1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Constr
open Vars
open CClosure
open Esubst

(**** Call by value reduction ****)

(* The type of terms with closure. The meaning of the constructors and
 * the invariants of this datatype are the following:
 *  VAL(k,c) represents the constr c with a delayed shift of k. c must be
 *          in normal form and neutral (i.e. not a lambda, a construct or a
 *          (co)fix, because they may produce redexes by applying them,
 *          or putting them in a case)
 *  STACK(k,v,stk) represents an irreductible value [v] in the stack [stk].
 *          [k] is a delayed shift to be applied to both the value and
 *          the stack.
 *  CBN(t,S) is the term [S]t. It is used to delay evaluation. For
 *          instance products are evaluated only when actually needed
 *          (CBN strategy).
 *  LAM(n,a,b,S) is the term [S]([x:a]b) where [a] is a list of bindings and
 *          [n] is the length of [a]. the environment [S] is propagated
 *          only when the abstraction is applied, and then we use the rule
 *                  ([S]([x:a]b) c) --> [S.c]b
 *          This corresponds to the usual strategy of weak reduction
 *  FIXP(op,bd,S,args) is the fixpoint (Fix or Cofix) of bodies bd under
 *          the bindings S, and then applied to args. Here again,
 *          weak reduction.
 *  CONSTR(c,args) is the constructor [c] applied to [args].
 *  PRIMITIVE(cop,args) represent a particial application of
 *          a primitive, or a fully applied primitive
 *          which does not reduce.
 *          cop is the constr representing op.
 *
 *)
type cbv_value =
  | VAL of int * constr
  | STACK of int * cbv_value * cbv_stack
  | CBN of constr * cbv_value subs
  | LAM of int * (Name.t Context.binder_annot * constr) list * constr * cbv_value subs
  | FIXP of fixpoint * cbv_value subs * cbv_value array
  | COFIXP of cofixpoint * cbv_value subs * cbv_value array
  | CONSTR of constructor Univ.puniverses * cbv_value array
  | PRIMITIVE of CPrimitives.t * constr * cbv_value array

(* type of terms with a hole. This hole can appear only under App or Case.
 *   TOP means the term is considered without context
 *   APP(v,stk) means the term is applied to v, and then the context stk
 *      (v.0 is the first argument).
 *      this corresponds to the application stack of the KAM.
 *      The members of l are values: we evaluate arguments before
        calling the function.
 *   CASE(t,br,pat,S,stk) means the term is in a case (which is himself in stk
 *      t is the type of the case and br are the branches, all of them under
 *      the subs S, pat is information on the patterns of the Case
 *      (Weak reduction: we propagate the sub only when the selected branch
 *      is determined)
 *   PROJ(p,pb,stk) means the term is in a primitive projection p, itself in stk.
 *      pb is the associated projection body
 *
 * Important remark: the APPs should be collapsed:
 *    (APP (l,(APP ...))) forbidden
 *)
and cbv_stack =
  | TOP
  | APP of cbv_value array * cbv_stack
  | CASE of constr * constr array * case_info * cbv_value subs * cbv_stack
  | PROJ of Projection.t * cbv_stack

(* les vars pourraient etre des constr,
   cela permet de retarder les lift: utile ?? *)

(* relocation of a value; used when a value stored in a context is expanded
 * in a larger context. e.g.  [%k (S.t)](k+1) --> [^k]t  (t is shifted of k)
 *)
let rec shift_value n = function
  | VAL (k,t) -> VAL (k+n,t)
  | STACK(k,v,stk) -> STACK(k+n,v,stk)
  | CBN (t,s) -> CBN(t,subs_shft(n,s))
  | LAM (nlams,ctxt,b,s) -> LAM (nlams,ctxt,b,subs_shft (n,s))
  | FIXP (fix,s,args) ->
      FIXP (fix,subs_shft (n,s), Array.map (shift_value n) args)
  | COFIXP (cofix,s,args) ->
      COFIXP (cofix,subs_shft (n,s), Array.map (shift_value n) args)
  | CONSTR (c,args) ->
      CONSTR (c, Array.map (shift_value n) args)
  | PRIMITIVE(op,c,args) ->
      PRIMITIVE(op,c,Array.map (shift_value n) args)

