1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Hugo Herbelin for Coq V7 by isolating the coercion mechanism out of the type inference algorithm in file trad.ml from Coq V6.3, Nov 1999; The coercion mechanism was implemented in trad.ml by Amokrane Saïbi, May 1996 *) (* Addition of products and sorts in canonical structures by Pierre Corbineau, Feb 2008 *) (* Turned into an abstract compilation unit by Matthieu Sozeau, March 2006 *) open CErrors open Util open Names open Term open Constr open Context open Environ open EConstr open Vars open Reductionops open Pretype_errors open Classops open Evarutil open Evarconv open Evd open Termops open Globnames let get_use_typeclasses_for_conversion = Goptions.declare_bool_option_and_ref ~depr:false ~name:"use typeclass resolution during conversion" ~key:["Typeclass"; "Resolution"; "For"; "Conversion"] ~value:true (* Typing operations dealing with coercions *) exception NoCoercion exception NoCoercionNoUnifier of evar_map * unification_error (* Here, funj is a coercion therefore already typed in global context *) let apply_coercion_args env sigma check isproj argl funj = let rec apply_rec sigma acc typ = function | [] -> (match isproj with | Some p -> let npars = Projection.Repr.npars p in let p = Projection.make p false in let args = List.skipn npars argl in let hd, tl = match args with hd :: tl -> hd, tl | [] -> assert false in sigma, { uj_val = applist (mkProj (p, hd), tl); uj_type = typ } | None -> sigma, { uj_val = applist (j_val funj,argl); uj_type = typ }) | h::restl -> (* On devrait pouvoir s'arranger pour qu'on n'ait pas a faire hnf_constr *) match EConstr.kind sigma (whd_all env sigma typ) with | Prod (_,c1,c2) -> let sigma = if check then begin match Evarconv.unify_leq_delay env sigma (Retyping.get_type_of env sigma h) c1 with | exception Evarconv.UnableToUnify _ -> raise NoCoercion | sigma -> sigma end else sigma in apply_rec sigma (h::acc) (subst1 h c2) restl | _ -> anomaly (Pp.str "apply_coercion_args.") in apply_rec sigma [] funj.uj_type argl (* appliquer le chemin de coercions de patterns p *) let apply_pattern_coercion ?loc pat p = List.fold_left (fun pat (co,n) -> let f i = if i<n then (DAst.make ?loc @@ Glob_term.PatVar Anonymous) else pat in DAst.make ?loc @@ Glob_term.PatCstr (co, List.init (n+1) f, Anonymous)) pat p (* raise Not_found if no coercion found *) let inh_pattern_coerce_to ?loc env pat ind1 ind2 = let p = lookup_pattern_path_between env (ind1,ind2) in apply_pattern_coercion ?loc pat p (* Program coercions *) open Program let make_existential ?loc ?(opaque = not (get_proofs_transparency ())) na env evdref c = let src = Loc.tag ?loc (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=Evar_kinds.Define opaque; Evar_kinds.qm_name=na; }) in let evd, v = Evarutil.new_evar env !evdref ~src c in let evd = Evd.set_obligation_evar evd (fst (destEvar evd v)) in evdref := evd; v let app_opt env evdref f t = whd_betaiota !evdref (app_opt f t) let pair_of_array a = (a.(0), a.