1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Pp open Names open Constr open Libnames open Globnames open Mod_subst (* usage qque peu general: utilise aussi dans record *) (* A class is a type constructor, its type is an arity whose number of arguments is cl_param (0 for CL_SORT and CL_FUN) *) type cl_typ = | CL_SORT | CL_FUN | CL_SECVAR of variable | CL_CONST of Constant.t | CL_IND of inductive | CL_PROJ of Projection.Repr.t type cl_info_typ = { cl_param : int } type coe_typ = GlobRef.t module CoeTypMap = GlobRef.Map_env type coe_info_typ = { coe_value : GlobRef.t; coe_local : bool; coe_is_identity : bool; coe_is_projection : Projection.Repr.t option; coe_param : int; } let coe_info_typ_equal c1 c2 = GlobRef.equal c1.coe_value c2.coe_value && c1.coe_local == c2.coe_local && c1.coe_is_identity == c2.coe_is_identity && c1.coe_is_projection == c2.coe_is_projection && Int.equal c1.coe_param c2.coe_param let cl_typ_ord t1 t2 = match t1, t2 with | CL_SECVAR v1, CL_SECVAR v2 -> Id.compare v1 v2 | CL_CONST c1, CL_CONST c2 -> Constant.CanOrd.compare c1 c2 | CL_PROJ c1, CL_PROJ c2 -> Projection.Repr.CanOrd.compare c1 c2 | CL_IND i1, CL_IND i2 -> ind_ord i1 i2 | _ -> pervasives_compare t1 t2 (** OK *) module ClTyp = struct type t = cl_typ let compare = cl_typ_ord end module ClTypMap = Map.Make(ClTyp) module IntMap = Map.Make(Int) let cl_typ_eq t1 t2 = Int.equal (cl_typ_ord t1 t2) 0 type inheritance_path = coe_info_typ list (* table des classes, des coercions et graphe d'heritage *) module Bijint : sig module Index : sig type t val compare : t -> t -> int val equal : t -> t -> bool val print : t -> Pp.t end type 'a t val empty : 'a t val mem : cl_typ -> 'a t -> bool val map : Index.t -> 'a t -> cl_typ * 'a val revmap : cl_typ -> 'a t -> Index.t * 'a val add : cl_typ -> 'a -> 'a t -> 'a t val dom : 'a t -> cl_typ list end = struct module Index = struct include Int let print = Pp.int end type 'a t = { v : (cl_typ * 'a) IntMap.t; s : int; inv : int ClTypMap.t } let empty = { v = IntMap.empty; s = 0; inv = ClTypMap.empty } let mem y b = ClTypMap.mem y b.inv let map x b = IntMap.find x b.v let revmap y b = let n = ClTypMap.find y b.inv in (n, snd (IntMap.find n b.v)) let add x y b = { v = IntMap.add b.s (x,y) b.v; s = b.s+1; inv = ClTypMap.add x b.s b.inv } let dom b = List.rev (ClTypMap.fold (fun x _ acc -> x::acc) b.inv []) end type cl_index = Bijint.Index.t let init_class_tab = let open Bijint in add CL_FUN { cl_param = 0 } (add CL_SORT { cl_param = 0 } empty) let class_tab = Summary.ref ~name:"class_tab" (init_class_tab : cl_info_typ Bijint.t) let coercion_tab = Summary.ref ~name:"coercion_tab" (CoeTypMap.empty : coe_info_typ CoeTypMap.t) module ClPairOrd = struct type t = cl_index * cl_index let compare (i1, j1) (i2, j2) = let c = Bijint.Index.compare i1 i2 in if Int.equal c 0 then Bijint.Index.compare j1 j2 else c end module ClPairMap = Map.Make(ClPairOrd) let inheritance_graph = Summary.ref ~name:"inheritance_graph" (ClPairMap.empty : inheritance_path ClPairMap.t) (* ajout de nouveaux "objets" *) let add_new_class cl s = if not (Bijint.mem cl !class_tab) then class_tab := Bijint.add cl s !class_tab let add_new_coercion coe s = coercion_tab := CoeTypMap.add coe s !coercion_tab let add_new_path x y = inheritance_graph := ClPairMap.add x y !inheritance_graph (* class_info : cl_typ -> int * cl_info_typ *) let class_info cl = Bijint.revmap cl !class_tab let class_exists cl = Bijint.mem cl !class_tab (* class_info_from_index : int -> cl_typ * cl_info_typ *) let class_info_from_index i = Bijint.map i !class_tab let cl_fun_index = fst(class_info CL_FUN) let cl_sort_index = fst(class_info CL_SORT) (* coercion_info : coe_typ -> coe_info_typ *) let coercion_info coe = CoeTypMap.find coe !coercion_tab let coercion_exists coe = CoeTypMap.mem coe !coercion_tab (* find_class_type : evar_map -> constr -> cl_typ * universe_list * constr list *) let find_class_type sigma t = let open EConstr in let t', args = Reductionops.whd_betaiotazeta_stack sigma t in match EConstr.kind sigma t' with | Var id -> CL_SECVAR id, EInstance.empty, args | Const (sp,u) -> CL_CONST sp, u, args | Proj (p, c) when not (Projection.unfolded p) -> CL_PROJ (Projection.repr p), EInstance.empty, (c :: args) | Ind (ind_sp,u) -> CL_IND ind_sp, u, args | Prod _ -> CL_FUN, EInstance.empty, [] | Sort _ -> CL_SORT, EInstance.empty, [] | _ -> raise