let shift_value n v =
  if Int.equal n 0 then v else shift_value n v

(* Contracts a fixpoint: given a fixpoint and a bindings,
 * returns the corresponding fixpoint body, and the bindings in which
 * it should be evaluated: its first variables are the fixpoint bodies
 * (S, (fix Fi {F0 := T0 .. Fn-1 := Tn-1}))
 *    -> (S. [S]F0 . [S]F1 ... . [S]Fn-1, Ti)
 *)
let contract_fixp env ((reci,i),(_,_,bds as bodies)) =
  let make_body j = FIXP(((reci,j),bodies), env, [||]) in
  let n = Array.length bds in
  subs_cons(Array.init n make_body, env), bds.(i)

let contract_cofixp env (i,(_,_,bds as bodies)) =
  let make_body j = COFIXP((j,bodies), env, [||]) in
  let n = Array.length bds in
  subs_cons(Array.init n make_body, env), bds.(i)

let make_constr_ref n k t =
  match k with
  | RelKey p -> mkRel (n+p)
  | VarKey id -> t
  | ConstKey cst -> t

(* Adds an application list. Collapse APPs! *)
let stack_app appl stack =
  if Int.equal (Array.length appl) 0 then stack else
    match stack with
    | APP(args,stk) -> APP(Array.append appl args,stk)
    | _             -> APP(appl, stack)

let rec stack_concat stk1 stk2 =
  match stk1 with
      TOP -> stk2
    | APP(v,stk1') -> APP(v,stack_concat stk1' stk2)
    | CASE(c,b,i,s,stk1') -> CASE(c,b,i,s,stack_concat stk1' stk2)
    | PROJ (p,stk1') -> PROJ (p,stack_concat stk1' stk2)

(* merge stacks when there is no shifts in between *)
let mkSTACK = function
    v, TOP -> v
  | STACK(0,v0,stk0), stk -> STACK(0,v0,stack_concat stk0 stk)
  | v,stk -> STACK(0,v,stk)

type cbv_infos = {
  env : Environ.env;
  tab : (cbv_value, Empty.t) Declarations.constant_def KeyTable.t;
  reds : RedFlags.reds;
  sigma : Evd.evar_map
}

(* Change: zeta reduction cannot be avoided in CBV *)

open RedFlags

let red_set_ref flags = function
  | RelKey _ -> red_set flags fDELTA
  | VarKey id -> red_set flags (fVAR id)
  | ConstKey (sp,_) -> red_set flags (fCONST sp)

(* Transfer application lists from a value to the stack
 * useful because fixpoints may be totally applied in several times.
 * On the other hand, irreductible atoms absorb the full stack.
 *)
let strip_appl head stack =
  match head with
    | FIXP (fix,env,app) -> (FIXP(fix,env,[||]), stack_app app stack)
    | COFIXP (cofix,env,app) -> (COFIXP(cofix,env,[||]), stack_app app stack)
    | CONSTR (c,app) -> (CONSTR(c,[||]), stack_app app stack)
    | PRIMITIVE(op,c,app) -> (PRIMITIVE(op,c,[||]), stack_app app stack)
    | VAL _ | STACK _ | CBN _ | LAM _ -> (head, stack)


(* Tests if fixpoint reduction is possible. *)
let fixp_reducible flgs ((reci,i),_) stk =
  if red_set flgs fFIX then
    match stk with
      | APP(appl,_) ->
          Array.length appl > reci.(i) &&
          (match appl.(reci.(i)) with
              CONSTR _ -> true
            | _ -> false)
      | _ -> false
  else
    false

let cofixp_reducible flgs _ stk =
  if red_set flgs fCOFIX then
    match stk with
      | (CASE _ | PROJ _ | APP(_,CASE _) | APP(_,PROJ _)) -> true
      | _ -> false
  else
    false

let get_debug_cbv = Goptions.declare_bool_option_and_ref
    ~depr:false
    ~value:false
    ~name:"cbv visited constants display"
    ~key:["Debug";"Cbv"]

