar.equal evk evk' then raise (OccurCheckIn (evd,rhs)); (* Evar/Evar problem (but left evar is virtual) *) let aliases = lift_aliases k aliases in (try let ev = (evk,Array.map (lift k) argsv) in let evd,body = project_evar_on_evar false unify flags env' !evdref aliases k None ev' ev in evdref := evd; body with | EvarSolvedOnTheFly (evd,t) -> evdref:=evd; imitate envk t | CannotProject (evd,ev') -> if not !progress then raise (NotEnoughInformationEvarEvar t); (* Make the virtual left evar real *) let ty = get_type_of env' evd t in let (evd,evar'',ev'') = materialize_evar (evar_define unify flags ~choose) env' evd k ev ty in (* materialize_evar may instantiate ev' by another evar; adjust it *) let (evk',args' as ev') = normalize_evar evd ev' in let evd = (* Try to project (a restriction of) the left evar ... *) try let evd,body = project_evar_on_evar false unify flags env' evd aliases 0 None ev'' ev' in let evd = Evd.define evk' body evd in check_evar_instance unify flags evd evk' body with | EvarSolvedOnTheFly _ -> assert false (* ev has no candidates *) | CannotProject (evd,ev'') -> (* ... or postpone the problem *) add_conv_oriented_pb (None,env',mkEvar ev'',mkEvar ev') evd in evdref := evd; evar'') | _ -> progress := true; match let c,args = decompose_app_vect !evdref t in match EConstr.kind !evdref c with | Construct (cstr,u) when noccur_between !evdref 1 k t -> (* This is common case when inferring the return clause of match *) (* (currently rudimentary: we do not treat the case of multiple *) (* possible inversions; we do not treat overlap with a possible *) (* alternative inversion of the subterms of the constructor, etc)*) (match find_projectable_constructor env evd cstr k args cstr_subst with | _::_ as l -> Some (List.map mkVar l) | _ -> None) | _ -> None with | Some l -> let ty = get_type_of env' !evdref t in let candidates = try let t = map_constr_with_full_binders !evdref (fun d (env,k) -> push_rel d env, k+1) imitate envk t in (* Less dependent solutions come last *) l@[t] with e when CErrors.noncritical e -> l in (match candidates with | [x] -> x | _ -> let (evd,evar'',ev'') = materialize_evar (evar_define unify flags ~choose) env' !evdref k ev ty in evdref := restrict_evar evd (fst ev'') None (UpdateWith candidates); evar'') | None -> (* Evar/Rigid problem (or assimilated if not normal): we "imitate" *) map_constr_with_full_binders !evdref (fun d (env,k) -> push_rel d env, k+1) imitate envk t in let rhs = whd_beta evd rhs (* heuristic *) in let fast rhs = let filter_ctxt = evar_filtered_context evi in let names = ref Id.Set.empty in let rec is_id_subst ctxt s = match ctxt, s with | (decl :: ctxt'), (c :: s') -> let id = get_id decl in names := Id.Set.add id !names; isVarId evd id c && is_id_subst ctxt' s' | [], [] -> true | _ -> false in is_id_subst filter_ctxt (Array.to_list argsv) && closed0 evd rhs && Id.Set.subset (collect_vars evd rhs) !names in let body = if fast rhs then nf_evar evd rhs (* FIXME? *) else let t' = imitate (env,0) rhs in if !progress then (recheck_applications unify flags (evar_env evi) evdref t'; t') else t' in (!evdref,body) (* [define] tries to solve the problem "?ev[args] = rhs" when "?ev" is * an (uninstantiated) evar such that "hyps |- ?ev : typ". Otherwise said, * [define] tries to find an instance lhs such that * "lhs [hyps:=args]" unifies to rhs. The term "lhs" must be closed in * context "hyps" and not referring to itself. * ev is assumed not to be frozen. *) and evar_define unify flags ?(choose=false) ?