1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open CErrors open Util open Names open Nameops open Constr open Context open Termops open Environ open EConstr open Vars open Namegen open Declarations open Inductiveops open Reductionops open Type_errors open Glob_term open Glob_ops open Retyping open Pretype_errors open Evarutil open Evardefine open Evarsolve open Evarconv open Evd open Context.Rel.Declaration open GlobEnv module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration (* Pattern-matching errors *) type pattern_matching_error = | BadPattern of constructor * constr | BadConstructor of constructor * inductive | WrongNumargConstructor of constructor * int | WrongNumargInductive of inductive * int | UnusedClause of cases_pattern list | NonExhaustive of cases_pattern list | CannotInferPredicate of (constr * types) array exception PatternMatchingError of env * evar_map * pattern_matching_error let raise_pattern_matching_error ?loc (env,sigma,te) = Loc.raise ?loc (PatternMatchingError(env,sigma,te)) let error_bad_pattern ?loc env sigma cstr ind = raise_pattern_matching_error ?loc (env, sigma, BadPattern (cstr,ind)) let error_bad_constructor ?loc env cstr ind = raise_pattern_matching_error ?loc (env, Evd.empty, BadConstructor (cstr,ind)) let error_wrong_numarg_constructor ?loc env c n = raise_pattern_matching_error ?loc (env, Evd.empty, WrongNumargConstructor(c,n)) let error_wrong_numarg_inductive ?loc env c n = raise_pattern_matching_error ?loc (env, Evd.empty, WrongNumargInductive(c,n)) let list_try_compile f l = let rec aux errors = function | [] -> if errors = [] then anomaly (str "try_find_f.") else iraise (List.last errors) | h::t -> try f h with UserError _ | TypeError _ | PretypeError _ | PatternMatchingError _ as e -> let e = CErrors.push e in aux (e::errors) t in aux [] l let force_name = let nx = Name default_dependent_ident in function Anonymous -> nx | na -> na (************************************************************************) (* Pattern-matching compilation (Cases) *) (************************************************************************) (************************************************************************) (* Configuration, errors and warnings *) open Pp let msg_may_need_inversion () = strbrk "Found a matching with no clauses on a term unknown to have an empty inductive type." (* Utils *) let make_anonymous_patvars n = List.make n (DAst.make @@ PatVar Anonymous) (* We have x1:t1...xn:tn,xi':ti,y1..yk |- c and re-generalize over xi:ti to get x1:t1...xn:tn,xi':ti,y1..yk |- c[xi:=xi'] *) let relocate_rel n1 n2 k j = if Int.equal j (n1 + k) then n2+k else j let rec relocate_index sigma n1 n2 k t = match EConstr.kind sigma t with | Rel j when Int.equal j (n1 + k) -> mkRel (n2+k) | Rel j when j < n1+k -> t | Rel j when j > n1+k -> t | _ -> EConstr.map_with_binders sigma succ (relocate_index sigma n1 n2) k t (**********************************************************************) (* Structures used in compiling pattern-matching *) let (!!) env = GlobEnv.env env type 'a rhs = { rhs_env : GlobEnv.t; rhs_vars : Id.Set.t; avoid_ids : Id.Set.t; it : 'a option} type 'a equation = { patterns : cases_pattern list; rhs : 'a rhs; alias_stack : Name.t list; eqn_loc : Loc.t option; used : bool ref } type 'a matrix = 'a equation list (* 1st argument of IsInd is the original ind before extracting the summary *) type tomatch_type = | IsInd of types * inductive_type * Name.t list | NotInd of constr option * types (* spiwack: The first argument of [Pushed] is [true] for initial Pushed and [false] otherwise. Used to decide whether the term being matched on must be aliased in the variable case (only initial Pushed need to be aliased). The first argument of [Alias] is [true] if the alias was introduced by an initial pushed and [false] otherwise.*) type tomatch_status = | Pushed of (bool*((constr * tomatch_type) * int list * Name.t)) | Alias of (bool*(Name.t * constr * (constr * types))) | NonDepAlias | Abstract of int * rel_declaration type tomatch_stack = tomatch_status list (* We keep a constr for aliases and a cases_pattern for error message *) type pattern_history = | Top | MakeConstructor of constructor * pattern_continuation and pattern_continuation = | Continuation of int * cases_pattern list * pattern_history | Result of cases_pattern list let start_history n = Continuation (n, [], Top) let feed_history arg = function | Continuation (n, l, h) when n>=1 -> Continuation (n-1, arg :: l, h) | Continuation (n, _, _) -> anomaly (str "Bad number of expected remaining patterns: " ++ int n ++ str ".") | Result _ -> anomaly (Pp.str "Exhausted pattern history.") (* This is for non exhaustive error message *) let rec glob_pattern_of_partial_history args2 = function | Continuation (n, args1, h) -> let args3 = make_anonymous_patvars (n - (List.length args2)) in build_glob_pattern (List.rev_append args1 (args2@args3)) h | Result pl -> pl and build_glob_pattern args = function | Top -> args | MakeConstructor (pci, rh) -> glob_pattern_of_partial_history [DAst.make @@ PatCstr (pci, args, Anonymous)] rh let complete_history = glob_pattern_of_partial_history [] (* This is to build glued pattern-matching history and alias bodies *) let pop_history_pattern = function | Continuation (0, l, Top) -> Result (List.rev l) | Continuation (0, l, MakeConstructor (pci, rh)) -> feed_history (DAst.make @@ PatCstr (pci,List.rev l,Anonymous)) rh | _ -> anomaly (Pp.str "Constructor not yet filled with its arguments.") let pop_history h = feed_history (DAst.make @@ PatVar Anonymous) h (* Builds a continuation expecting [n] arguments and building [ci] applied to this [n] arguments *) let push_history_pattern n pci cont = Continuation (n, [], MakeConstructor (pci, cont)) (* A pattern-matching problem has the following form: env, evd |- match terms_to_tomatch return pred with mat end where terms_to_match is some sequence of "instructions" (t1 ... tp) and mat is some matrix (p11 ... p1n -> rhs1) ( ... ) (pm1 ... pmn -> rhsm) Terms to match: there are 3 kinds of instructions - "Pushed" terms to match are typed in [env]; these are usually just Rel(n) except for the initial terms given by user; in Pushed ((c,tm),deps,na), [c] is the reference to the term (which is a Rel or an initial term), [tm] is its type (telling whether we know if it is an inductive type or not), [deps] is the list of terms to abstract before matching on [c] (these are rels too) - "Abstract" instructions mean that an abstraction has to be inserted in the current branch to build (this means a pattern has been detected dependent in another one and a generalization is necessary to ensure well-typing) Abstract instructions extend the [env] in which the other instructions are typed - "Alias" instructions mean an alias has to be inserted (this alias is usually removed at the end, except when its type is not the same as the type of the matched term from which it comes - typically because the inductive types are "real" parameters) - "NonDepAlias" instructions mean the completion of a matching over a term to match as for Alias but without inserting this alias because there is no dependency in it Right-hand sides: They consist of a raw term to type in an environment specific to the clause they belong to: the names of declarations are those of the variables present in the patterns. Therefore, they come with their own [rhs_env] (actually it is the same as [env] except for the names of variables). *) type 'a pattern_matching_problem = { env : GlobEnv.t; pred : constr; tomatch : tomatch_stack; history : pattern_continuation; mat : 'a matrix; caseloc : Loc.t option; casestyle : case_style; typing_function: type_constraint -> GlobEnv.t -> evar_map -> 'a option -> evar_map * unsafe_judgment } (*--------------------------------------------------------------------------* * A few functions to infer the inductive type from the patterns instead of * * checking that the patterns correspond to the ind. type of the * * destructurated object. Allows type inference of examples like * * match n with O => true | _ => false end * * match x in I with C => true | _ => false end * *--------------------------------------------------------------------------*) (* Computing the inductive type from the matrix of patterns *) (* We use the "in I" clause to coerce the terms to match and otherwise use the constructor to know in which type is the matching problem Note that insertion of coercions inside nested patterns is done each time the matrix is expanded *) let rec find_row_ind = function [] -> None | p :: l -> match DAst.get p with | PatVar _ -> find_row_ind l | PatCstr(c,_,_) -> Some (p.CAst.loc,c) let inductive_template env sigma tmloc ind = let sigma, indu = Evd.fresh_inductive_instance env sigma ind in let arsign = inductive_alldecls env indu in let indu = on_snd EInstance.make indu in let hole_source i = match tmloc with | Some loc -> Loc.tag ~loc @@ Evar_kinds.TomatchTypeParameter (ind,i) | None -> Loc.tag @@ Evar_kinds.TomatchTypeParameter (ind,i) in let (sigma, _, evarl, _) = List.fold_right (fun decl (sigma, subst, evarl, n) -> match decl with | LocalAssum (na,ty) -> let ty = EConstr.of_constr ty in let ty' = substl subst ty in let sigma, e = Evarutil.new_evar env ~src:(hole_source n) ~typeclass_candidate:false sigma ty' in (sigma, e::subst,e::evarl,n+1) | LocalDef (na,b,ty) -> let b = EConstr.of_constr b in (sigma, substl subst b::subst,evarl,n+1)) arsign (sigma, [], [], 1) in sigma, applist (mkIndU indu,List.rev evarl) let try_find_ind env sigma typ realnames = let (IndType(indf,realargs) as ind) = find_rectype env sigma typ in let names = match realnames with | Some names -> names | None -> let ind = fst (fst (dest_ind_family indf)) in List.make (inductive_nrealdecls env ind) Anonymous in IsInd (typ,ind,names) let inh_coerce_to_ind env sigma0 loc ty tyi = let sigma, expected_typ = inductive_template env sigma0 loc tyi in (* Try to refine the type with inductive information coming from the constructor and renounce if not able to give more information *) (* devrait être indifférent d'exiger leq ou pas puisque pour un inductif cela doit être égal *) match Evarconv.unify_leq_delay env sigma expected_typ ty with | sigma -> sigma | exception Evarconv.UnableToUnify _ -> sigma0 let binding_vars_of_inductive sigma = function | NotInd _ -> [] | IsInd (_,IndType(_,realargs),_) -> List.filter (isRel sigma) realargs let set_tomatch_realnames names = function | NotInd _ as t -> t | IsInd (typ,ind,_) -> IsInd (typ,ind,names) let extract_inductive_data env sigma decl = match decl with | LocalAssum (_,t) -> let tmtyp = try try_find_ind env sigma t None with Not_found -> NotInd (None,t) in let tmtypvars = binding_vars_of_inductive sigma tmtyp in (tmtyp,tmtypvars) | LocalDef (_,_,t) -> (NotInd (None, t), []) let unify_tomatch_with_patterns env sigma loc typ pats realnames = match find_row_ind pats with | None -> sigma, NotInd (None,typ) | Some (_,(ind,_)) -> let sigma = inh_coerce_to_ind env sigma loc typ ind in try sigma, try_find_ind env sigma typ realnames with Not_found -> sigma, NotInd (None,typ) let find_tomatch_tycon env sigma loc = function (* Try if some 'in I ...' is present and can be used as a constraint *) | Some {CAst.v=(ind,realnal)} -> let sigma, tycon = inductive_template env sigma loc ind in sigma, mk_tycon tycon, Some (List.rev realnal) | None -> sigma, empty_tycon, None let make_return_predicate_ltac_lvar env sigma na tm c = (* If we have an [x as x return ...] clause and [x] expands to [c], we have to update the status of [x] in the substitution: - if [c] is a variable [id'], then [x] should now become [id'] - otherwise, [x] should be hidden *) match na, DAst.get tm with | Name id, (GVar id' | GRef (GlobRef.VarRef id', _)) when Id.equal id id' -> let expansion = match kind sigma c with | Var id' -> Name id' | _ -> Anonymous in GlobEnv.hide_variable env expansion id | _ -> env let is_patvar pat = match DAst.get pat with | PatVar _ -> true | _ -> false let coerce_row ~program_mode typing_fun env sigma pats (tomatch,(na,indopt)) = let loc = loc_of_glob_constr tomatch in let sigma, tycon, realnames = find_tomatch_tycon !!env sigma loc indopt in let sigma, j = typing_fun tycon env sigma tomatch in let sigma, j = Coercion.inh_coerce_to_base ?loc:(loc_of_glob_constr tomatch) ~program_mode !!env sigma j in let typ = nf_evar sigma j.uj_type in let env = make_return_predicate_ltac_lvar env sigma na tomatch j.uj_val in let sigma, t = if realnames = None && pats <> [] && List.for_all is_patvar pats then sigma, NotInd (None,typ) else try sigma, try_find_ind !!env sigma typ realnames with Not_found -> unify_tomatch_with_patterns !!env sigma loc typ pats realnames in ((env, sigma), (j.uj_val,t)) let coerce_to_indtype ~program_mode typing_fun env sigma matx tomatchl = let pats = List.map (fun r -> r.patterns) matx in let matx' = match matrix_transpose pats with | [] -> List.map (fun _ -> []) tomatchl (* no patterns at all *) | m -> m in let (env, sigma), tms = List.fold_left2_map (fun (env, sigma) -> coerce_row ~program_mode typing_fun env sigma) (env, sigma) matx' tomatchl in env, sigma, tms (************************************************************************) (* Utils *) let mkExistential ?