Not_found let subst_cl_typ subst ct = match ct with CL_SORT | CL_FUN | CL_SECVAR _ -> ct | CL_PROJ c -> let c' = subst_proj_repr subst c in if c' == c then ct else CL_PROJ c' | CL_CONST c -> let c',t = subst_con subst c in if c' == c then ct else (match t with | None -> CL_CONST c' | Some t -> pi1 (find_class_type Evd.empty (EConstr.of_constr t.Univ.univ_abstracted_value))) | CL_IND i -> let i' = subst_ind subst i in if i' == i then ct else CL_IND i' (*CSC: here we should change the datatype for coercions: it should be possible to declare any term as a coercion *) let subst_coe_typ subst t = subst_global_reference subst t (* class_of : Term.constr -> int *) let class_of env sigma t = let (t, n1, i, u, args) = try let (cl, u, args) = find_class_type sigma t in let (i, { cl_param = n1 } ) = class_info cl in (t, n1, i, u, args) with Not_found -> let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type sigma t in let (i, { cl_param = n1 } ) = class_info cl in (t, n1, i, u, args) in if Int.equal (List.length args) n1 then t, i else raise Not_found let inductive_class_of ind = fst (class_info (CL_IND ind)) let class_args_of env sigma c = pi3 (find_class_type sigma c) let string_of_class = function | CL_FUN -> "Funclass" | CL_SORT -> "Sortclass" | CL_CONST sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_PROJ sp -> let sp = Projection.Repr.constant sp in string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_IND sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.IndRef sp)) | CL_SECVAR sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.VarRef sp)) let pr_class x = str (string_of_class x) (* lookup paths *) let lookup_path_between_class (s,t) = ClPairMap.find (s,t) !inheritance_graph let lookup_path_to_fun_from_class s = lookup_path_between_class (s,cl_fun_index) let lookup_path_to_sort_from_class s = lookup_path_between_class (s,cl_sort_index) (* advanced path lookup *) let apply_on_class_of env sigma t cont = try let (cl,u,args) = find_class_type sigma t in let (i, { cl_param = n1 } ) = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; t, cont i with Not_found -> (* Is it worth to be more incremental on the delta steps? *) let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type sigma t in let (i, { cl_param = n1 } ) = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; t, cont i let lookup_path_between env sigma (s,t) = let (s,(t,p)) = apply_on_class_of env sigma s (fun i -> apply_on_class_of env sigma t (fun j -> lookup_path_between_class (i,j))) in (s,t,p) let lookup_path_to_fun_from env sigma s = apply_on_class_of env sigma s lookup_path_to_fun_from_class let lookup_path_to_sort_from env sigma s = apply_on_class_of env sigma s lookup_path_to_sort_from_class let mkNamed = let open GlobRef in function | ConstRef c -> EConstr.mkConst c | VarRef v -> EConstr.mkVar v | ConstructRef c -> EConstr.mkConstruct c | IndRef i -> EConstr.mkInd i let get_coercion_constructor env coe = let evd = Evd.from_env env in let red x = fst (Reductionops.whd_all_stack env evd x) in match EConstr.kind evd (red (mkNamed coe.coe_value)) with | Constr.Construct (c, _) -> c, Inductiveops.constructor_nrealargs env c -1 | _ -> raise Not_found let lookup_pattern_path_between env (s,t) = let i = inductive_class_of s in let j = inductive_class_of t in List.map (get_coercion_constructor env) (ClPairMap.find (i,j) !inheritance_graph) (* rajouter une coercion dans le graphe *) let path_printer : ((Bijint.Index.t * Bijint.Index.t) * inheritance_path -> Pp.t) ref = ref (fun _ -> str "<a class path>") let install_path_printer f = path_printer := f let print_path x = !path_printer x let path_comparator : (Environ.env -> Evd.evar_map -> inheritance_path -> inheritance_path -> bool) ref = ref (fun _ _ _ _ -> false) let install_path_comparator f = path_comparator := f let compare_path p q = !path_comparator p q let warn_ambiguous_path = CWarnings.create ~name:"ambiguous-paths" ~category:"typechecker" (fun l -> prlist_with_sep fnl (fun (c,p,q) -> str"New coercion path " ++ print_path (c,p) ++ str" is ambiguous with existing " ++ print_path (c, q) ++ str".") l) (* add_coercion_in_graph : coe_index * cl_index * cl_index -> unit coercion,source,target *) let different_class_params env i = let ci = class_info_from_index i in if (snd ci).cl_param > 0 then true else match fst ci with | CL_IND i -> Environ.is_polymorphic