(* Reduction of primitives *)

open Primred

module VNativeEntries =
  struct

    type elem = cbv_value
    type args = cbv_value array
    type evd = unit

    let get = Array.get

    let get_int () e =
      match e with
      | VAL(_, ci) ->
          (match kind ci with
          | Int i -> i
          | _ -> raise Primred.NativeDestKO)
      | _ -> raise Primred.NativeDestKO

    let mkInt env i = VAL(0, mkInt i)

    let mkBool env b =
      let (ct,cf) = get_bool_constructors env in
      CONSTR(Univ.in_punivs (if b then ct else cf), [||])

    let int_ty env = VAL(0, mkConst @@ get_int_type env)

    let mkCarry env b e =
      let (c0,c1) = get_carry_constructors env in
      CONSTR(Univ.in_punivs (if b then c1 else c0), [|int_ty env;e|])

    let mkIntPair env e1 e2 =
      let int_ty = int_ty env in
      let c = get_pair_constructor env in
      CONSTR(Univ.in_punivs c, [|int_ty;int_ty;e1;e2|])

    let mkLt env =
      let (_eq,lt,_gt) = get_cmp_constructors env in
      CONSTR(Univ.in_punivs lt, [||])

    let mkEq env =
      let (eq,_lt,_gt) = get_cmp_constructors env in
      CONSTR(Univ.in_punivs eq, [||])

    let mkGt env =
      let (_eq,_lt,gt) = get_cmp_constructors env in
      CONSTR(Univ.in_punivs gt, [||])

  end

module VredNative = RedNative(VNativeEntries)

let debug_pr_key = function
  | ConstKey (sp,_) -> Names.Constant.print sp
  | VarKey id -> Names.Id.print id
  | RelKey n -> Pp.(str "REL_" ++ int n)

let rec reify_stack t = function
  | TOP -> t
  | APP (args,st) ->
      reify_stack (mkApp(t,Array.map reify_value args)) st
  | CASE (ty,br,ci,env,st) ->
      reify_stack
        (mkCase (ci, ty, t,br))
        st
  | PROJ (p, st) ->
       reify_stack (mkProj (p, t)) st

and reify_value = function (* reduction under binders *)
  | VAL (n,t) -> lift n t
  | STACK (0,v,stk) ->
      reify_stack (reify_value v) stk
  | STACK (n,v,stk) ->
      lift n (reify_stack (reify_value v) stk)
  | CBN(t,env) ->
    apply_env env t
  | LAM (k,ctxt,b,env) ->
    apply_env env @@
    List.fold_left (fun c (n,t) ->
        mkLambda (n, t, c)) b ctxt
  | FIXP ((lij,fix),env,args) ->
    let fix = mkFix (lij, fix) in
    mkApp (apply_env env fix, Array.map reify_value args)
  | COFIXP ((j,cofix),env,args) ->
    let cofix = mkCoFix (j, cofix) in
    mkApp (apply_env env cofix, Array.map reify_value args)
  | CONSTR (c,args) ->
      mkApp(mkConstructU c, Array.map reify_value args)
  | PRIMITIVE(op,c,args) ->
      mkApp(c, Array.map reify_value args)

and apply_env env t =
  match kind t with
  | Rel i ->
    begin match expand_rel i env with
      | Inl (k, v) ->
        reify_value (shift_value k v)
      | Inr (k,_) ->
        mkRel k
    end
  | _ ->
    map_with_binders subs_lift apply_env env t