(src=(Loc.tag Evar_kinds.InternalHole)) env sigma = let sigma, (e, u) = Evarutil.new_type_evar env sigma ~src:src univ_flexible_alg in sigma, e let adjust_tomatch_to_pattern ~program_mode sigma pb ((current,typ),deps,dep) = (* Ideally, we could find a common inductive type to which both the term to match and the patterns coerce *) (* In practice, we coerce the term to match if it is not already an inductive type and it is not dependent; moreover, we use only the first pattern type and forget about the others *) let typ,names = match typ with IsInd(t,_,names) -> t,Some names | NotInd(_,t) -> t,None in let tmtyp = try try_find_ind !!(pb.env) sigma typ names with Not_found -> NotInd (None,typ) in match tmtyp with | NotInd (None,typ) -> let tm1 = List.map (fun eqn -> List.hd eqn.patterns) pb.mat in (match find_row_ind tm1 with | None -> sigma, (current, tmtyp) | Some (loc,(ind,_)) -> let sigma, indt = inductive_template !!(pb.env) sigma None ind in let sigma, current = if List.is_empty deps && isEvar sigma typ then (* Don't insert coercions if dependent; only solve evars *) match Evarconv.unify_leq_delay !!(pb.env) sigma indt typ with | exception Evarconv.UnableToUnify _ -> sigma, current | sigma -> sigma, current else let sigma, j = Coercion.inh_conv_coerce_to ?loc ~program_mode true !!(pb.env) sigma (make_judge current typ) indt in sigma, j.uj_val in sigma, (current, try_find_ind !!(pb.env) sigma indt names)) | _ -> sigma, (current, tmtyp) let type_of_tomatch = function | IsInd (t,_,_) -> t | NotInd (_,t) -> t let map_tomatch_type f = function | IsInd (t,ind,names) -> IsInd (f t,map_inductive_type f ind,names) | NotInd (c,t) -> NotInd (Option.map f c, f t) let liftn_tomatch_type n depth = map_tomatch_type (Vars.liftn n depth) let lift_tomatch_type n = liftn_tomatch_type n 1 (**********************************************************************) (* Utilities on patterns *) let current_pattern eqn = match eqn.patterns with | pat::_ -> pat | [] -> anomaly (Pp.str "Empty list of patterns.") let remove_current_pattern eqn = match eqn.patterns with | pat::pats -> { eqn with patterns = pats; alias_stack = alias_of_pat pat :: eqn.alias_stack } | [] -> anomaly (Pp.str "Empty list of patterns.") let push_current_pattern ~program_mode sigma (cur,ty) eqn = let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in match eqn.patterns with | pat::pats -> let r = Sorts.Relevant in (* TODO relevance *) let _,rhs_env = push_rel ~hypnaming sigma (LocalDef (make_annot (alias_of_pat pat) r,cur,ty)) eqn.rhs.rhs_env in { eqn with rhs = { eqn.rhs with rhs_env = rhs_env }; patterns = pats } | [] -> anomaly (Pp.str "Empty list of patterns.") (* spiwack: like [push_current_pattern] but does not introduce an alias in rhs_env. Aliasing binders are only useful for variables at the root of a pattern matching problem (initial push), so we distinguish the cases. *) let push_noalias_current_pattern eqn = match eqn.patterns with | _::pats -> { eqn with patterns = pats } | [] -> anomaly (Pp.str "push_noalias_current_pattern: Empty list of patterns.") let prepend_pattern tms eqn = {eqn with patterns = tms@eqn.patterns } (**********************************************************************) (* Well-formedness tests *) (* Partial check on patterns *) exception NotAdjustable let rec adjust_local_defs ?loc = function | (pat :: pats, LocalAssum _ :: decls) -> pat :: adjust_local_defs ?loc (pats,decls) | (pats, LocalDef _ :: decls) -> (DAst.make ?loc @@ PatVar Anonymous) :: adjust_local_defs ?loc (pats,decls) | [], [] -> [] | _ -> raise NotAdjustable let check_and_adjust_constructor env ind cstrs pat = match DAst.get pat with | PatVar _ -> pat | PatCstr (((_,i) as cstr),args,alias) -> let loc = pat.CAst.loc in (* Check it is constructor of the right type *) let ind' = inductive_of_constructor cstr in if eq_ind ind' ind then (* Check the constructor has the right number of args *) let ci = cstrs.(i-1) in let nb_args_constr = ci.cs_nargs in if Int.equal (List.length args) nb_args_constr then pat else try let args' = adjust_local_defs ?loc (args, List.rev ci.cs_args) in DAst.make ?loc @@ PatCstr (cstr, args', alias) with NotAdjustable -> error_wrong_numarg_constructor ?loc env cstr nb_args_constr else (* Try to insert a coercion *) try Coercion.inh_pattern_coerce_to ?loc env pat ind' ind with Not_found -> error_bad_constructor ?loc env cstr ind let check_all_variables env sigma typ mat = List.iter (fun eqn -> let pat = current_pattern eqn in match DAst.get pat with | PatVar id -> () | PatCstr (cstr_sp,_,_) -> let loc = pat.CAst.loc in error_bad_pattern ?loc env sigma cstr_sp typ) mat let check_unused_pattern env eqn = if not !(eqn.used) then raise_pattern_matching_error ?loc:eqn.eqn_loc (env, Evd.empty, UnusedClause eqn.patterns) let set_used_pattern eqn = eqn.used := true let extract_rhs pb = match pb.mat with | [] -> user_err ~hdr:"build_leaf" (msg_may_need_inversion()) | eqn::_ -> set_used_pattern eqn; eqn.rhs (**********************************************************************) (* Functions to deal with matrix factorization *) let occur_in_rhs na rhs = match na with | Anonymous -> false | Name id -> Id.Set.mem id rhs.rhs_vars let is_dep_patt_in eqn pat = match DAst.get pat with | PatVar name -> occur_in_rhs name eqn.rhs | PatCstr _ -> true let mk_dep_patt_row ~program_mode (pats,_,eqn) = if program_mode then List.map (fun _ -> true) pats else List.map (is_dep_patt_in eqn) pats let dependencies_in_pure_rhs ~program_mode nargs eqns = if List.is_empty eqns then List.make nargs (not program_mode) (* Only "_" patts *) else let deps_rows = List.map (mk_dep_patt_row ~program_mode) eqns in let deps_columns = matrix_transpose deps_rows in List.map (List.exists (fun x -> x)) deps_columns let dependent_decl sigma a = function | LocalAssum (na,t) -> dependent sigma a t | LocalDef (na,c,t) -> dependent sigma a t || dependent sigma a c let rec dep_in_tomatch sigma n = function | (Pushed _ | Alias _ | NonDepAlias) :: l -> dep_in_tomatch sigma n l | Abstract (_,d) :: l -> RelDecl.exists (fun c -> not (noccurn sigma n c)) d || dep_in_tomatch sigma (n+1) l | [] -> false let dependencies_in_rhs ~program_mode sigma nargs current tms eqns = match EConstr.kind sigma current with | Rel n when dep_in_tomatch sigma n tms -> List.make nargs true | _ -> dependencies_in_pure_rhs ~program_mode nargs eqns (* Computing the matrix of dependencies *) (* [find_dependency_list tmi [d(i+1);...;dn]] computes in which declarations [d(i+1);...;dn] the term [tmi] is dependent in. [find_dependencies_signature (used1,...,usedn) ((tm1,d1),...,(tmn,dn))] returns [(deps1,...,depsn)] where [depsi] is a subset of tm(i+1),..,tmn denoting in which of the d(i+1)...dn, the term tmi is dependent. *) let rec find_dependency_list sigma tmblock = function | [] -> [] | (used,tdeps,tm,d)::rest -> let deps = find_dependency_list sigma tmblock rest in if used && List.exists (fun x -> dependent_decl sigma x d) tmblock then match EConstr.kind sigma tm with | Rel n -> List.add_set Int.equal n (List.union Int.equal deps tdeps) | _ -> List.union Int.equal deps tdeps else deps let find_dependencies sigma is_dep_or_cstr_in_rhs (tm,(_,tmtypleaves),d) nextlist = let deps = find_dependency_list sigma (tm::tmtypleaves) nextlist in if is_dep_or_cstr_in_rhs || not (List.is_empty deps) then ((true ,deps,tm,d)::nextlist) else ((false,[] ,tm,d)::nextlist) let find_dependencies_signature sigma deps_in_rhs typs = let l = List.fold_right2 (find_dependencies sigma) deps_in_rhs typs [] in List.map (fun (_,deps,_,_) -> deps) l (* Assume we had terms t1..tq to match in a context xp:Tp,...,x1:T1 |- and xn:Tn has just been regeneralized into x:Tn so that the terms to match are now to be considered in the context xp:Tp,...,x1:T1,x:Tn |-. [relocate_index_tomatch n 1 tomatch] updates t1..tq so that former references to xn1 are now references to x. Note that t1..tq are already adjusted to the context xp:Tp,...,x1:T1,x:Tn |-. [relocate_index_tomatch 1 n tomatch] will go the way back. *) let relocate_index_tomatch sigma n1 n2 = let rec genrec depth = function | [] -> [] | Pushed (b,((c,tm),l,na)) :: rest -> let c = relocate_index sigma n1 n2 depth c in let tm = map_tomatch_type (relocate_index sigma n1 n2 depth) tm in let l = List.map (relocate_rel n1 n2 depth) l in Pushed (b,((c,tm),l,na)) :: genrec depth rest | Alias (initial,(na,c,d)) :: rest -> (* [c] is out of relocation scope *) Alias (initial,(na,c,map_pair (relocate_index sigma n1 n2 depth) d)) :: genrec depth rest | NonDepAlias :: rest -> NonDepAlias :: genrec depth rest | Abstract (i,d) :: rest -> let i = relocate_rel n1 n2 depth i in Abstract (i, RelDecl.map_constr (fun c -> relocate_index sigma n1 n2 depth c) d) :: genrec (depth+1) rest in genrec 0 (* [replace_tomatch n c tomatch] replaces [Rel n] by [c] in [tomatch] *) let rec replace_term sigma n c k t = if isRel sigma t && Int.equal (destRel sigma t) (n + k) then Vars.lift k c else EConstr.map_with_binders sigma succ (replace_term sigma n c) k t let length_of_tomatch_type_sign na t = let l = match na with | Anonymous -> 0 | Name _ -> 1 in match t with | NotInd _ -> l | IsInd (_, _, names) -> List.length names + l let replace_tomatch sigma n c = let rec replrec depth = function | [] -> [] | Pushed (initial,((b,tm),l,na)) :: rest -> let b = replace_term sigma n c depth b in let tm = map_tomatch_type (replace_term sigma n c depth) tm in List.iter (fun i -> if Int.equal i (n + depth) then anomaly (Pp.str "replace_tomatch.")) l; Pushed (initial,((b,tm),l,na)) :: replrec depth rest | Alias (initial,(na,b,d)) :: rest -> (* [b] is out of replacement scope *) Alias (initial,(na,b,map_pair (replace_term sigma n c depth) d)) :: replrec depth rest | NonDepAlias :: rest -> NonDepAlias :: replrec depth rest | Abstract (i,d) :: rest -> Abstract (i, RelDecl.map_constr (fun t -> replace_term sigma n c depth t) d) :: replrec (depth+1) rest in replrec 0 (* [liftn_tomatch_stack]: a term to match has just been substituted by some constructor t = (ci x1...xn) and the terms x1 ... xn have been added to match; all pushed