env (GlobRef.IndRef i) | CL_CONST c -> Environ.is_polymorphic env (GlobRef.ConstRef c) | _ -> false let add_coercion_in_graph env sigma (ic,source,target) = let old_inheritance_graph = !inheritance_graph in let ambig_paths = (ref [] : ((cl_index * cl_index) * inheritance_path * inheritance_path) list ref) in let try_add_new_path (i,j as ij) p = if not (Bijint.Index.equal i j) || different_class_params env i then match lookup_path_between_class ij with | q -> if not (compare_path env sigma p q) then ambig_paths := (ij,p,q)::!ambig_paths; false | exception Not_found -> (add_new_path ij p; true) else false in let try_add_new_path1 ij p = let _ = try_add_new_path ij p in () in if try_add_new_path (source,target) [ic] then begin ClPairMap.iter (fun (s,t) p -> if not (Bijint.Index.equal s t) then begin if Bijint.Index.equal t source then begin try_add_new_path1 (s,target) (p@[ic]); ClPairMap.iter (fun (u,v) q -> if not (Bijint.Index.equal u v) && Bijint.Index.equal u target && not (List.equal coe_info_typ_equal p q) then try_add_new_path1 (s,v) (p@[ic]@q)) old_inheritance_graph end; if Bijint.Index.equal s target then try_add_new_path1 (source,t) (ic::p) end) old_inheritance_graph end; match !ambig_paths with [] -> () | _ -> warn_ambiguous_path !ambig_paths type coercion = { coercion_type : coe_typ; coercion_local : bool; coercion_is_id : bool; coercion_is_proj : Projection.Repr.t option; coercion_source : cl_typ; coercion_target : cl_typ; coercion_params : int; } let subst_coercion subst c = let coe = subst_coe_typ subst c.coercion_type in let cls = subst_cl_typ subst c.coercion_source in let clt = subst_cl_typ subst c.coercion_target in let clp = Option.Smart.map (subst_proj_repr subst) c.coercion_is_proj in if c.coercion_type == coe && c.coercion_source == cls && c.coercion_target == clt && c.coercion_is_proj == clp then c else { c with coercion_type = coe; coercion_source = cls; coercion_target = clt; coercion_is_proj = clp; } (* Computation of the class arity *) let reference_arity_length env sigma ref = let t, _ = Typeops.type_of_global_in_context env ref in List.length (fst (Reductionops.splay_arity env sigma (EConstr.of_constr t))) let projection_arity_length env sigma p = let len = reference_arity_length env sigma (GlobRef.ConstRef (Projection.Repr.constant p)) in len - Projection.Repr.npars p let class_params env sigma = function | CL_FUN | CL_SORT -> 0 | CL_CONST sp -> reference_arity_length env sigma (GlobRef.ConstRef sp) | CL_PROJ sp -> projection_arity_length env sigma sp | CL_SECVAR sp -> reference_arity_length env sigma (GlobRef.VarRef sp) | CL_IND sp -> reference_arity_length env sigma (GlobRef.IndRef sp) (* add_class : cl_typ -> locality_flag option -> bool -> unit *) let add_class env sigma cl = add_new_class cl { cl_param = class_params env sigma cl } let declare_coercion env sigma c = let () = add_class env sigma c.coercion_source in let () = add_class env sigma c.coercion_target in let is, _ = class_info c.coercion_source in let it, _ = class_info c.coercion_target in let xf = { coe_value = c.coercion_type; coe_local = c.coercion_local; coe_is_identity = c.coercion_is_id; coe_is_projection = c.coercion_is_proj; coe_param = c.coercion_params; } in let () = add_new_coercion c.coercion_type xf in add_coercion_in_graph env sigma (xf,is,it) (* For printing purpose *) let pr_cl_index = Bijint.Index.print let classes () = Bijint.dom !class_tab let coercions () = List.rev (CoeTypMap.fold (fun _ y acc -> y::acc) !coercion_tab []) let inheritance_graph () = ClPairMap.bindings !inheritance_graph let coercion_of_reference r = let ref = Nametab.global r in if not (coercion_exists ref) then user_err ~hdr:"try_add_coercion" (Nametab.pr_global_env Id.Set.empty ref ++ str" is not a coercion."); ref module CoercionPrinting = struct type t = coe_typ module Set = GlobRef.Set let encode _env = coercion_of_reference let subst = subst_coe_typ let printer x = Nametab.pr_global_env Id.Set.empty x let key = ["Printing";"Coercion"] let title = "Explicitly printed coercions: " let member_message x b = str "Explicit printing of coercion " ++ printer x ++ str (if b then " is set" else " is unset") end module PrintingCoercion = Goptions.MakeRefTable(CoercionPrinting) let hide_coercion coe = if not (PrintingCoercion.active coe) then let coe_info = coercion_info coe in Some coe_info.coe_param else None