(* The main recursive functions
 *
 * Go under applications and cases/projections (pushed in the stack), 
 * expand head constants or substitued de Bruijn, and try to a make a
 * constructor, a lambda or a fixp appear in the head. If not, it is a value
 * and is completely computed here. The head redexes are NOT reduced:
 * the function returns the pair of a cbv_value and its stack.  *
 * Invariant: if the result of norm_head is CONSTR or (CO)FIXP, it last
 * argument is [].  Because we must put all the applied terms in the
 * stack. *)

let rec norm_head info env t stack =
  (* no reduction under binders *)
  match kind t with
  (* stack grows (remove casts) *)
  | App (head,args) -> (* Applied terms are normalized immediately;
                        they could be computed when getting out of the stack *)
      let nargs = Array.map (cbv_stack_term info TOP env) args in
      norm_head info env head (stack_app nargs stack)
  | Case (ci,p,c,v) -> norm_head info env c (CASE(p,v,ci,env,stack))
  | Cast (ct,_,_) -> norm_head info env ct stack
  
  | Proj (p, c) -> 
    let p' =
      if red_set info.reds (fCONST (Projection.constant p))
        && red_set info.reds fBETA
      then Projection.unfold p
      else p
    in 
      norm_head info env c (PROJ (p', stack))
        
  (* constants, axioms
   * the first pattern is CRUCIAL, n=0 happens very often:
   * when reducing closed terms, n is always 0 *)
  | Rel i ->
      (match expand_rel i env with
        | Inl (0,v)      -> strip_appl v stack
        | Inl (n,v)      -> strip_appl (shift_value n v) stack
        | Inr (n,None)   -> (VAL(0, mkRel n), stack)
        | Inr (n,Some p) -> norm_head_ref (n-p) info env stack (RelKey p) t)

  | Var id -> norm_head_ref 0 info env stack (VarKey id) t

  | Const sp ->
    Reductionops.reduction_effect_hook info.env info.sigma
      (fst sp) (lazy (reify_stack t stack));
    norm_head_ref 0 info env stack (ConstKey sp) t

  | LetIn (_, b, _, c) ->
      (* zeta means letin are contracted; delta without zeta means we *)
      (* allow bindings but leave let's in place *)
      if red_set info.reds fZETA then
        (* New rule: for Cbv, Delta does not apply to locally bound variables
           or red_set info.reds fDELTA
         *)
        let env' = subs_cons ([|cbv_stack_term info TOP env b|],env) in
        norm_head info env' c stack
      else
        (CBN(t,env), stack) (* Should we consider a commutative cut ? *)

  | Evar ev ->
      (match Reductionops.safe_evar_value info.sigma ev with
          Some c -> norm_head info env c stack
        | None ->
          let e, xs = ev in
          let xs' = Array.map (apply_env env) xs in
          (VAL(0, mkEvar (e,xs')), stack))

  (* non-neutral cases *)
  | Lambda _ ->
      let ctxt,b = Term.decompose_lam t in
      (LAM(List.length ctxt, List.rev ctxt,b,env), stack)
  | Fix fix -> (FIXP(fix,env,[||]), stack)
  | CoFix cofix -> (COFIXP(cofix,env,[||]), stack)
  | Construct c -> (CONSTR(c, [||]), stack)

  (* neutral cases *)
  | (Sort _ | Meta _ | Ind _ | Int _) -> (VAL(0, t), stack)
  | Prod _ -> (CBN(t,env), stack)

and norm_head_ref k info env stack normt t =
  if red_set_ref info.reds normt then
    match cbv_value_cache info normt with
      | Declarations.Def body ->
         if get_debug_cbv () then Feedback.msg_debug Pp.(str "Unfolding " ++ debug_pr_key normt);
         strip_appl (shift_value k body) stack
      | Declarations.Primitive op -> (PRIMITIVE(op,t,[||]),stack)
      | Declarations.OpaqueDef _ | Declarations.Undef _ ->
         if get_debug_cbv () then Feedback.msg_debug Pp.(str "Not unfolding " ++ debug_pr_key normt);
         (VAL(0,make_constr_ref k normt t),stack)
  else
    begin
      if get_debug_cbv () then Feedback.msg_debug Pp.(str "Not unfolding " ++ debug_pr_key normt);
      (VAL(0,make_constr_ref k normt t),stack)
    end