(1)) let disc_subset sigma x = match EConstr.kind sigma x with | App (c, l) -> (match EConstr.kind sigma c with Ind (i,_) -> let len = Array.length l in let sigty = delayed_force sig_typ in if Int.equal len 2 && eq_ind i (Globnames.destIndRef sigty) then let (a, b) = pair_of_array l in Some (a, b) else None | _ -> None) | _ -> None exception NoSubtacCoercion let hnf env evd c = whd_all env evd c let hnf_nodelta env evd c = whd_betaiota evd c let lift_args n sign = let rec liftrec k = function | t::sign -> liftn n k t :: (liftrec (k-1) sign) | [] -> [] in liftrec (List.length sign) sign let mu env evdref t = let rec aux v = let v' = hnf env !evdref v in match disc_subset !evdref v' with | Some (u, p) -> let f, ct = aux u in let p = hnf_nodelta env !evdref p in (Some (fun x -> app_opt env evdref f (papp evdref sig_proj1 [| u; p; x |])), ct) | None -> (None, v) in aux t and coerce ?loc env evdref (x : EConstr.constr) (y : EConstr.constr) : (EConstr.constr -> EConstr.constr) option = let open Context.Rel.Declaration in let rec coerce_unify env x y = let x = hnf env !evdref x and y = hnf env !evdref y in try evdref := Evarconv.unify_leq_delay env !evdref x y; None with UnableToUnify _ -> coerce' env x y and coerce' env x y : (EConstr.constr -> EConstr.constr) option = let subco () = subset_coerce env evdref x y in let dest_prod c = match Reductionops.splay_prod_n env (!evdref) 1 c with | [LocalAssum (na,t) | LocalDef (na,_,t)], c -> (na, t), c | _ -> raise NoSubtacCoercion in let coerce_application typ typ' c c' l l' = let len = Array.length l in let rec aux tele typ typ' i co = if i < len then let hdx = l.(i) and hdy = l'.(i) in try evdref := unify_leq_delay env !evdref hdx hdy; let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in aux (hdx :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) co with UnableToUnify _ -> let (n, eqT), restT = dest_prod typ in let (n', eqT'), restT' = dest_prod typ' in let () = try evdref := unify_leq_delay env !evdref eqT eqT' with UnableToUnify _ -> raise NoSubtacCoercion in (* Disallow equalities on arities *) if Reductionops.is_arity env !evdref eqT then raise NoSubtacCoercion; let restargs = lift_args 1 (List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i))))) in let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in let pred = mkLambda (n, eqT, applist (lift 1 c, args)) in let eq = papp evdref coq_eq_ind [| eqT; hdx; hdy |] in let evar = make_existential ?loc n.binder_name env evdref eq in let eq_app x = papp evdref coq_eq_rect [| eqT; hdx; pred; x; hdy; evar|] in aux (hdy :: tele) (subst1 hdx restT) (subst1 hdy restT') (succ i) (fun x -> eq_app (co x)) else Some (fun x -> let term = co x in let sigma, term = Typing.solve_evars env !evdref term in evdref := sigma; term) in if isEvar !evdref c || isEvar !evdref c' || not (Program.is_program_generalized_coercion ()) then (* Second-order unification needed. *) raise NoSubtacCoercion; aux [] typ typ' 0 (fun x -> x) in match (EConstr.kind !evdref x, EConstr.kind !evdref y) with | Sort s, Sort s' -> (match ESorts.kind !evdref s, ESorts.kind !evdref s' with | Prop, Prop | Set, Set -> None | (Prop | Set), Type _ -> None | Type x, Type y when Univ.Universe.equal x y -> None (* false *) | _ -> subco ()) | Prod (name, a, b), Prod (name', a', b') -> let name' = {name' with binder_name = Name (Namegen.next_ident_away Namegen.default_dependent_ident (Termops.vars_of_env env))} in let env' = push_rel (LocalAssum (name', a')) env in let c1 = coerce_unify env' (lift 1 a') (lift 1 a) in (* env, x : a' |- c1 : lift 1 a' > lift 1 a *) let coec1 = app_opt env' evdref c1 (mkRel 1) in (* env, x : a' |- c1[x] : lift 1 a *) let c2 = coerce_unify env' (subst1 coec1 (liftn 1 2 b)) b' in (* env, x : a' |- c2 : b[c1[x]/x]] > b' *) (match c1, c2 with | None, None -> None | _, _ -> Some (fun f -> mkLambda (name', a', app_opt env' evdref c2 (mkApp (lift 1 f, [| coec1 |]))))) | App (c, l), App (c', l') -> (match EConstr.kind !evdref c, EConstr.kind !evdref c' with Ind (i, u), Ind (i', u') -> (* Inductive types *) let len = Array.length l in let sigT = delayed_force sigT_typ in let prod = delayed_force prod_typ in (* Sigma types *) if Int.equal len (Array.length l') && Int.equal len 2 && eq_ind i i' && (eq_ind i (destIndRef sigT) || eq_ind i (destIndRef prod)) then if eq_ind i (destIndRef sigT) then begin let (a, pb), (a', pb') = pair_of_array l, pair_of_array l' in let c1 = coerce_unify env a a' in let remove_head a c = match EConstr.kind !evdref c with | Lambda (n, t, t') -> c, t' | Evar (k, args) -> let (evs, t) = Evardefine.define_evar_as_lambda env !evdref (k,args) in evdref := evs; let (n, dom, rng) = destLambda !evdref t in if isEvar !evdref dom then let (domk, args) = destEvar !evdref dom in evdref := define domk a !evdref; else (); t, rng | _ -> raise NoSubtacCoercion in let (pb, b), (pb', b') = remove_head a pb, remove_head a' pb' in let ra = Retyping.relevance_of_type env !evdref a in let env' = push_rel (LocalAssum (make_annot (Name Namegen.default_dependent_ident) ra, a)) env in let c2 = coerce_unify env' b b' in match c1, c2 with | None, None -> None | _, _ -> Some (fun x -> let x, y = app_opt env' evdref c1 (papp evdref sigT_proj1 [| a; pb; x |]), app_opt env' evdref c2 (papp evdref sigT_proj2 [| a; pb; x |]) in papp evdref sigT_intro [| a'; pb'; x ; y |]) end else begin let (a, b), (a', b') = pair_of_array l, pair_of_array l' in let c1 = coerce_unify env a a' in let c2 = coerce_unify env b b' in match c1, c2 with | None, None -> None | _, _ -> Some (fun x -> let x, y = app_opt env evdref c1 (papp evdref prod_proj1 [| a; b; x |]), app_opt env evdref c2 (papp evdref prod_proj2 [| a; b; x |]) in papp evdref prod_intro [| a'; b'; x ; y |]) end else if eq_ind i i' && Int.equal len (Array.length l') then let evm = !evdref in (try subco () with NoSubtacCoercion -> let typ = Typing.unsafe_type_of env evm c in let typ' = Typing.unsafe_type_of env evm c' in coerce_application typ typ' c c' l l') else subco () | x, y when EConstr.eq_constr !evdref c c' -> if Int.equal (Array.length l) (Array.length l') then let evm = !evdref in let lam_type = Typing.unsafe_type_of env evm c in let lam_type' = Typing.unsafe_type_of env evm c' in coerce_application lam_type lam_type' c c' l l' else subco () | _ -> subco ()) | _, _ -> subco () and subset_coerce env evdref x y = match disc_subset !evdref x with Some (u, p) -> let c = coerce_unify env u y in let f x = app_opt env evdref c (papp evdref sig_proj1 [| u; p; x |]) in Some f | None -> match disc_subset !evdref y with Some (u, p) -> let c = coerce_unify env x u in Some (fun x -> let cx = app_opt env evdref c x in let evar = make_existential ?loc Anonymous env evdref (mkApp (p, [| cx |])) in (papp evdref sig_intro [| u; p; cx; evar |])) | None -> raise NoSubtacCoercion in coerce_unify env x y let app_coercion env evdref coercion v = match coercion with | None -> v | Some f -> let sigma, v' = Typing.solve_evars env !evdref (f v) in evdref := sigma; whd_betaiota !evdref v' let coerce_itf ?loc env evd v t c1 = let evdref = ref evd in let coercion = coerce ?loc env evdref t c1 in let t = Option.map (app_coercion env evdref coercion) v in !evdref, t let saturate_evd env evd = Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~split:true ~fail:false env evd (* Apply coercion path from p to hj; raise NoCoercion if not applicable *) let apply_coercion env sigma p hj typ_cl = try let j,t,evd = List.fold_left (fun (ja,typ_cl,sigma) i -> let isid = i.coe_is_identity in let isproj = i.coe_is_projection in let sigma, c = new_global sigma i.coe_value in let typ = Retyping.get_type_of env sigma c in let fv = make_judge c typ in let argl = (class_args_of env sigma typ_cl)@[ja.uj_val] in let sigma, jres = apply_coercion_args env sigma true isproj argl fv in (if isid then { uj_val = ja.uj_val; uj_type = jres.uj_type } else jres), jres.uj_type,sigma) (hj,typ_cl,sigma) p in evd, j with NoCoercion as e -> raise e (* Try to coerce to a funclass; raise NoCoercion if not possible *) let inh_app_fun_core ~program_mode env evd j = let t = whd_all env evd j.uj_type in match EConstr.kind evd t with | Prod _ -> (evd,j) | Evar ev -> let (evd',t) = Evardefine.define_evar_as_product env evd ev in (evd',{ uj_val = j.uj_val; uj_type = t }) | _ -> try let t,p = lookup_path_to_fun_from env evd j.uj_type in apply_coercion env evd p j t with Not_found | NoCoercion -> if program_mode then try let evdref = ref evd in let coercef, t = mu env evdref t in let res = { uj_val = app_opt env evdref coercef j.uj_val; uj_type = t } in (!evdref, res) with NoSubtacCoercion | NoCoercion -> (evd,j) else raise NoCoercion (* Try to coerce to a funclass; returns [j] if no coercion is applicable *) let inh_app_fun ~program_mode resolve_tc env evd j = try inh_app_fun_core ~program_mode env evd j with | NoCoercion when not resolve_tc || not (get_use_typeclasses_for_conversion ()) -> (evd, j) | NoCoercion -> try inh_app_fun_core ~program_mode env (saturate_evd env evd) j with NoCoercion -> (evd, j) let type_judgment env sigma j = match EConstr.kind sigma (whd_all env sigma j.uj_type) with | Sort s -> {utj_val = j.uj_val; utj_type = ESorts.kind sigma s } | _ -> error_not_a_type env sigma j let inh_tosort_force ?loc env evd j = try let t,p = lookup_path_to_sort_from env evd j.uj_type in let evd,j1 = apply_coercion env evd p j t in let j2 = Environ.on_judgment_type (whd_evar evd) j1 in (evd,type_judgment env evd j2) with Not_found | NoCoercion -> error_not_a_type ?loc env evd j let inh_coerce_to_sort ?loc env evd j = let typ = whd_all env evd j.uj_type in match EConstr.kind evd typ with | Sort s -> (evd,{ utj_val = j.uj_val; utj_type = ESorts.kind evd s }) | Evar ev -> let (evd',s) = Evardefine.define_evar_as_sort env evd ev in (evd',{ utj_val = j.uj_val; utj_type = s }) | _ -> inh_tosort_force ?loc env evd j let inh_coerce_to_base ?loc ~program_mode env evd j = if program_mode then let evdref = ref evd in let ct, typ' = mu env evdref j.uj_type in let res = { uj_val = (app_coercion env evdref ct j.uj_val); uj_type = typ' } in !evdref, res else (evd, j) let inh_coerce_to_prod ?loc ~program_mode env evd t = if program_mode then let evdref = ref evd in let _, typ' = mu env evdref t in !evdref, typ' else (evd, t) let inh_coerce_to_fail flags env evd rigidonly v t c1 = if rigidonly && not (Heads.is_rigid env (EConstr.Unsafe.to_constr c1) && Heads.is_rigid env (EConstr.Unsafe.to_constr t)) then raise NoCoercion else let evd, v', t' = try let t2,t1,p = lookup_path_between env evd (t,c1) in match v with | Some v -> let evd,j = apply_coercion env evd p {uj_val = v; uj_type = t} t2 in evd, Some j.uj_val, j.uj_type | None -> evd, None, t with Not_found -> raise NoCoercion in try (unify_leq_delay ~flags env evd t' c1, v') with UnableToUnify _ -> raise NoCoercion let default_flags_of env = default_flags_of TransparentState.full let rec inh_conv_coerce_to_fail ?loc env evd ?