terms to match must be lifted by n (knowing that [Abstract] introduces a binder in the list of pushed terms to match). *) let rec liftn_tomatch_stack n depth = function | [] -> [] | Pushed (initial,((c,tm),l,na))::rest -> let c = liftn n depth c in let tm = liftn_tomatch_type n depth tm in let l = List.map (fun i -> if i<depth then i else i+n) l in Pushed (initial,((c,tm),l,na))::(liftn_tomatch_stack n depth rest) | Alias (initial,(na,c,d))::rest -> Alias (initial,(na,liftn n depth c,map_pair (liftn n depth) d)) ::(liftn_tomatch_stack n depth rest) | NonDepAlias :: rest -> NonDepAlias :: liftn_tomatch_stack n depth rest | Abstract (i,d)::rest -> let i = if i<depth then i else i+n in Abstract (i, RelDecl.map_constr (liftn n depth) d) ::(liftn_tomatch_stack n (depth+1) rest) let lift_tomatch_stack n = liftn_tomatch_stack n 1 (* if [current] has type [I(p1...pn u1...um)] and we consider the case of constructor [ci] of type [I(p1...pn u'1...u'm)], then the default variable [name] is expected to have which type? Rem: [current] is [(Rel i)] except perhaps for initial terms to match *) (************************************************************************) (* Some heuristics to get names for variables pushed in pb environment *) (* Typical requirement: [match y with (S (S x)) => x | x => x end] should be compiled into [match y with O => y | (S n) => match n with O => y | (S x) => x end end] and [match y with (S (S n)) => n | n => n end] into [match y with O => y | (S n0) => match n0 with O => y | (S n) => n end end] i.e. user names should be preserved and created names should not interfere with user names The exact names here are not important for typing (because they are put in pb.env and not in the rhs.rhs_env of branches. However, whether a name is Anonymous or not may have an effect on whether a generalization is done or not. *) let merge_name get_name obj = function | Anonymous -> get_name obj | na -> na let merge_names get_name = List.map2 (merge_name get_name) let get_names avoid env sigma sign eqns = let names1 = List.make (Context.Rel.length sign) Anonymous in (* If any, we prefer names used in pats, from top to bottom *) let names2,aliasname = List.fold_right (fun (pats,pat_alias,eqn) (names,aliasname) -> (merge_names alias_of_pat pats names, merge_name (fun x -> x) pat_alias aliasname)) eqns (names1,Anonymous) in (* Otherwise, we take names from the parameters of the constructor but avoiding conflicts with user ids *) let allvars = List.fold_left (fun l (_,_,eqn) -> Id.Set.union l eqn.rhs.avoid_ids) avoid eqns in let names3,_ = List.fold_left2 (fun (l,avoid) d na -> let na = merge_name (fun decl -> let na = get_name decl in let t = get_type decl in Name (next_name_away (named_hd env sigma t na) avoid)) d na in (na::l,Id.Set.add (Name.get_id na) avoid)) ([],allvars) (List.rev sign) names2 in names3,aliasname (*****************************************************************) (* Recovering names for variables pushed to the rhs' environment *) (* We just factorized a match over a matrix of equations *) (* "C xi1 .. xin as xi" as a single match over "C y1 .. yn as y" *) (* We now replace the names y1 .. yn y by the actual names *) (* xi1 .. xin xi to be found in the i-th clause of the matrix *) let recover_initial_subpattern_names = List.map2 RelDecl.set_name let recover_and_adjust_alias_names (_,avoid) names sign = let rec aux = function | [],[] -> [] | x::names, LocalAssum (x',t)::sign -> (x, LocalAssum ({x' with binder_name=alias_of_pat x},t)) :: aux (names,sign) | names, (LocalDef (na,_,_) as decl)::sign -> (DAst.make @@ PatVar na.binder_name, decl) :: aux (names,sign) | _ -> assert false in List.split (aux (names,sign)) let push_rels_eqn ~hypnaming sigma sign eqn = {eqn with rhs = {eqn.rhs with rhs_env = snd (push_rel_context ~hypnaming sigma sign eqn.rhs.rhs_env) } } let push_rels_eqn_with_names sigma sign eqn = let subpats = List.rev (List.firstn (List.length sign) eqn.patterns) in let subpatnames = List.map alias_of_pat subpats in let sign = recover_initial_subpattern_names subpatnames sign in push_rels_eqn sigma sign eqn let push_generalized_decl_eqn ~hypnaming env sigma n decl eqn = match RelDecl.get_name decl with | Anonymous -> push_rels_eqn ~hypnaming sigma [decl] eqn | Name _ -> push_rels_eqn ~hypnaming sigma [RelDecl.set_name (RelDecl.get_name (Environ.lookup_rel n !!(eqn.rhs.rhs_env))) decl] eqn let drop_alias_eqn eqn = { eqn with alias_stack = List.tl eqn.alias_stack } let push_alias_eqn sigma alias eqn = let aliasname = List.hd eqn.alias_stack in let eqn = drop_alias_eqn eqn in let alias = RelDecl.set_name aliasname alias in push_rels_eqn sigma [alias] eqn (**********************************************************************) (* Functions to deal with elimination predicate *) (* Inferring the predicate *) (* The problem to solve is the following: We match Gamma |- t : I(u01..u0q) against the following constructors: Gamma, x11...x1p1 |- C1(x11..x1p1) : I(u11..u1q) ... Gamma, xn1...xnpn |- Cn(xn1..xnp1) : I(un1..unq) Assume the types in the branches are the following Gamma, x11...x1p1 |- branch1 : T1 ... Gamma, xn1...xnpn |- branchn : Tn Assume the type of the global case expression is Gamma |- T The predicate has the form phi = [y1..yq][z:I(y1..yq)]psi and it has to satisfy the following n+1 equations: Gamma, x11...x1p1 |- (phi u11..u1q (C1 x11..x1p1)) = T1 ... Gamma, xn1...xnpn |- (phi un1..unq (Cn xn1..xnpn)) = Tn Gamma |- (phi u01..u0q t) = T Some hints: - Clearly, if xij occurs in Ti, then, a "match z with (Ci xi1..xipi) => ... end" or a "psi(yk)", with psi extracting xij from uik, should be inserted somewhere in Ti. - If T is undefined, an easy solution is to insert a "match z with (Ci xi1..xipi) => ... end" in front of each Ti - Otherwise, T1..Tn and T must be step by step unified, if some of them diverge, then try to replace the diverging subterm by one of y1..yq or z. - The main problem is what to do when an existential variables is encountered *) (* Propagation of user-provided predicate through compilation steps *) let rec map_predicate f k ccl = function | [] -> f k ccl | Pushed (_,((_,tm),_,na)) :: rest -> let k' = length_of_tomatch_type_sign na tm in map_predicate f (k+k') ccl rest | (Alias _ | NonDepAlias) :: rest -> map_predicate f k ccl rest | Abstract _ :: rest -> map_predicate f (k+1) ccl rest let noccur_predicate_between sigma n = map_predicate (noccur_between sigma n) let liftn_predicate n = map_predicate (liftn n) let lift_predicate n = liftn_predicate n 1 let regeneralize_index_predicate sigma n = map_predicate (relocate_index sigma n 1) 0 let substnl_predicate sigma = map_predicate (substnl sigma) (* This is parallel bindings *) let subst_predicate (subst,copt) ccl tms = let sigma = match copt with | None -> subst | Some c -> c::subst in substnl_predicate sigma 0 ccl tms let specialize_predicate_var (cur,typ,dep) env tms ccl = let c = match dep with | Anonymous -> None | Name _ -> Some cur in let l = match typ with | IsInd (_, IndType (_, _), []) -> [] | IsInd (_, IndType (indf, realargs), names) -> let arsign,_ = get_arity env indf in let arsign = List.map EConstr.of_rel_decl arsign in subst_of_rel_context_instance arsign realargs | NotInd _ -> [] in subst_predicate (l,c) ccl tms (*****************************************************************************) (* We have pred = [X:=realargs;x:=c]P typed in Gamma1, x:I(realargs), Gamma2 *) (* and we want to abstract P over y:t(x) typed in the same context to get *) (* *) (* pred' = [X:=realargs;x':=c](y':t(x'))P[y:=y'] *) (* *) (* We first need to lift t(x) s.t. it is typed in Gamma, X:=rargs, x' *) (* then we have to replace x by x' in t(x) and y by y' in P *) (*****************************************************************************) let generalize_predicate sigma (names,na) ny d tms ccl = let () = match na with | Anonymous -> anomaly (Pp.str "Undetected dependency.") | _ -> () in let p = List.length names + 1 in let ccl = lift_predicate 1 ccl tms in regeneralize_index_predicate sigma (ny+p+1) ccl tms (*****************************************************************************) (* We just matched over cur:ind(realargs) in the following matching problem *) (* *) (* env |- match cur tms return ccl with ... end *) (* *) (* and we want to build the predicate corresponding to the individual *) (* matching over cur *) (* *) (* pred = fun X:realargstyps x:ind(X)] PI tms.ccl *) (* *) (* where pred is computed by abstract_predicate and PI tms.ccl by *) (* extract_predicate *) (*****************************************************************************) let rec extract_predicate ccl = function | (Alias _ | NonDepAlias)::tms -> (* substitution already done in build_branch *) extract_predicate ccl tms | Abstract (i,d)::tms -> mkProd_wo_LetIn d (extract_predicate ccl tms) | Pushed (_,((cur,NotInd _),_,na))::tms -> begin match na with | Anonymous -> extract_predicate ccl tms | Name _ -> let tms = lift_tomatch_stack 1 tms in let pred = extract_predicate ccl tms in subst1 cur pred end | Pushed (_,((cur,IsInd (_,IndType(_,realargs),_)),_,na))::tms -> let realargs = List.rev realargs in let k, nrealargs = match na with | Anonymous -> 0, realargs | Name _ -> 1, (cur :: realargs) in let tms = lift_tomatch_stack (List.length realargs + k) tms in let pred = extract_predicate ccl tms in substl nrealargs pred | [] -> ccl let abstract_predicate env sigma indf cur realargs (names,na) tms ccl = let sign = make_arity_signature !!env sigma true indf in (* n is the number of real args + 1 (+ possible let-ins in sign) *) let n = List.length sign in (* Before abstracting we generalize over cur and on those realargs *) (* that are rels, consistently with the specialization made in *) (* build_branch *) let tms = List.fold_right2 (fun par arg tomatch -> match EConstr.kind sigma par with | Rel i -> relocate_index_tomatch sigma (i+n) (destRel sigma arg) tomatch | _ -> tomatch) (realargs@[cur]) (Context.Rel.to_extended_list EConstr.mkRel 0 sign) (lift_tomatch_stack n tms) in (* Pred is already dependent in the current term to match (if *) (* (na<>Anonymous) and its realargs; we just need to adjust it to *) (* full sign if dep in cur is not taken into account *) let ccl = match na with | Anonymous -> lift_predicate 1 ccl tms | Name _ -> ccl in let pred = extract_predicate ccl tms in (* Build the predicate properly speaking *) let sign = List.map2 set_name (na::names) sign in it_mkLambda_or_LetIn_name !!env sigma pred sign (* [expand_arg] is used by [specialize_predicate] if Yk denotes [Xk;xk] or [Xk], it replaces gamma, x1...xn, x1...xk Yk+1...Yn |- pred by gamma, x1...xn, x1...xk-1 [Xk;xk] Yk+1...Yn |- pred (if dep) or by gamma, x1...xn, x1...xk-1 [Xk] Yk+1...Yn |- pred (if not dep) *) let expand_arg tms (p,ccl) ((_,t),_,na) = let k = length_of_tomatch_type_sign na t in (p+k,liftn_predicate (k-1) (p+1) ccl tms) let use_unit_judge env evd = let j, ctx = coq_unit_judge !!env in let evd' = Evd.merge_context_set Evd.univ_flexible evd ctx in evd', j let add_assert_false_case pb tomatch = let pats = List.map (fun _ -> DAst.make @@ PatVar Anonymous) tomatch in let aliasnames = List.map_filter (function Alias _ | NonDepAlias -> Some Anonymous | _ -> None) tomatch in [ { patterns = pats; rhs = { rhs_env = pb.env; rhs_vars = Id.Set.empty; avoid_ids = Id.Set.empty; it = None }; alias_stack = Anonymous::aliasnames; eqn_loc = None; used = ref false } ] let adjust_impossible_cases sigma pb pred tomatch submat = match submat with | [] -> (* FIXME: This breaks if using evar-insensitive primitives. In particular, this means that the Evd.define below may redefine an already defined evar. See e.g. first definition of test for bug #3388. *) let pred = EConstr.Unsafe.to_constr pred in begin match Constr.kind pred with | Evar (evk,_) when snd (evar_source evk sigma) == Evar_kinds.ImpossibleCase -> let sigma = if not (Evd.is_defined sigma evk) then let sigma, default = use_unit_judge pb.env sigma in let sigma = Evd.define evk default.uj_type sigma in sigma else sigma in sigma, add_assert_false_case pb tomatch | _ -> sigma, submat end | _ -> sigma, submat (*****************************************************************************) (* Let pred = PI [X;x:I(X)]. PI tms. P be a typing predicate for the *) (* following pattern-matching problem: *) (* *) (* Gamma |- match Pushed(c:I(V)) as x in I(X), tms return pred with...end *) (* *) (* where the branch with constructor Ci:(x1:T1)...