(imitate_defs=true) env evd pbty (evk,argsv as ev) rhs = match EConstr.kind evd rhs with | Evar (evk2,argsv2 as ev2) -> if Evar.equal evk evk2 then solve_refl ~can_drop:choose (test_success unify) flags env evd pbty evk argsv argsv2 else solve_evar_evar ~force:choose (evar_define unify flags) unify flags env evd pbty ev ev2 | _ -> try solve_candidates unify flags env evd ev rhs with NoCandidates -> try let (evd',body) = invert_definition unify flags choose imitate_defs env evd pbty ev rhs in if occur_meta evd' body then raise MetaOccurInBodyInternal; (* invert_definition may have instantiate some evars of rhs with evk *) (* so we recheck acyclicity *) if occur_evar_upto_types evd' evk body then raise (OccurCheckIn (evd',body)); (* needed only if an inferred type *) let evd', body = refresh_universes pbty env evd' body in instantiate_evar unify flags evd' evk body with | NotEnoughInformationToProgress sols -> postpone_non_unique_projection env evd pbty ev sols rhs | NotEnoughInformationEvarEvar t -> add_conv_oriented_pb (pbty,env,mkEvar ev,t) evd | MorePreciseOccurCheckNeeeded -> add_conv_oriented_pb (pbty,env,mkEvar ev,rhs) evd | NotInvertibleUsingOurAlgorithm _ | MetaOccurInBodyInternal as e -> raise e | OccurCheckIn (evd,rhs) -> (* last chance: rhs actually reduces to ev *) let c = whd_all env evd rhs in match EConstr.kind evd c with | Evar (evk',argsv2) when Evar.equal evk evk' -> solve_refl (fun flags _b env sigma pb c c' -> is_fconv pb env sigma c c') flags env evd pbty evk argsv argsv2 | _ -> raise (OccurCheckIn (evd,rhs)) (* This code (i.e. solve_pb, etc.) takes a unification * problem, and tries to solve it. If it solves it, then it removes * all the conversion problems, and re-runs conversion on each one, in * the hopes that the new solution will aid in solving them. * * The kinds of problems it knows how to solve are those in which * the usable arguments of an existential var are all themselves * universal variables. * The solution to this problem is to do renaming for the Var's, * to make them match up with the Var's which are found in the * hyps of the existential, to do a "pop" for each Rel which is * not an argument of the existential, and a subst1 for each which * is, again, with the corresponding variable. This is done by * define * * Thus, we take the arguments of the existential which we are about * to assign, and zip them with the identifiers in the hypotheses. * Then, we process all the Var's in the arguments, and sort the * Rel's into ascending order. Then, we just march up, doing * subst1's and pop's. * * NOTE: We can do this more efficiently for the relative arguments, * by building a long substituend by hand, but this is a pain in the * ass. *) let status_changed evd lev (pbty,_,t1,t2) = (try Evar.Set.mem (head_evar evd t1) lev with NoHeadEvar -> false) || (try Evar.Set.mem (head_evar evd t2) lev with NoHeadEvar -> false) let reconsider_unif_constraints unify flags evd = let (evd,pbs) = extract_changed_conv_pbs evd (status_changed evd) in List.fold_left (fun p (pbty,env,t1,t2 as x) -> match p with | Success evd -> (match unify flags TermUnification env evd pbty t1 t2 with | Success _ as x -> x | UnifFailure (i,e) -> UnifFailure (i,CannotSolveConstraint (x,e))) | UnifFailure _ as x -> x) (Success evd) pbs (* Tries to solve problem t1 = t2. * Precondition: t1 is an uninstantiated evar * Returns an optional list of evars that were instantiated, or None * if the problem couldn't be solved. *) (* Rq: incomplete algorithm if pbty = CONV_X_LEQ ! *) let solve_simple_eqn unify flags ?(choose=false) ?(imitate_defs=true) env evd (pbty,(evk1,args1 as ev1),t2) = try let t2 = whd_betaiota evd t2 in (* includes whd_evar *) let evd = evar_define unify flags ~choose ~imitate_defs env evd pbty ev1 t2 in reconsider_unif_constraints unify flags evd with | NotInvertibleUsingOurAlgorithm t -> UnifFailure (evd,NotClean (ev1,env,t)) | OccurCheckIn (evd,rhs) -> UnifFailure (evd,OccurCheck (evk1,rhs)) | MetaOccurInBodyInternal -> UnifFailure (evd,MetaOccurInBody evk1) | IllTypedInstance (env,t,u) -> UnifFailure (evd,InstanceNotSameType (evk1,env,t,u)) | IncompatibleCandidates -> UnifFailure (evd,ConversionFailed (env,mkEvar ev1,t2))