(flags=default_flags_of env) rigidonly v t c1 = try (unify_leq_delay ~flags env evd t c1, v) with UnableToUnify (best_failed_evd,e) -> try inh_coerce_to_fail flags env evd rigidonly v t c1 with NoCoercion -> match EConstr.kind evd (whd_all env evd t), EConstr.kind evd (whd_all env evd c1) with | Prod (name,t1,t2), Prod (_,u1,u2) -> (* Conversion did not work, we may succeed with a coercion. *) (* We eta-expand (hence possibly modifying the original term!) *) (* and look for a coercion c:u1->t1 s.t. fun x:u1 => v' (c x)) *) (* has type forall (x:u1), u2 (with v' recursively obtained) *) (* Note: we retype the term because template polymorphism may have *) (* weakened its type *) let name = map_annot (function | Anonymous -> Name Namegen.default_dependent_ident | na -> na) name in let open Context.Rel.Declaration in let env1 = push_rel (LocalAssum (name,u1)) env in let (evd', v1) = inh_conv_coerce_to_fail ?loc env1 evd rigidonly (Some (mkRel 1)) (lift 1 u1) (lift 1 t1) in let v1 = Option.get v1 in let v2 = Option.map (fun v -> beta_applist evd' (lift 1 v,[v1])) v in let t2 = match v2 with | None -> subst_term evd' v1 t2 | Some v2 -> Retyping.get_type_of env1 evd' v2 in let (evd'',v2') = inh_conv_coerce_to_fail ?loc env1 evd' rigidonly v2 t2 u2 in (evd'', Option.map (fun v2' -> mkLambda (name, u1, v2')) v2') | _ -> raise (NoCoercionNoUnifier (best_failed_evd,e)) (* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *) let inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc rigidonly flags env evd cj t = let (evd', val') = try inh_conv_coerce_to_fail ?loc env evd ~flags rigidonly (Some cj.uj_val) cj.uj_type t with NoCoercionNoUnifier (best_failed_evd,e) -> try if program_mode then coerce_itf ?loc env evd (Some cj.uj_val) cj.uj_type t else raise NoSubtacCoercion with | NoSubtacCoercion when not resolve_tc || not (get_use_typeclasses_for_conversion ()) -> error_actual_type ?loc env best_failed_evd cj t e | NoSubtacCoercion -> let evd' = saturate_evd env evd in try if evd' == evd then error_actual_type ?loc env best_failed_evd cj t e else inh_conv_coerce_to_fail ?loc env evd' rigidonly (Some cj.uj_val) cj.uj_type t with NoCoercionNoUnifier (_evd,_error) -> error_actual_type ?loc env best_failed_evd cj t e in let val' = match val' with Some v -> v | None -> assert(false) in (evd',{ uj_val = val'; uj_type = t }) let inh_conv_coerce_to ?loc ~program_mode resolve_tc env evd ?(flags=default_flags_of env) = inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc false flags env evd let inh_conv_coerce_rigid_to ?loc ~program_mode resolve_tc env evd ?(flags=default_flags_of env) = inh_conv_coerce_to_gen ?loc ~program_mode resolve_tc true flags env evd let inh_conv_coerces_to ?loc env evd ?(flags=default_flags_of env) t t' = try fst (inh_conv_coerce_to_fail ?loc env evd ~flags true None t t') with NoCoercion -> evd (* Maybe not enough information to unify *)