(xn:Tn)->I(realargsi) *) (* is considered. Assume each Ti is some Ii(argsi) with Ti:PI Ui. sort_i *) (* We let subst = X:=realargsi;x:=Ci(x1,...,xn) and replace pred by *) (* *) (* pred' = PI [X1:Ui;x1:I1(X1)]...[Xn:Un;xn:In(Xn)]. (PI tms. P)[subst] *) (* *) (* s.t. the following well-typed sub-pattern-matching problem is obtained *) (* *) (* Gamma,x'1..x'n |- *) (* match *) (* Pushed(x'1) as x1 in I(X1), *) (* .., *) (* Pushed(x'n) as xn in I(Xn), *) (* tms *) (* return pred' *) (* with .. end *) (* *) (*****************************************************************************) let specialize_predicate newtomatchs (names,depna) arsign cs tms ccl = (* Assume some gamma st: gamma |- PI [X,x:I(X)]. PI tms. ccl *) let nrealargs = List.length names in let l = match depna with Anonymous -> 0 | Name _ -> 1 in let k = nrealargs + l in (* We adjust pred st: gamma, x1..xn |- PI [X,x:I(X)]. PI tms. ccl' *) (* so that x can later be instantiated by Ci(x1..xn) *) (* and X by the realargs for Ci *) let n = cs.cs_nargs in let ccl' = liftn_predicate n (k+1) ccl tms in (* We prepare the substitution of X and x:I(X) *) let realargsi = if not (Int.equal nrealargs 0) then CVars.subst_of_rel_context_instance arsign (Array.to_list cs.cs_concl_realargs) else [] in let realargsi = List.map EConstr.of_constr realargsi in let copti = match depna with | Anonymous -> None | Name _ -> Some (EConstr.of_constr (build_dependent_constructor cs)) in (* The substituends realargsi, copti are all defined in gamma, x1...xn *) (* We need _parallel_ bindings to get gamma, x1...xn |- PI tms. ccl'' *) (* Note: applying the substitution in tms is not important (is it sure?) *) let ccl'' = whd_betaiota Evd.empty (subst_predicate (realargsi, copti) ccl' tms) in (* We adjust ccl st: gamma, x'1..x'n, x1..xn, tms |- ccl'' *) let ccl''' = liftn_predicate n (n+1) ccl'' tms in (* We finally get gamma,x'1..x'n,x |- [X1;x1:I(X1)]..[Xn;xn:I(Xn)]pred'''*) snd (List.fold_left (expand_arg tms) (1,ccl''') newtomatchs) let find_predicate loc env sigma p current (IndType (indf,realargs)) dep tms = let pred = abstract_predicate env sigma indf current realargs dep tms p in (pred, whd_betaiota sigma (applist (pred, realargs@[current]))) (* Take into account that a type has been discovered to be inductive, leading to more dependencies in the predicate if the type has indices *) let adjust_predicate_from_tomatch tomatch (current,typ as ct) pb = let ((_,oldtyp),deps,na) = tomatch in match typ, oldtyp with | IsInd (_,_,names), NotInd _ -> let k = match na with | Anonymous -> 1 | Name _ -> 2 in let n = List.length names in { pb with pred = liftn_predicate n k pb.pred pb.tomatch }, (ct,List.map (fun i -> if i >= k then i+n else i) deps,na) | _ -> pb, (ct,deps,na) (* Remove commutative cuts that turn out to be non-dependent after some evars have been instantiated *) let rec ungeneralize sigma n ng body = match EConstr.kind sigma body with | Lambda (_,_,c) when Int.equal ng 0 -> subst1 (mkRel n) c | Lambda (na,t,c) -> (* We traverse an inner generalization *) mkLambda (na,t,ungeneralize sigma (n+1) (ng-1) c) | LetIn (na,b,t,c) -> (* We traverse an alias *) mkLetIn (na,b,t,ungeneralize sigma (n+1) ng c) | Case (ci,p,c,brs) -> (* We traverse a split *) let p = let sign,p = decompose_lam_assum sigma p in let sign2,p = decompose_prod_n_assum sigma ng p in let p = prod_applist sigma p [mkRel (n+List.length sign+ng)] in it_mkLambda_or_LetIn (it_mkProd_or_LetIn p sign2) sign in mkCase (ci,p,c,Array.map2 (fun q c -> let sign,b = decompose_lam_n_decls sigma q c in it_mkLambda_or_LetIn (ungeneralize sigma (n+q) ng b) sign) ci.ci_cstr_ndecls brs) | App (f,args) -> (* We traverse an inner generalization *) assert (isCase sigma f); mkApp (ungeneralize sigma n (ng+Array.length args) f,args) | _ -> assert false let ungeneralize_branch sigma n k (sign,body) cs = (sign,ungeneralize sigma (n+cs.cs_nargs) k body) let rec is_dependent_generalization sigma ng body = match EConstr.kind sigma body with | Lambda (_,_,c) when Int.equal ng 0 -> not (noccurn sigma 1 c) | Lambda (na,t,c) -> (* We traverse an inner generalization *) is_dependent_generalization sigma (ng-1) c | LetIn (na,b,t,c) -> (* We traverse an alias *) is_dependent_generalization sigma ng c | Case (ci,p,c,brs) -> (* We traverse a split *) Array.exists2 (fun q c -> let _,b = decompose_lam_n_decls sigma q c in is_dependent_generalization sigma ng b) ci.ci_cstr_ndecls brs | App (g,args) -> (* We traverse an inner generalization *) assert (isCase sigma g); is_dependent_generalization sigma (ng+Array.length args) g | _ -> assert false let is_dependent_branch sigma k (_,br) = is_dependent_generalization sigma k br let postprocess_dependencies evd tocheck brs tomatch pred deps cs = let rec aux k brs tomatch pred tocheck deps = match deps, tomatch with | [], _ -> brs,tomatch,pred,[] | n::deps, Abstract (i,d) :: tomatch -> let d = map_constr (fun c -> nf_evar evd c) d in let is_d = match d with LocalAssum _ -> false | LocalDef _ -> true in if is_d || List.exists (fun c -> dependent_decl evd (lift k c) d) tocheck && Array.exists (is_dependent_branch evd k) brs then (* Dependency in the current term to match and its dependencies is real *) let brs,tomatch,pred,inst = aux (k+1) brs tomatch pred (mkRel n::tocheck) deps in let inst = match d with | LocalAssum _ -> mkRel n :: inst | _ -> inst in brs, Abstract (i,d) :: tomatch, pred, inst else (* Finally, no dependency remains, so, we can replace the generalized *) (* terms by its actual value in both the remaining terms to match and *) (* the bodies of the Case *) let pred = lift_predicate (-1) pred tomatch in let tomatch = relocate_index_tomatch evd 1 (n+1) tomatch in let tomatch = lift_tomatch_stack (-1) tomatch in let brs = Array.map2 (ungeneralize_branch evd n k) brs cs in aux k brs tomatch pred tocheck deps | _ -> assert false in aux 0 brs tomatch pred tocheck deps (************************************************************************) (* Sorting equations by constructor *) let rec irrefutable env pat = match DAst.get pat with | PatVar name -> true | PatCstr (cstr,args,_) -> let ind = inductive_of_constructor cstr in let (_,mip) = Inductive.lookup_mind_specif env ind in let one_constr = Int.equal (Array.length mip.mind_user_lc) 1 in one_constr && List.for_all (irrefutable env) args let first_clause_irrefutable env = function | eqn::mat -> List.for_all (irrefutable env) eqn.patterns | _ -> false let group_equations pb ind current cstrs mat = let mat = if first_clause_irrefutable !!(pb.env) mat then [List.hd mat] else mat in let brs = Array.make (Array.length cstrs) [] in let only_default = ref None in let _ = List.fold_right (* To be sure it's from bottom to top *) (fun eqn () -> let rest = remove_current_pattern eqn in let pat = current_pattern eqn in match DAst.get (check_and_adjust_constructor !!(pb.env) ind cstrs pat) with | PatVar name -> (* This is a default clause that we expand *) for i=1 to Array.length cstrs do let args = make_anonymous_patvars cstrs.(i-1).cs_nargs in brs.(i-1) <- (args, name, rest) :: brs.(i-1) done; if !only_default == None then only_default := Some true | PatCstr (((_,i)),args,name) -> (* This is a regular clause *) only_default := Some false; brs.(i-1) <- (args, name, rest) :: brs.(i-1)) mat () in (brs,Option.default false !only_default) (************************************************************************) (* Here starts the pattern-matching compilation algorithm *) (* Abstracting over dependent subterms to match *) let rec generalize_problem names sigma pb = function | [] -> pb, [] | i::l -> let pb',deps = generalize_problem names sigma pb l in let d = map_constr (lift i) (lookup_rel i !!(pb.env)) in begin match d with | LocalDef ({binder_name=Anonymous},_,_) -> pb', deps | _ -> (* for better rendering *) let d = RelDecl.map_type (fun c -> whd_betaiota sigma c) d in let tomatch = lift_tomatch_stack 1 pb'.tomatch in let tomatch = relocate_index_tomatch sigma (i+1) 1 tomatch in { pb' with tomatch = Abstract (i,d) :: tomatch; pred = generalize_predicate sigma names i d pb'.tomatch pb'.pred }, i::deps end (* No more patterns: typing the right-hand side of equations *) let build_leaf sigma pb = let rhs = extract_rhs pb in let sigma, j = pb.typing_function (mk_tycon pb.pred) rhs.rhs_env sigma rhs.it in sigma, j_nf_evar sigma j (* Build the sub-pattern-matching problem for a given branch "C x1..xn as x" *) (* spiwack: the [initial] argument keeps track whether the branch is a toplevel branch ([true]) or a deep one ([false]). *) let build_branch ~program_mode initial current realargs deps (realnames,curname) sigma pb arsign eqns const_info = (* We remember that we descend through constructor C *) let history = push_history_pattern const_info.cs_nargs (fst const_info.cs_cstr) pb.history in (* We prepare the matching on x1:T1 .. xn:Tn using some heuristic to *) (* build the name x1..xn from the names present in the equations *) (* that had matched constructor C *) let cs_args = const_info.cs_args in let cs_args = List.map (fun d -> map_rel_decl EConstr.of_constr d) cs_args in let names,aliasname = get_names (GlobEnv.vars_of_env pb.env) !!(pb.env) sigma cs_args eqns in let typs = List.map2 RelDecl.set_name names cs_args in (* Beta-iota-normalize types to better compatibility of refine with 8.4 behavior *) (* This is a bit too strong I think, in the sense that what we would *) (* really like is to have beta-iota reduction only at the positions where *) (* parameters are substituted *) let typs = List.map (map_type (nf_betaiota !!