1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Sorts open Util open Pp open Names open Constr open Context open Termops open EConstr open Vars open Namegen open Evd open Evarutil open Evar_kinds open Pretype_errors module RelDecl = Context.Rel.Declaration let env_nf_evar sigma env = let nf_evar c = nf_evar sigma c in process_rel_context (fun d e -> push_rel (RelDecl.map_constr nf_evar d) e) env let env_nf_betaiotaevar sigma env = process_rel_context (fun d env -> push_rel (RelDecl.map_constr (fun c -> Reductionops.nf_betaiota env sigma c) d) env) env (****************************************) (* Operations on value/type constraints *) (****************************************) type type_constraint = EConstr.types option type val_constraint = EConstr.constr option (* Old comment... * Basically, we have the following kind of constraints (in increasing * strength order): * (false,(None,None)) -> no constraint at all * (true,(None,None)) -> we must build a judgement which _TYPE is a kind * (_,(None,Some ty)) -> we must build a judgement which _TYPE is ty * (_,(Some v,_)) -> we must build a judgement which _VAL is v * Maybe a concrete datatype would be easier to understand. * We differentiate (true,(None,None)) from (_,(None,Some Type)) * because otherwise Case(s) would be misled, as in * (n:nat) Case n of bool [_]nat end would infer the predicate Type instead * of Set. *) (* The empty type constraint *) let empty_tycon = None (* Builds a type constraint *) let mk_tycon ty = Some ty (* Constrains the value of a type *) let empty_valcon = None (* Builds a value constraint *) let mk_valcon c = Some c let idx = Namegen.default_dependent_ident (* Refining an evar to a product *) let define_pure_evar_as_product env evd evk = let open Context.Named.Declaration in let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let id = next_ident_away idx (Environ.ids_of_named_context_val evi.evar_hyps) in let concl = Reductionops.whd_all evenv evd evi.evar_concl in let s = destSort evd concl in let evksrc = evar_source evk evd in let src = subterm_source evk ~where:Domain evksrc in let evd1,(dom,u1) = new_type_evar evenv evd univ_flexible_alg ~src ~filter:(evar_filter evi) in let rdom = Sorts.Relevant in (* TODO relevance *) let evd2,rng = let newenv = push_named (LocalAssum (make_annot id rdom, dom)) evenv in let src = subterm_source evk ~where:Codomain evksrc in let filter = Filter.extend 1 (evar_filter evi) in if Environ.is_impredicative_sort env (ESorts.kind evd1 s) then (* Impredicative product, conclusion must fall in [Prop]. *) new_evar newenv evd1 concl ~src ~filter else let status = univ_flexible_alg in let evd3, (rng, srng) = new_type_evar newenv evd1 status ~src ~filter in let prods = Univ.sup (univ_of_sort u1) (univ_of_sort srng) in let evd3 = Evd.set_leq_sort evenv evd3 (Sorts.sort_of_univ prods) (ESorts.kind evd1 s) in evd3, rng in let prod = mkProd (make_annot (Name id) rdom, dom, subst_var id rng) in let evd3 = Evd.define evk prod evd2 in evd3,prod (* Refine an applied evar to a product and returns its instantiation *) let define_evar_as_product env evd (evk,args) = let evd,prod = define_pure_evar_as_product env evd evk in (* Quick way to compute the instantiation of evk with args *) let na,dom,rng = destProd evd prod in let evdom = mkEvar (fst (destEvar evd dom), args) in let evrngargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in let evrng = mkEvar (fst (destEvar evd rng), evrngargs) in evd, mkProd (na, evdom, evrng) (* Refine an evar with an abstraction I.e., solve x1..xq |- ?e:T(x1..xq) with