(* cbv_stack_term performs weak reduction on constr t under the subs
 * env, with context stack, i.e. ([env]t stack).  First computes weak
 * head normal form of t and checks if a redex appears with the stack.
 * If so, recursive call to reach the real head normal form.  If not,
 * we build a value.
 *)
and cbv_stack_term info stack env t =
  cbv_stack_value info env (norm_head info env t stack)

and cbv_stack_value info env = function
  (* a lambda meets an application -> BETA *)
  | (LAM (nlams,ctxt,b,env), APP (args, stk))
      when red_set info.reds fBETA ->
    let nargs = Array.length args in
      if nargs == nlams then
          cbv_stack_term info stk (subs_cons(args,env)) b
        else if nlams < nargs then
          let env' = subs_cons(Array.sub args 0 nlams, env) in
          let eargs = Array.sub args nlams (nargs-nlams) in
          cbv_stack_term info (APP(eargs,stk)) env' b
        else
          let ctxt' = List.skipn nargs ctxt in
          LAM(nlams-nargs,ctxt', b, subs_cons(args,env))

    (* a Fix applied enough -> IOTA *)
    | (FIXP(fix,env,[||]), stk)
        when fixp_reducible info.reds fix stk ->
        let (envf,redfix) = contract_fixp env fix in
        cbv_stack_term info stk envf redfix

    (* constructor guard satisfied or Cofix in a Case -> IOTA *)
    | (COFIXP(cofix,env,[||]), stk)
        when cofixp_reducible info.reds cofix stk->
        let (envf,redfix) = contract_cofixp env cofix in
        cbv_stack_term info stk envf redfix

    (* constructor in a Case -> IOTA *)
    | (CONSTR(((sp,n),u),[||]), APP(args,CASE(_,br,ci,env,stk)))
            when red_set info.reds fMATCH ->
        let cargs =
          Array.sub args ci.ci_npar (Array.length args - ci.ci_npar) in
        cbv_stack_term info (stack_app cargs stk) env br.(n-1)

    (* constructor of arity 0 in a Case -> IOTA *)
    | (CONSTR(((_,n),u),[||]), CASE(_,br,_,env,stk))
            when red_set info.reds fMATCH ->
                    cbv_stack_term info stk env br.(n-1)

    (* constructor in a Projection -> IOTA *)
    | (CONSTR(((sp,n),u),[||]), APP(args,PROJ(p,stk)))
        when red_set info.reds fMATCH && Projection.unfolded p ->
      let arg = args.(Projection.npars p + Projection.arg p) in
        cbv_stack_value info env (strip_appl arg stk)

    (* may be reduced later by application *)
    | (FIXP(fix,env,[||]), APP(appl,TOP)) -> FIXP(fix,env,appl)
    | (COFIXP(cofix,env,[||]), APP(appl,TOP)) -> COFIXP(cofix,env,appl)
    | (CONSTR(c,[||]), APP(appl,TOP)) -> CONSTR(c,appl)

    (* primitive apply to arguments *)
    | (PRIMITIVE(op,c,[||]), APP(appl,stk)) ->
      let nargs = CPrimitives.arity op in
      let len = Array.length appl in
      if nargs <= len then
        let args =
          if len = nargs then appl
          else Array.sub appl 0 nargs in
        let stk =
          if nargs < len then
            stack_app (Array.sub appl nargs (len - nargs)) stk
          else stk in
        match VredNative.red_prim info.env () op args with
        | Some (CONSTR (c, args)) ->
          (* args must be moved to the stack to allow future reductions *)
          cbv_stack_value info env (CONSTR(c, [||]), stack_app args stk)
        | Some v ->  cbv_stack_value info env (v,stk)
        | None -> mkSTACK(PRIMITIVE(op,c,args), stk)
      else (* partial application *)
              (assert (stk = TOP);
               PRIMITIVE(op,c,appl))