(pb.env) sigma)) typs in (* We build the matrix obtained by expanding the matching on *) (* "C x1..xn as x" followed by a residual matching on eqn into *) (* a matching on "x1 .. xn eqn" *) let submat = List.map (fun (tms,_,eqn) -> prepend_pattern tms eqn) eqns in (* We adjust the terms to match in the context they will be once the *) (* context [x1:T1,..,xn:Tn] will have been pushed on the current env *) let typs' = List.map_i (fun i d -> (mkRel i, map_constr (lift i) d)) 1 typs in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let typs,extenv = push_rel_context ~hypnaming sigma typs pb.env in let typs' = List.map (fun (c,d) -> (c,extract_inductive_data !!extenv sigma d,d)) typs' in (* We compute over which of x(i+1)..xn and x matching on xi will need a *) (* generalization *) let dep_sign = find_dependencies_signature sigma (dependencies_in_rhs ~program_mode sigma const_info.cs_nargs current pb.tomatch eqns) (List.rev typs') in (* The dependent term to subst in the types of the remaining UnPushed terms is relative to the current context enriched by topushs *) let ci = EConstr.of_constr (build_dependent_constructor const_info) in (* Current context Gamma has the form Gamma1;cur:I(realargs);Gamma2 *) (* We go from Gamma |- PI tms. pred to *) (* Gamma;x1..xn;curalias:I(x1..xn) |- PI tms'. pred' *) (* where, in tms and pred, those realargs that are vars are *) (* replaced by the corresponding xi and cur replaced by curalias *) let cirealargs = Array.map_to_list EConstr.of_constr const_info.cs_concl_realargs in (* Do the specialization for terms to match *) let tomatch = List.fold_right2 (fun par arg tomatch -> match EConstr.kind sigma par with | Rel i -> replace_tomatch sigma (i+const_info.cs_nargs) arg tomatch | _ -> tomatch) (current::realargs) (ci::cirealargs) (lift_tomatch_stack const_info.cs_nargs pb.tomatch) in let pred_is_not_dep = noccur_predicate_between sigma 1 (List.length realnames + 1) pb.pred tomatch in let typs' = List.map2 (fun (tm, (tmtyp,_), decl) deps -> let na = RelDecl.get_name decl in let na = match curname, na with | Name _, Anonymous -> curname | Name _, Name _ -> na | Anonymous, _ -> if List.is_empty deps && pred_is_not_dep then Anonymous else force_name na in ((tm,tmtyp),deps,na)) typs' (List.rev dep_sign) in (* Do the specialization for the predicate *) let pred = specialize_predicate typs' (realnames,curname) arsign const_info tomatch pb.pred in let currents = List.map (fun x -> Pushed (false,x)) typs' in let alias = match aliasname with | Anonymous -> NonDepAlias | Name _ -> let cur_alias = lift const_info.cs_nargs current in let ind = mkApp ( applist (mkIndU (inductive_of_constructor (fst const_info.cs_cstr), EInstance.make (snd const_info.cs_cstr)), List.map (EConstr.of_constr %> lift const_info.cs_nargs) const_info.cs_params), Array.map EConstr.of_constr const_info.cs_concl_realargs) in Alias (initial,(aliasname,cur_alias,(ci,ind))) in let tomatch = List.rev_append (alias :: currents) tomatch in let sigma, submat = adjust_impossible_cases sigma pb pred tomatch submat in let () = match submat with | [] -> raise_pattern_matching_error (!!(pb.env), Evd.empty, NonExhaustive (complete_history history)) | _ -> () in sigma, typs, { pb with env = extenv; tomatch = tomatch; pred = pred; history = history; mat = List.map (push_rels_eqn_with_names ~hypnaming sigma typs) submat } (********************************************************************** INVARIANT: pb = { env, pred, tomatch, mat, ...} tomatch = list of Pushed (c:T), Abstract (na:T), Alias (c:T) or NonDepAlias all terms and types in Pushed, Abstract and Alias are relative to env enriched by the Abstract coming before *) (**********************************************************************) (* Main compiling descent *) let compile ~program_mode sigma pb = let rec compile sigma pb = match pb.tomatch with | Pushed cur :: rest -> match_current sigma { pb with tomatch = rest } cur | Alias (initial,x) :: rest -> compile_alias initial sigma pb x rest | NonDepAlias :: rest -> compile_non_dep_alias sigma pb rest | Abstract (i,d) :: rest -> compile_generalization sigma pb i d rest | [] -> build_leaf sigma pb (* Case splitting *) and match_current sigma pb (initial,tomatch) = let sigma, tm = adjust_tomatch_to_pattern ~program_mode sigma pb tomatch in let pb,tomatch = adjust_predicate_from_tomatch tomatch tm pb in let ((current,typ),deps,dep) = tomatch in match typ with | NotInd (_,typ) -> check_all_variables !!(pb.env) sigma typ pb.mat; compile_all_variables initial tomatch sigma pb | IsInd (_,(IndType(indf,realargs) as indt),names) -> let mind,_ = dest_ind_family indf in let mind = Tacred.check_privacy !!(pb.env) mind in let cstrs = get_constructors !!(pb.env) indf in let arsign, _ = get_arity !!(pb.env) indf in let eqns,onlydflt = group_equations pb (fst mind) current cstrs pb.mat in let no_cstr = Int.equal (Array.length cstrs) 0 in if (not no_cstr || not (List.is_empty pb.mat)) && onlydflt then compile_all_variables initial tomatch sigma pb else (* We generalize over terms depending on current term to match *) let pb,deps = generalize_problem (names,dep) sigma pb deps in (* We compile branches *) let fold_br sigma eqn cstr = compile_branch initial current realargs (names,dep) deps sigma pb arsign eqn cstr in let sigma, brvals = Array.fold_left2_map fold_br sigma eqns cstrs in (* We build the (elementary) case analysis *) let depstocheck = current::binding_vars_of_inductive sigma typ in let brvals,tomatch,pred,inst = postprocess_dependencies sigma depstocheck brvals pb.tomatch pb.pred deps cstrs in let brvals = Array.map (fun (sign,body) -> it_mkLambda_or_LetIn body sign) brvals in let (pred,typ) = find_predicate pb.caseloc pb.env sigma pred current indt (names,dep) tomatch in let rci = Typing.check_allowed_sort !!(pb.env) sigma mind current pred in let ci = make_case_info !!(pb.env) (fst mind) rci pb.casestyle in let pred = nf_betaiota !!(pb.env) sigma pred in let case = make_case_or_project !!(pb.env) sigma indf ci pred current brvals in let sigma, _ = Typing.type_of !!(pb.env) sigma pred in sigma, { uj_val = applist (case, inst); uj_type = prod_applist sigma typ inst } (* Building the sub-problem when all patterns are variables. Case where [current] is an initially pushed term. *) and shift_problem ((current,t),_,na) sigma pb = let ty = type_of_tomatch t in let tomatch = lift_tomatch_stack 1 pb.tomatch in let pred = specialize_predicate_var (current,t,na) !!(pb.env) pb.tomatch pb.pred in let env = Name.fold_left (fun env id -> hide_variable env Anonymous id) pb.env na in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let pb = { pb with env = snd (push_rel ~hypnaming sigma (LocalDef (annotR na,current,ty)) env); tomatch = tomatch; pred = lift_predicate 1 pred tomatch; history = pop_history pb.history; mat = List.map (push_current_pattern ~program_mode sigma (current,ty)) pb.mat } in let sigma, j = compile sigma pb in sigma, { uj_val = subst1 current j.uj_val; uj_type = subst1 current j.uj_type } (* Building the sub-problem when all patterns are variables, non-initial case. Variables which appear as subterms of constructor are already introduced in the context, we avoid creating aliases to themselves by treating this case specially. *) and pop_problem ((current,t),_,na) sigma pb = let pred = specialize_predicate_var (current,t,na) !!(pb.env) pb.tomatch pb.pred in let pb = { pb with pred = pred; history = pop_history pb.history; mat = List.map push_noalias_current_pattern pb.mat } in compile sigma pb (* Building the sub-problem when all patterns are variables. *) and compile_all_variables initial cur sigma pb = if initial then shift_problem cur sigma pb else pop_problem cur sigma pb (* Building the sub-problem when all patterns are variables *) and compile_branch initial current realargs names deps sigma pb arsign eqns cstr = let sigma, sign, pb = build_branch ~program_mode initial current realargs deps names sigma pb arsign eqns cstr in let sigma, j = compile sigma pb in sigma, (sign, j.uj_val) (* Abstract over a declaration before continuing splitting *) and compile_generalization sigma pb i d rest = let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let pb = { pb with env = snd (push_rel ~hypnaming sigma d pb.env); tomatch = rest; mat = List.map (push_generalized_decl_eqn ~hypnaming pb.env sigma i d) pb.mat } in let sigma, j = compile sigma pb in sigma, { uj_val = mkLambda_or_LetIn d j.uj_val; uj_type = mkProd_wo_LetIn d j.uj_type } (* spiwack: the [initial] argument keeps track whether the alias has been introduced by a toplevel branch ([true]) or a deep one ([false]). *) and compile_alias initial sigma pb (na,orig,(expanded,expanded_typ)) rest = let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let f c t = let r = Retyping.relevance_of_type !!(pb.env) sigma t in let alias = LocalDef (make_annot na r,c,t) in let pb = { pb with env = snd (push_rel ~hypnaming sigma alias pb.env); tomatch = lift_tomatch_stack 1 rest; pred = lift_predicate 1 pb.pred pb.tomatch; history = pop_history_pattern pb.history; mat = List.map (push_alias_eqn ~hypnaming sigma alias) pb.mat } in let sigma, j = compile sigma pb in sigma, { uj_val = if isRel sigma c || isVar sigma c || count_occurrences sigma (mkRel 1) j.uj_val <= 1 then subst1 c j.uj_val else mkLetIn (make_annot na r,c,t,j.uj_val); uj_type = subst1 c j.uj_type } in (* spiwack: when an alias appears on a deep branch, its non-expanded form is automatically a variable of the same name. We avoid introducing such superfluous aliases so that refines are elegant. *) let just_pop sigma = let pb = { pb with tomatch = rest; history = pop_history_pattern pb.history; mat = List.map drop_alias_eqn pb.mat } in compile sigma pb in (* If the "match" was originally over a variable, as in "match x with O => true | n => n end", we give preference to non-expansion in the default clause (i.e. "match x with O => true | n => n end" rather than "match x with O => true | S p => S p end"; computationally, this avoids reallocating constructors in cbv evaluation; the drawback is that it might duplicate the instances of the term to match when the corresponding variable is substituted by a non-evaluated expression *) if not program_mode && (isRel sigma orig || isVar sigma orig) then (* Try to compile first using non expanded alias *) try if initial then f orig (Retyping.get_type_of !!(pb.env) sigma orig) else just_pop sigma with e when precatchable_exception e -> (* Try then to compile using expanded alias *) (* Could be needed in case of dependent return clause *) f expanded expanded_typ else (* Try to compile first using expanded alias *) try f expanded expanded_typ with e when precatchable_exception e -> (* Try then to compile using non expanded alias *) (* Could be needed in case of a recursive call which requires to be on a variable for size reasons *) if initial then f orig (Retyping.get_type_of !!(pb.env) sigma orig) else just_pop sigma (* Remember that a non-trivial pattern has been consumed *) and compile_non_dep_alias sigma pb rest = let pb = { pb with tomatch = rest; history = pop_history_pattern pb.history; mat = List.map drop_alias_eqn pb.mat } in compile sigma pb in compile sigma pb (* pour les alias des initiaux, enrichir les env de ce qu'il faut et substituer après par les initiaux *) (**************************************************************************) (* Preparation of the pattern-matching problem *) (* builds the matrix of equations testing that each eqn has n patterns * and linearizing the _ patterns. * Syntactic correctness has already been done in constrintern *) let matx_of_eqns env eqns = let build_eqn {CAst.loc;v=(ids,initial_lpat,initial_rhs)} = let avoid = ids_of_named_context_val (named_context_val !!env) in let avoid = List.fold_left (fun accu id -> Id.Set.add id accu) avoid ids in let rhs = { rhs_env = env; rhs_vars = free_glob_vars initial_rhs; avoid_ids = avoid; it = Some initial_rhs } in { patterns = initial_lpat; alias_stack = []; eqn_loc = loc; used = ref false; rhs = rhs } in List.map build_eqn eqns (***************** Building an inversion predicate ************************) (* Let "match t1 in I1 u11..u1n_1 ... tm in Im um1..umn_m with ... end : T" be a pattern-matching problem. We assume that each uij can be decomposed under the form pij(vij1..vijq_ij) where pij(aij1..aijq_ij) is a pattern depending on some variables aijk and the vijk are instances of these variables. We also assume that each ti has the form of a pattern qi(wi1..wiq_i) where qi(bi1..biq_i) is a pattern depending on some variables bik and the wik are instances of these variables (in practice, there is no reason that ti is already constructed and the qi will be degenerated). We then look for a type U(..a1jk..b1 .. ..amjk..bm) so that T = U(..v1jk..t1 .. ..vmjk..tm). This a higher-order matching problem with a priori different solutions (one of them if T itself!). We finally invert the uij and the ti and build the return clause phi(x11..x1n_1y1..xm1..xmn_mym) = match