e:=λy:A.?e'[x1..xq,y] where: - either T(x1..xq) = πy:A(x1..xq).B(x1..xq,y) or T(x1..xq) = ?d[x1..xq] and we define ?d := πy:?A.?B with x1..xq |- ?A:Type and x1..xq,y |- ?B:Type - x1..xq,y:A |- ?e':B *) let define_pure_evar_as_lambda env evd evk = let open Context.Named.Declaration in let evi = Evd.find_undefined evd evk in let evenv = evar_env evi in let typ = Reductionops.whd_all evenv evd (evar_concl evi) in let evd1,(na,dom,rng) = match EConstr.kind evd typ with | Prod (na,dom,rng) -> (evd,(na,dom,rng)) | Evar ev' -> let evd,typ = define_evar_as_product env evd ev' in evd,destProd evd typ | _ -> error_not_product env evd typ in let avoid = Environ.ids_of_named_context_val evi.evar_hyps in let id = map_annot (fun na -> next_name_away_with_default_using_types "x" na avoid (Reductionops.whd_evar evd dom)) na in let newenv = push_named (LocalAssum (id, dom)) evenv in let filter = Filter.extend 1 (evar_filter evi) in let src = subterm_source evk ~where:Body (evar_source evk evd1) in let abstract_arguments = Abstraction.abstract_last evi.evar_abstract_arguments in let evd2,body = new_evar newenv evd1 ~src (subst1 (mkVar id.binder_name) rng) ~filter ~abstract_arguments in let lam = mkLambda (map_annot Name.mk_name id, dom, subst_var id.binder_name body) in Evd.define evk lam evd2, lam let define_evar_as_lambda env evd (evk,args) = let evd,lam = define_pure_evar_as_lambda env evd evk in (* Quick way to compute the instantiation of evk with args *) let na,dom,body = destLambda evd lam in let evbodyargs = Array.cons (mkRel 1) (Array.map (lift 1) args) in let evbody = mkEvar (fst (destEvar evd body), evbodyargs) in evd, mkLambda (na, dom, evbody) let rec evar_absorb_arguments env evd (evk,args as ev) = function | [] -> evd,ev | a::l -> (* TODO: optimize and avoid introducing intermediate evars *) let evd,lam = define_pure_evar_as_lambda env evd evk in let _,_,body = destLambda evd lam in let evk = fst (destEvar evd body) in evar_absorb_arguments env evd (evk, Array.cons a args) l (* Refining an evar to a sort *) let define_evar_as_sort env evd (ev,args) = let evd, s = new_sort_variable univ_rigid evd in let evi = Evd.find_undefined evd ev in let concl = Reductionops.whd_all (evar_env evi) evd evi.evar_concl in let sort = destSort evd concl in let evd' = Evd.define ev (mkSort s) evd in Evd.set_leq_sort env evd' (Sorts.super s) (ESorts.kind evd' sort), s (* Propagation of constraints through application and abstraction: Given a type constraint on a functional term, returns the type constraint on its domain and codomain. If the input constraint is an evar instantiate it with the product of 2 new evars. *) let split_tycon ?loc env evd tycon = let rec real_split evd c = let t = Reductionops.whd_all env evd c in match EConstr.kind evd t with | Prod (na,dom,rng) -> evd, (na, dom, rng) | Evar ev (* ev is undefined because of whd_all *) -> let (evd',prod) = define_evar_as_product env evd ev in let (na,dom,rng) = destProd evd prod in let anon = {na with binder_name = Anonymous} in evd',(anon, dom, rng) | App (c,args) when isEvar evd c -> let (evd',lam) = define_evar_as_lambda env evd (destEvar evd c) in real_split evd' (mkApp (lam,args)) | _ -> error_not_product ?loc env evd c in match tycon with | None -> evd,(make_annot Anonymous Relevant,None,None) | Some c -> let evd', (n, dom, rng) = real_split evd c in evd', (n, mk_tycon dom, mk_tycon rng) let valcon_of_tycon x = x let lift_tycon n = Option.map (lift n) let pr_tycon env sigma = function None -> str "None" | Some t -> Termops.Internal.print_constr_env env sigma t