    (* definitely a value *)
    | (head,stk) -> mkSTACK(head, stk)

and cbv_value_cache info ref =
  try KeyTable.find info.tab ref with
    Not_found ->
    let v =
      try
        let body = match ref with
          | RelKey n ->
            let open Context.Rel.Declaration in
            begin match Environ.lookup_rel n info.env with
              | LocalDef (_, c, _) -> lift n c
              | LocalAssum _ -> raise Not_found
            end
          | VarKey id ->
            let open Context.Named.Declaration in
            begin match Environ.lookup_named id info.env with
              | LocalDef (_, c, _) -> c
              | LocalAssum _ -> raise Not_found
            end
          | ConstKey cst -> Environ.constant_value_in info.env cst
        in
        let v = cbv_stack_term info TOP (subs_id 0) body in
        Declarations.Def v
      with
      | Environ.NotEvaluableConst (Environ.IsPrimitive op) -> Declarations.Primitive op
      | Not_found | Environ.NotEvaluableConst _ -> Declarations.Undef None
    in
    KeyTable.add info.tab ref v; v

(* When we are sure t will never produce a redex with its stack, we
 * normalize (even under binders) the applied terms and we build the
 * final term
 *)
let rec apply_stack info t = function
  | TOP -> t
  | APP (args,st) ->
      apply_stack info (mkApp(t,Array.map (cbv_norm_value info) args)) st
  | CASE (ty,br,ci,env,st) ->
      apply_stack info
        (mkCase (ci, cbv_norm_term info env ty, t,
                    Array.map (cbv_norm_term info env) br))
        st
  | PROJ (p, st) ->
       apply_stack info (mkProj (p, t)) st

(* performs the reduction on a constr, and returns a constr *)
and cbv_norm_term info env t =
  (* reduction under binders *)
  cbv_norm_value info (cbv_stack_term info TOP env t)

(* reduction of a cbv_value to a constr *)
and cbv_norm_value info = function (* reduction under binders *)
  | VAL (n,t) -> lift n t
  | STACK (0,v,stk) ->
      apply_stack info (cbv_norm_value info v) stk
  | STACK (n,v,stk) ->
      lift n (apply_stack info (cbv_norm_value info v) stk)
  | CBN(t,env) ->
      Constr.map_with_binders subs_lift (cbv_norm_term info) env t
  | LAM (n,ctxt,b,env) ->
      let nctxt =
        List.map_i (fun i (x,ty) ->
          (x,cbv_norm_term info (subs_liftn i env) ty)) 0 ctxt in
      Term.compose_lam (List.rev nctxt) (cbv_norm_term info (subs_liftn n env) b)
  | FIXP ((lij,(names,lty,bds)),env,args) ->
      mkApp
        (mkFix (lij,
                (names,
                 Array.map (cbv_norm_term info env) lty,
                 Array.map (cbv_norm_term info
                              (subs_liftn (Array.length lty) env)) bds)),
         Array.map (cbv_norm_value info) args)
  | COFIXP ((j,(names,lty,bds)),env,args) ->
      mkApp
        (mkCoFix (j,
                  (names,Array.map (cbv_norm_term info env) lty,
                   Array.map (cbv_norm_term info
                                (subs_liftn (Array.length lty) env)) bds)),
         Array.map (cbv_norm_value info) args)
  | CONSTR (c,args) ->
      mkApp(mkConstructU c, Array.map (cbv_norm_value info) args)
  | PRIMITIVE(op,c,args) ->
      mkApp(c,Array.map (cbv_norm_value info) args)

(* with profiling *)
let cbv_norm infos constr =
  let constr = EConstr.Unsafe.to_constr constr in
  EConstr.of_constr (with_stats (lazy (cbv_norm_term infos (subs_id 0) constr)))

(* constant bodies are normalized at the first expansion *)
let create_cbv_infos reds env sigma =
  { tab = KeyTable.create 91; reds; env; sigma }