x11..x1n_1 y1 .. xm1..xmn_m ym with | p11..p1n_1 q1 .. pm1..pmn_m qm => U(..a1jk..b1 .. ..amjk..bm) | _ .. _ _ .. _ .. _ _ => True end so that "phi(u11..u1n_1t1..um1..umn_mtm) = T" (note that the clause returning True never happens and any inhabited type can be put instead). *) let adjust_to_extended_env_and_remove_deps env extenv sigma subst t = let n = Context.Rel.length (rel_context !!env) in let n' = Context.Rel.length (rel_context !!extenv) in (* We first remove the bindings that are dependently typed (they are difficult to manage and it is not sure these are so useful in practice); Notes: - [subst] is made of pairs [(id,u)] where id is a name in [extenv] and [u] a term typed in [env]; - [subst0] is made of items [(p,u,(u,ty))] where [ty] is the type of [u] and both are adjusted to [extenv] while [p] is the index of [id] in [extenv] (after expansion of the aliases) *) let map (x, u) = (* d1 ... dn dn+1 ... dn'-p+1 ... dn' *) (* \--env-/ (= x:ty) *) (* \--------------extenv------------/ *) let (p, _, _) = lookup_rel_id x (rel_context !!extenv) in let rec traverse_local_defs p = match lookup_rel p !!extenv with | LocalDef (_,c,_) -> assert (isRel sigma c); traverse_local_defs (p + destRel sigma c) | LocalAssum _ -> p in let p = traverse_local_defs p in let u = lift (n' - n) u in try Some (p, u, expand_vars_in_term !!extenv sigma u) (* pedrot: does this really happen to raise [Failure _]? *) with Failure _ -> None in let subst0 = List.map_filter map subst in let t0 = lift (n' - n) t in (subst0, t0) let push_binder sigma d (k,env,subst) = (k+1,snd (push_rel ~hypnaming:KeepUserNameAndRenameExistingButSectionNames sigma d env),List.map (fun (na,u,d) -> (na,lift 1 u,d)) subst) let rec list_assoc_in_triple x = function [] -> raise Not_found | (a, b, _)::l -> if Int.equal a x then b else list_assoc_in_triple x l (* Let vijk and ti be a set of dependent terms and T a type, all * defined in some environment env. The vijk and ti are supposed to be * instances for variables aijk and bi. * * [abstract_tycon Gamma0 Sigma subst T Gamma] looks for U(..v1jk..t1 .. ..vmjk..tm) * defined in some extended context * "Gamma0, ..a1jk:V1jk.. b1:W1 .. ..amjk:Vmjk.. bm:Wm" * such that env |- T = U(..v1jk..t1 .. ..vmjk..tm). To not commit to * a particular solution, we replace each subterm t in T that unifies with * a subset u1..ul of the vijk and ti by a special evar * ?id(x=t;c1:=c1,..,cl=cl) defined in context Gamma0,x,c1,...,cl |- ?id * (where the c1..cl are the aijk and bi matching the u1..ul), and * similarly for each ti. *) let abstract_tycon ?loc env sigma subst tycon extenv t = let t = nf_betaiota !!env sigma t in (* it helps in some cases to remove K-redex*) let src = match EConstr.kind sigma t with | Evar (evk,_) -> (Loc.tag ?loc @@ Evar_kinds.SubEvar (None,evk)) | _ -> (Loc.tag ?loc @@ Evar_kinds.CasesType true) in let subst0,t0 = adjust_to_extended_env_and_remove_deps env extenv sigma subst t in (* We traverse the type T of the original problem Xi looking for subterms that match the non-constructor part of the constraints (this part is in subst); these subterms are the "good" subterms and we replace them by an evar that may depend (and only depend) on the corresponding convertible subterms of the substitution *) let evdref = ref sigma in let rec aux (k,env,subst as x) t = (* Use a reference because the [map_constr_with_full_binders] does not allow threading a state. *) let sigma = !evdref in match EConstr.kind sigma t with | Rel n when is_local_def (lookup_rel n !!env) -> t | Evar ev -> let ty = get_type_of !!env sigma t in let sigma, ty = refresh_universes (Some false) !!env sigma ty in let inst = List.map_i (fun i _ -> try list_assoc_in_triple i subst0 with Not_found -> mkRel i) 1 (rel_context !!env) in let sigma, ev' = Evarutil.new_evar ~src ~typeclass_candidate:false !!env sigma ty in begin let flags = (default_flags_of TransparentState.full) in match solve_simple_eqn evar_unify flags !!env sigma (None,ev,substl inst ev') with | Success evd -> evdref := evd | UnifFailure _ -> assert false end; ev' | _ -> let good = List.filter (fun (_,u,_) -> is_conv_leq !!env sigma t u) subst in match good with | [] -> map_constr_with_full_binders sigma (push_binder sigma) aux x t | (_, _, u) :: _ -> (* u is in extenv *) let vl = List.map pi1 good in let ty = let ty = get_type_of !!env sigma t in let sigma, res = refresh_universes (Some false) !!env !evdref ty in evdref := sigma; res in let dummy_subst = List.init k (fun _ -> mkProp) in let ty = substl dummy_subst (aux x ty) in let sigma = !evdref in let depvl = free_rels sigma ty in let inst = List.map_i (fun i _ -> if Int.List.mem i vl then u else mkRel i) 1 (rel_context !!extenv) in let map a = match EConstr.kind sigma a with | Rel n -> not (noccurn sigma n u) || Int.Set.mem n depvl | _ -> true in let rel_filter = List.map map inst in let named_filter = List.map (fun d -> local_occur_var sigma (NamedDecl.get_id d) u) (named_context !!extenv) in let filter = Filter.make (rel_filter @ named_filter) in let candidates = List.rev (u :: List.map mkRel vl) in let sigma, ev = Evarutil.new_evar !!extenv ~src ~filter ~candidates ~typeclass_candidate:false sigma ty in let () = evdref := sigma in lift k ev in let ans = aux (0,extenv,subst0) t0 in !evdref, ans let build_tycon ?loc env tycon_env s subst tycon extenv sigma t = let sigma, t, tt = match t with | None -> (* This is the situation we are building a return predicate and we are in an impossible branch *) let n = Context.Rel.length (rel_context !!env) in let n' = Context.Rel.length (rel_context !!tycon_env) in let sigma, (impossible_case_type, u) = Evarutil.new_type_evar (reset_context !!env) ~src:(Loc.tag ?loc Evar_kinds.ImpossibleCase) sigma univ_flexible_alg in (sigma, lift (n'-n) impossible_case_type, mkSort u) | Some t -> let sigma, t = abstract_tycon ?loc tycon_env sigma subst tycon extenv t in let sigma, tt = Typing.type_of !!extenv sigma t in (sigma, t, tt) in match unify_leq_delay !!env sigma tt (mkSort s) with | exception Evarconv.UnableToUnify _ -> anomaly (Pp.str "Build_tycon: should be a type."); | sigma -> sigma, { uj_val = t; uj_type = tt } (* For a multiple pattern-matching problem Xi on t1..tn with return * type T, [build_inversion_problem Gamma Sigma (t1..tn) T] builds a return * predicate for Xi that is itself made by an auxiliary * pattern-matching problem of which the first clause reveals the * pattern structure of the constraints on the inductive types of the t1..tn, * and the second clause is a wildcard clause for catching the * impossible cases. See above "Building an inversion predicate" for * further explanations *) let build_inversion_problem ~program_mode loc env sigma tms t = let make_patvar t (subst,avoid) = let id = next_name_away (named_hd !!env sigma t Anonymous) avoid in DAst.make @@ PatVar (Name id), ((id,t)::subst, Id.Set.add id avoid) in let rec reveal_pattern t (subst,avoid as acc) = match EConstr.kind sigma (whd_all !!env sigma t) with | Construct (cstr,u) -> DAst.make (PatCstr (cstr,[],Anonymous)), acc | App (f,v) when isConstruct sigma f -> let cstr,u = destConstruct sigma f in let n = constructor_nrealargs !!env cstr in let l = List.lastn n (Array.to_list v) in let l,acc = List.fold_right_map reveal_pattern l acc in DAst.make (PatCstr (cstr,l,Anonymous)), acc | _ -> make_patvar t acc in let rec aux n env acc_sign tms acc = match tms with | [] -> [], acc_sign, acc | (t, IsInd (_,IndType(indf,realargs),_)) :: tms -> let patl,acc = List.fold_right_map reveal_pattern realargs acc in let pat,acc = make_patvar t acc in let indf' = lift_inductive_family n indf in let sign = make_arity_signature !!env sigma true indf' in let patl = pat :: List.rev patl in let patl,sign = recover_and_adjust_alias_names acc patl sign in let p = List.length patl in let _,env' = push_rel_context ~hypnaming:KeepUserNameAndRenameExistingButSectionNames sigma sign env in let patl',acc_sign,acc = aux (n+p) env' (sign@acc_sign) tms acc in List.rev_append patl patl',acc_sign,acc | (t, NotInd (bo,typ)) :: tms -> let pat,acc = make_patvar t acc in let d = LocalAssum (annotR (alias_of_pat pat),typ) in let patl,acc_sign,acc = aux (n+1) (snd (push_rel ~hypnaming:KeepUserNameAndRenameExistingButSectionNames sigma d env)) (d::acc_sign) tms acc in pat::patl,acc_sign,acc in let avoid0 = GlobEnv.vars_of_env env in (* [patl] is a list of patterns revealing the substructure of constructors present in the constraints on the type of the multiple terms t1..tn that are matched in the original problem; [subst] is the substitution of the free pattern variables in [patl] that returns the non-constructor parts of the constraints. Especially, if the ti has type I ui1..uin_i, and the patterns associated to ti are pi1..pin_i, then subst(pij) is uij; the substitution is useful to recognize which subterms of the whole type T of the original problem have to be abstracted *) let patl,sign,(subst,avoid) = aux 0 env [] tms ([],avoid0) in let n = List.length sign in let decls = List.map_i (fun i d -> (mkRel i, map_constr (lift i) d)) 1 sign in let _,pb_env = push_rel_context ~hypnaming:KeepUserNameAndRenameExistingButSectionNames sigma sign env in let decls = List.map (fun (c,d) -> (c,extract_inductive_data !!(pb_env) sigma d,d)) decls in let decls = List.rev decls in let dep_sign = find_dependencies_signature sigma (List.make n true) decls in let sub_tms = List.map2 (fun deps (tm, (tmtyp,_), decl) -> let na = if List.is_empty deps then Anonymous else force_name (RelDecl.get_name decl) in Pushed (true,((tm,tmtyp),deps,na))) dep_sign decls in let subst = List.map (fun (na,t) -> (na,lift n t)) subst in (* [main_eqn] is the main clause of the auxiliary pattern-matching that serves as skeleton for the return type: [patl] is the substructure of constructors extracted from the list of constraints on the inductive types of the multiple terms matched in the original pattern-matching problem Xi *) let main_eqn = { patterns = patl; alias_stack = []; eqn_loc = None; used = ref false; rhs = { rhs_env = pb_env; (* we assume all vars are used; in practice we discard dependent vars so that the field rhs_vars is normally not used *) rhs_vars = List.fold_left (fun accu (id, _) -> Id.Set.add id accu) Id.Set.empty subst; avoid_ids = avoid; it = Some (lift n t) } } in (* [catch_all] is a catch-all default clause of the auxiliary pattern-matching, if needed: it will catch the clauses of the original pattern-matching problem Xi whose type constraints are incompatible with the constraints on the inductive types of the multiple terms matched in Xi *) let catch_all_eqn = if List.for_all (irrefutable !!env) patl then (* No need for a catch all clause *) [] else [ { patterns = List.map (fun _ -> DAst.make @@ PatVar Anonymous) patl; alias_stack = []; eqn_loc = None; used = ref false; rhs = { rhs_env = pb_env; rhs_vars = Id.Set.empty; avoid_ids = avoid0; it = None } } ] in (* [pb] is the auxiliary pattern-matching serving as skeleton for the return type of the original problem Xi *) let s' = Retyping.get_sort_of !!env sigma t in let sigma, s = Evd.new_sort_variable univ_flexible sigma in let sigma = Evd.set_leq_sort !!env sigma s' s in let pb = { env = pb_env; pred = (*ty *) mkSort s; tomatch = sub_tms; history = start_history n; mat = main_eqn :: catch_all_eqn; caseloc = loc; casestyle = RegularStyle; typing_function = build_tycon ?loc env pb_env s subst} in let sigma, j = compile ~program_mode sigma pb in (sigma, j.uj_val) (* Here, [pred] is assumed to be in the context built from all *) (* realargs and terms to match *) let build_initial_predicate arsign pred = let rec buildrec pred tmnames = function | [] -> List.rev tmnames,pred | (decl::realdecls)::lnames -> let na = RelDecl.get_name decl in let realnames = List.map RelDecl.get_name realdecls in buildrec pred ((force_name na,realnames)::tmnames) lnames | _ -> assert false in buildrec pred [] (List.rev arsign) let extract_arity_signature ?(dolift=true) env0 tomatchl tmsign = let lift = if dolift then lift else fun n t -> t in let get_one_sign n tm (na,t) = match tm with | NotInd (bo,typ) -> (match t with | None -> let r = Sorts.Relevant in (* TODO relevance *) let sign = match bo with | None -> [LocalAssum (make_annot na r, lift n typ)] | Some b -> [LocalDef (make_annot na r, lift n b, lift n typ)] in sign | Some {CAst.loc} -> user_err ?loc (str"Unexpected type annotation for a term of non inductive type.")) | IsInd (term,IndType(indf,realargs),_) -> let indf' = if dolift then lift_inductive_family n indf else indf in let ((ind,u),_) = dest_ind_family indf' in let nrealargs_ctxt = inductive_nrealdecls env0 ind in let arsign, inds = get_arity env0 indf' in let arsign = List.map (fun d -> map_rel_decl EConstr.of_constr d) arsign in let realnal = match t with | Some {CAst.loc;v=(ind',realnal)} -> if not (eq_ind ind ind') then user_err ?loc (str "Wrong inductive type."); if not (Int.equal nrealargs_ctxt (List.length realnal)) then anomaly (Pp.str "Ill-formed 'in' clause in cases."); List.rev realnal | None -> List.make nrealargs_ctxt Anonymous in let r = Sorts.relevance_of_sort_family inds in let t = EConstr.of_constr (build_dependent_inductive env0 indf') in LocalAssum (make_annot na r, t) :: List.map2 RelDecl.set_name realnal arsign in let rec buildrec n = function | [],[] -> [] | (_,tm)::ltm, (_,x)::tmsign -> let l = get_one_sign n tm x in l :: buildrec (n + List.length l) (ltm,tmsign) | _ -> assert false in List.rev (buildrec 0 (tomatchl,tmsign)) let inh_conv_coerce_to_tycon ?loc ~program_mode env sigma j tycon = match tycon with | Some p -> Coercion.inh_conv_coerce_to ?loc ~program_mode true env sigma ~flags:(default_flags_of TransparentState.full) j p | None -> sigma, j (* We put the tycon inside the arity signature, possibly discovering dependencies. *) let add_subst sigma c len (rel_subst,var_subst) = match EConstr.kind sigma c with | Rel n -> (n,len) :: rel_subst, var_subst | Var id -> rel_subst, (id,len) :: var_subst | _ -> assert false let dependent_rel_or_var sigma tm c = match EConstr.kind sigma tm with | Rel n -> not (noccurn sigma n c) | Var id -> Termops.local_occur_var sigma id c | _ -> assert false let prepare_predicate_from_arsign_tycon ~program_mode env sigma loc tomatchs arsign c = let nar = List.fold_left (fun n sign -> Context.Rel.nhyps sign + n) 0 arsign in let (rel_subst,var_subst), len = List.fold_right2 (fun (tm, tmtype) sign (subst, len) -> let signlen = List.length sign in match EConstr.kind sigma tm with | Rel _ | Var _ when Int.equal signlen 1 && dependent_rel_or_var sigma tm c (* The term to match is not of a dependent type itself *) -> (add_subst sigma tm len subst, len - signlen) | Rel _ | Var _ when signlen > 1 (* The term is of a dependent type, maybe some variable in its type appears in the tycon. *) -> (match tmtype with NotInd _ -> (subst, len - signlen) | IsInd (_, IndType(indf,realargs),_) -> let subst, len = List.fold_left (fun (subst, len) arg -> match EConstr.kind sigma arg with | Rel _ | Var _ when dependent_rel_or_var sigma arg c -> (add_subst sigma arg len subst, pred len) | _ -> (subst, pred len)) (subst, len) realargs in let subst = if dependent_rel_or_var sigma tm c && List.for_all (fun c -> isRel sigma c || isVar sigma c) realargs then add_subst sigma tm len subst else subst in (subst, pred len)) | _ -> (subst, len - signlen)) (List.rev tomatchs) arsign (([],[]), nar) in let rec predicate lift c = match EConstr.kind sigma c with | Rel n when n > lift -> (try (* Make the predicate dependent on the matched variable *) let idx = Int.List.assoc (n - lift) rel_subst in mkRel (idx + lift) with Not_found -> (* A variable that is not matched, lift over the arsign *) mkRel (n + nar)) | Var id -> (try (* Make the predicate dependent on the matched variable *) let idx = Id.List.assoc id var_subst in mkRel (idx + lift) with Not_found -> (* A variable that is not matched *) c) | _ -> EConstr.map_with_binders sigma succ predicate lift c in assert (len == 0); let p = predicate 0 c in let hypnaming = if program_mode then ProgramNaming else KeepUserNameAndRenameExistingButSectionNames in let arsign,env' = List.fold_right_map (push_rel_context ~hypnaming sigma) arsign env in try let sigma' = fst (Typing.type_of !!env' sigma p) in Some (sigma', p, arsign) with e when precatchable_exception e -> None (* Builds the predicate. If the predicate is dependent, its context is * made of 1+nrealargs assumptions for each matched term in an inductive * type and 1 assumption for each term not _syntactically_ in an * inductive type. * Each matched term is independently considered dependent or not. *) let prepare_predicate ?loc ~program_mode typing_fun env sigma tomatchs arsign tycon pred = let refresh_tycon sigma t = (* If we put the typing constraint in the term, it has to be refreshed to preserve the invariant that no algebraic universe can appear in the term. *) refresh_universes ~status:Evd.univ_flexible ~onlyalg:true (Some true) !!env sigma t in let preds = match pred with (* No return clause *) | None -> let sigma,t = match tycon with | Some t -> refresh_tycon sigma t | None -> (* No type constraint: we first create a generic evar type constraint *) let src = (loc, Evar_kinds.CasesType false) in let sigma, (t, _) = Evarutil.new_type_evar !!env sigma univ_flexible ~src in sigma, t in (* First strategy: we build an "inversion" predicate, also replacing the *) (* dependencies with existential variables *) let sigma1,pred1 = build_inversion_problem loc ~program_mode env sigma tomatchs t in (* Optional second strategy: we abstract the tycon wrt to the dependencies *) let p2 = prepare_predicate_from_arsign_tycon ~program_mode env sigma loc tomatchs arsign t in (* Third strategy: we take the type constraint as it is; of course we could *) (* need something in between, abstracting some but not all of the dependencies *) (* the "inversion" strategy deals with that but unification may not be *) (* powerful enough so strategy 2 and 3 helps; moreover, inverting does not *) (* work (yet) when a constructor has a type not precise enough for the inversion *) (* see log message for details *) let pred3 = lift (List.length (List.flatten arsign)) t in (match p2 with | Some (sigma2,pred2,arsign) when not (EConstr.eq_constr sigma pred2 pred3) -> [sigma1, pred1, arsign; sigma2, pred2, arsign; sigma, pred3, arsign] | _ -> [sigma1, pred1, arsign; sigma, pred3, arsign]) (* Some type annotation *) | Some rtntyp -> (* We extract the signature of the arity *) let building_arsign,envar = List.fold_right_map (push_rel_context ~hypnaming:KeepUserNameAndRenameExistingButSectionNames sigma) arsign env in let sigma, newt = new_sort_variable univ_flexible sigma in let sigma, predcclj = typing_fun (mk_tycon (mkSort newt)) envar sigma rtntyp in let predccl = nf_evar sigma predcclj.uj_val in [sigma, predccl, building_arsign] in List.map (fun (sigma,pred,arsign) -> let (nal,pred) = build_initial_predicate arsign pred in sigma,nal,pred) preds (** Program cases *) open Program let ($) f x = f x let string_of_name name = match name with | Anonymous -> "anonymous" | Name n -> Id.to_string n let make_prime_id name = let str = string_of_name name in Id.of_string str, Id.of_string (str ^ "'") let prime avoid name = let previd, id = make_prime_id name in previd, next_ident_away id avoid let make_prime avoid prevname = let previd, id = prime !avoid prevname in avoid := Id.Set.add id !avoid; previd, id let eq_id avoid id = let hid = Id.of_string ("Heq_" ^ Id.to_string id) in let hid' = next_ident_away hid avoid in hid' let papp sigma gr args = let evdref = ref sigma in let ans = papp evdref gr args in !evdref, ans let mk_eq sigma typ x y = papp sigma coq_eq_ind [| typ; x ; y |] let mk_eq_refl sigma typ x = papp sigma coq_eq_refl [| typ; x |] let mk_JMeq sigma typ x typ' y = papp sigma coq_JMeq_ind [| typ; x ; typ'; y |] let mk_JMeq_refl sigma typ x = papp sigma coq_JMeq_refl [| typ; x |] let hole na = DAst.make @@ GHole (Evar_kinds.QuestionMark { Evar_kinds.qm_obligation= Evar_kinds.Define false; Evar_kinds.qm_name=na; Evar_kinds.qm_record_field=None}, IntroAnonymous, None) let constr_of_pat env sigma arsign pat avoid = let rec typ env sigma (ty, realargs) pat avoid = let loc = pat.CAst.loc in match DAst.get pat with | PatVar name -> let name, avoid = match name with Name n -> name, avoid | Anonymous -> let previd, id = prime avoid (Name (Id.of_string "wildcard")) in Name id, Id.Set.add id avoid in let r = Sorts.Relevant in (* TODO relevance *) (sigma, (DAst.make ?loc @@ PatVar name), [LocalAssum (make_annot name r, ty)] @ realargs, mkRel 1, ty, (List.map (fun x -> mkRel 1) realargs), 1, avoid) | PatCstr (((_, i) as cstr),args,alias) -> let cind = inductive_of_constructor cstr in let IndType (indf, _) = try find_rectype env sigma (lift (-(List.length realargs)) ty) with Not_found -> error_case_not_inductive env sigma {uj_val = ty; uj_type = Typing.unsafe_type_of env sigma ty} in let (ind,u), params = dest_ind_family indf in let params = List.map EConstr.of_constr params in if not (eq_ind ind cind) then error_bad_constructor ?loc env cstr ind; let cstrs = get_constructors env indf in let ci = cstrs.(i-1) in let nb_args_constr = ci.cs_nargs in assert (Int.equal nb_args_constr (List.length args)); let sigma, patargs, args, sign, env, n, m, avoid = List.fold_right2 (fun decl ua (sigma, patargs, args, sign, env, n, m, avoid) -> let t = EConstr.of_constr (RelDecl.get_type decl) in let sigma, pat', sign', arg', typ', argtypargs, n', avoid = let liftt = liftn (List.length sign) (succ (List.length args)) t in typ env sigma (substl args liftt, []) ua avoid in let args' = arg' :: List.map (lift n') args in let env' = EConstr.push_rel_context sign' env in (sigma, pat' :: patargs, args', sign' @ sign, env', n' + n, succ m, avoid)) ci.cs_args (List.rev args) (sigma, [], [], [], env, 0, 0, avoid) in let args = List.rev args in let patargs = List.rev patargs in let pat' = DAst.make ?loc @@ PatCstr (cstr, patargs, alias) in let cstr = mkConstructU (on_snd EInstance.make ci.cs_cstr) in let app = applist (cstr, List.map (lift (List.length sign)) params) in let app = applist (app, args) in let apptype = Retyping.get_type_of env sigma app in let IndType (indf, realargs) = find_rectype env sigma apptype in match alias with Anonymous -> sigma, pat', sign, app, apptype, realargs, n, avoid | Name id -> let _, inds = get_arity env indf in let r = Sorts.relevance_of_sort_family inds in let sign = LocalAssum (make_annot alias r, lift m ty) :: sign in let avoid = Id.Set.add id avoid in let sigma, sign, i, avoid = try let env = EConstr.push_rel_context sign env in let sigma = unify_leq_delay (EConstr.push_rel_context sign env) sigma (lift (succ m) ty) (lift 1 apptype) in let sigma, eq_t = mk_eq sigma (lift (succ m) ty) (mkRel 1) (* alias *) (lift 1 app) (* aliased term *) in let neq = eq_id avoid id in (* if we ever allow using a SProp-typed coq_eq_ind this relevance will be wrong *) sigma, LocalDef (nameR neq, mkRel 0, eq_t) :: sign, 2, Id.Set.add neq avoid with Evarconv.UnableToUnify _ -> sigma, sign, 1, avoid in (* Mark the equality as a hole *) sigma, pat', sign, lift i app, lift i apptype, realargs, n + i, avoid in let sigma, pat', sign, patc, patty, args, z, avoid = typ env sigma (RelDecl.get_type (List.hd arsign), List.tl arsign) pat avoid in sigma, pat', (sign, patc, (RelDecl.get_type (List.hd arsign), args), pat'), avoid (* shadows functional version *) let eq_id avoid id = let hid = Id.of_string ("Heq_" ^ Id.to_string id) in let hid' = next_ident_away hid !avoid in avoid := Id.Set.add hid' !avoid; hid' let is_topvar sigma t = match EConstr.kind sigma t with | Rel 0 -> true | _ -> false let rels_of_patsign sigma = List.map (fun decl -> match decl with | LocalDef (na,t',t) when is_topvar sigma t' -> LocalAssum (na,t) | _ -> decl) let vars_of_ctx sigma ctx = let _, y = List.fold_right (fun decl (prev, vars) -> match decl with | LocalDef (na,t',t) when is_topvar sigma t' -> prev, (DAst.make @@ GApp ( (DAst.make @@ GRef (delayed_force coq_eq_refl_ref, None)), [hole na.binder_name; DAst.make @@ GVar prev])) :: vars | _ -> match RelDecl.get_name decl with Anonymous -> invalid_arg "vars_of_ctx" | Name n -> n, (DAst.make @@ GVar n) :: vars) ctx (Id.of_string "vars_of_ctx_error", []) in List.rev y let rec is_included x y = match DAst.get x, DAst.get y with | PatVar _, _ -> true | _, PatVar _ -> true | PatCstr ((_, i), args, alias), PatCstr ((_, i'), args', alias') -> if Int.equal i i' then List.for_all2 is_included args args' else false let lift_rel_context n l = map_rel_context_with_binders (liftn n) l (* liftsign is the current pattern's complete signature length. Hence pats is already typed in its full signature. However prevpatterns are in the original one signature per pattern form. *) let build_ineqs sigma prevpatterns pats liftsign = let sigma, diffs = List.fold_left (fun (sigma, c) eqnpats -> let sigma, acc = List.fold_left2 (* ppat is the pattern we are discriminating against, curpat is the current one. *) (fun (sigma, acc) (ppat_sign, ppat_c, (ppat_ty, ppat_tyargs), ppat) (curpat_sign, curpat_c, (curpat_ty, curpat_tyargs), curpat) -> match acc with None -> sigma, None | Some (sign, len, n, c) -> (* FixMe: do not work with ppat_args *) if is_included curpat ppat then (* Length of previous pattern's signature *) let lens = List.length ppat_sign in (* Accumulated length of previous pattern's signatures *) let len' = lens + len in let sigma, c' = papp sigma coq_eq_ind [| lift (len' + liftsign) curpat_ty; liftn (len + liftsign) (succ lens) ppat_c ; lift len' curpat_c |] in let acc = ((* Jump over previous prevpat signs *) lift_rel_context len ppat_sign @ sign, len', succ n, (* nth pattern *) c' :: List.map (lift lens (* Jump over this prevpat signature *)) c) in sigma, Some acc else sigma, None) (sigma, Some ([], 0, 0, [])) eqnpats pats in match acc with None -> sigma, c | Some (sign, len, _, c') -> let sigma, conj = mk_coq_and sigma c' in let sigma, neg = mk_coq_not sigma conj in let conj = it_mkProd_or_LetIn neg (lift_rel_context liftsign sign) in sigma, conj :: c) (sigma, []) prevpatterns in match diffs with [] -> sigma, None | _ -> let sigma, conj = mk_coq_and sigma diffs in sigma, Some conj let constrs_of_pats typing_fun env sigma eqns tomatchs sign neqs arity = let i = ref 0 in let (sigma, x, y, z) = List.fold_left (fun (sigma, branches, eqns, prevpatterns) eqn -> let sigma, _, newpatterns, pats = List.fold_left2 (fun (sigma, idents, newpatterns, pats) pat arsign -> let sigma, pat', cpat, idents = constr_of_pat !!env sigma arsign pat idents in (sigma, idents, pat' :: newpatterns, cpat :: pats)) (sigma, Id.Set.empty, [], []) eqn.patterns sign in let newpatterns = List.rev newpatterns and opats = List.rev pats in let rhs_rels, pats, signlen = List.fold_left (fun (renv, pats, n) (sign,c, (s, args), p) -> (* Recombine signatures and terms of all of the row's patterns *) let sign' = lift_rel_context n sign in let len = List.length sign' in (sign' @ renv, (* lift to get outside of previous pattern's signatures. *) (sign', liftn n (succ len) c, (s, List.map (liftn n (succ len)) args), p) :: pats, len + n)) ([], [], 0) opats in let pats, _ = List.fold_left (* lift to get outside of past patterns to get terms in the combined environment. *) (fun (pats, n) (sign, c, (s, args), p) -> let len = List.length sign in ((rels_of_patsign sigma sign, lift n c, (s, List.map (lift n) args), p) :: pats, len + n)) ([], 0) pats in let sigma, ineqs = build_ineqs sigma prevpatterns pats signlen in let rhs_rels' = rels_of_patsign sigma rhs_rels in let _signenv,_ = push_rel_context ~hypnaming:ProgramNaming sigma rhs_rels' env in let arity = let args, nargs = List.fold_right (fun (sign, c, (_, args), _) (allargs,n) -> (args @ c :: allargs, List.length args + succ n)) pats ([], 0) in let args = List.rev args in substl args (liftn signlen (succ nargs) arity) in let r = Sorts.Relevant in (* TODO relevance *) let rhs_rels', tycon = let neqs_rels, arity = match ineqs with | None -> [], arity | Some ineqs -> [LocalAssum (make_annot Anonymous r, ineqs)], lift 1 arity in let eqs_rels, arity = decompose_prod_n_assum sigma neqs arity in eqs_rels @ neqs_rels @ rhs_rels', arity in let _,rhs_env = push_rel_context ~hypnaming:ProgramNaming sigma rhs_rels' env in let sigma, j = typing_fun (mk_tycon tycon) rhs_env sigma eqn.rhs.it in let bbody = it_mkLambda_or_LetIn j.uj_val rhs_rels' and btype = it_mkProd_or_LetIn j.uj_type rhs_rels' in let sigma, _btype = Typing.type_of !!env sigma bbody in let branch_name = Id.of_string ("program_branch_" ^ (string_of_int !i)) in let branch_decl = LocalDef (make_annot (Name branch_name) r, lift !i bbody, lift !i btype) in let branch = let bref = DAst.make @@ GVar branch_name in match vars_of_ctx sigma rhs_rels with [] -> bref | l -> DAst.make @@ GApp (bref, l) in let branch = match ineqs with Some _ -> DAst.make @@ GApp (branch, [ hole Anonymous ]) | None -> branch in incr i; let rhs = { eqn.rhs with it = Some branch } in (sigma, branch_decl :: branches, { eqn with patterns = newpatterns; rhs = rhs } :: eqns, opats :: prevpatterns)) (sigma, [], [], []) eqns in sigma, x, y (* Builds the predicate. If the predicate is dependent, its context is * made of 1+nrealargs assumptions for each matched term in an inductive * type and 1 assumption for each term not _syntactically_ in an * inductive type. * Each matched terms are independently considered dependent or not. * A type constraint but no annotation case: it is assumed non dependent. *) let lift_ctx n ctx = let ctx', _ = List.fold_right (fun (c, t) (ctx, n') -> (liftn n n' c, liftn_tomatch_type n n' t) :: ctx, succ n') ctx ([], 0) in ctx' (* Turn matched terms into variables. *) let abstract_tomatch env sigma tomatchs tycon = let prev, ctx, names, tycon = List.fold_left (fun (prev, ctx, names, tycon) (c, t) -> let lenctx = List.length ctx in match EConstr.kind sigma c with Rel n -> (lift lenctx c, lift_tomatch_type lenctx t) :: prev, ctx, names, tycon | _ -> let tycon = Option.map (fun t -> subst_term sigma (lift 1 c) (lift 1 t)) tycon in let name = next_ident_away (Id.of_string "filtered_var") names in let r = Sorts.Relevant in (* TODO relevance *) (mkRel 1, lift_tomatch_type (succ lenctx) t) :: lift_ctx 1 prev, LocalDef (make_annot (Name name) r, lift lenctx c, lift lenctx $ type_of_tomatch t) :: ctx, Id.Set.add name names, tycon) ([], [], Id.Set.empty, tycon) tomatchs in List.rev prev, ctx, tycon let build_dependent_signature env sigma avoid tomatchs arsign = let avoid = ref avoid in let arsign = List.rev arsign in let allnames = List.rev_map (List.map RelDecl.get_name) arsign in let nar = List.fold_left (fun n names -> List.length names + n) 0 allnames in let sigma, eqs, neqs, refls, slift, arsign' = List.fold_left2 (fun (sigma, eqs, neqs, refl_args, slift, arsigns) (tm, ty) arsign -> (* The accumulator: previous eqs, number of previous eqs, lift to get outside eqs and in the introduced variables ('as' and 'in'), new arity signatures *) match ty with | IsInd (ty, IndType (indf, args), _) when List.length args > 0 -> (* Build the arity signature following the names in matched terms as much as possible *) let argsign = List.tl arsign in (* arguments in inverse application order *) let app_decl = List.hd arsign in (* The matched argument *) let appn = RelDecl.get_name app_decl in let appt = RelDecl.get_type app_decl in let argsign = List.rev argsign in (* arguments in application order *) let sigma, env', nargeqs, argeqs, refl_args, slift, argsign' = List.fold_left2 (fun (sigma, env, nargeqs, argeqs, refl_args, slift, argsign') arg decl -> let name = RelDecl.get_name decl in let t = RelDecl.get_type decl in let argt = Retyping.get_type_of env sigma arg in let sigma, eq, refl_arg = if Reductionops.is_conv env sigma argt t then let sigma, eq = mk_eq sigma (lift (nargeqs + slift) argt) (mkRel (nargeqs + slift)) (lift (nargeqs + nar) arg) in let sigma, refl = mk_eq_refl sigma argt arg in sigma, eq, refl else let sigma, eq = mk_JMeq sigma (lift (nargeqs + slift) t) (mkRel (nargeqs + slift)) (lift (nargeqs + nar) argt) (lift (nargeqs + nar) arg) in let sigma, refl = mk_JMeq_refl sigma argt arg in (sigma, eq, refl) in let previd, id = let name = match EConstr.kind sigma arg with Rel n -> RelDecl.get_name (lookup_rel n env) | _ -> name in make_prime avoid name in (sigma, env, succ nargeqs, (LocalAssum (make_annot (Name (eq_id avoid previd)) Sorts.Relevant, eq)) :: argeqs, refl_arg :: refl_args, pred slift, RelDecl.set_name (Name id) decl :: argsign')) (sigma, env, neqs, [], [], slift, []) args argsign in let sigma, eq = mk_JMeq sigma (lift (nargeqs + slift) appt) (mkRel (nargeqs + slift)) (lift (nargeqs + nar) ty) (lift (nargeqs + nar) tm) in let sigma, refl_eq = mk_JMeq_refl sigma ty tm in let previd, id = make_prime avoid appn in (sigma, (LocalAssum (make_annot (Name (eq_id avoid previd)) Sorts.Relevant, eq) :: argeqs) :: eqs, succ nargeqs, refl_eq :: refl_args, pred slift, ((RelDecl.set_name (Name id) app_decl :: argsign') :: arsigns)) | _ -> (* Non dependent inductive or not inductive, just use a regular equality *) let decl = match arsign with [x] -> x | _ -> assert(false) in let name = RelDecl.get_name decl in let previd, id = make_prime avoid name in let arsign' = RelDecl.set_name (Name id) decl in let tomatch_ty = type_of_tomatch ty in let sigma, eq = mk_eq sigma (lift nar tomatch_ty) (mkRel slift) (lift nar tm) in let sigma, refl = mk_eq_refl sigma tomatch_ty tm in let na = make_annot (Name (eq_id avoid previd)) Sorts.Relevant in (sigma, [LocalAssum (na, eq)] :: eqs, succ neqs, refl :: refl_args, pred slift, (arsign' :: []) :: arsigns)) (sigma, [], 0, [], nar, []) tomatchs arsign in let arsign'' = List.rev arsign' in assert(Int.equal slift 0); (* we must have folded over all elements of the arity signature *) sigma, arsign'', allnames, nar, eqs, neqs, refls let context_of_arsign l = let (x, _) = List.fold_right (fun c (x, n) -> (lift_rel_context n c @ x, List.length c + n)) l ([], 0) in x let compile_program_cases ?loc style (typing_function, sigma) tycon env (predopt, tomatchl, eqns) = let typing_fun tycon env sigma = function | Some t -> typing_function tycon env sigma t | None -> use_unit_judge env sigma in (* We build the matrix of patterns and right-hand side *) let matx = matx_of_eqns env eqns in (* We build the vector of terms to match consistently with the *) (* constructors found in patterns *) let env, sigma, tomatchs = coerce_to_indtype ~program_mode:true typing_function env sigma matx tomatchl in let tycon = valcon_of_tycon tycon in let tomatchs, tomatchs_lets, tycon' = abstract_tomatch env sigma tomatchs tycon in let _,env = push_rel_context ~hypnaming:ProgramNaming sigma tomatchs_lets env in let len = List.length eqns in let sigma, sign, allnames, signlen, eqs, neqs, args = (* The arity signature *) let arsign = extract_arity_signature ~dolift:false !!env tomatchs tomatchl in (* Build the dependent arity signature, the equalities which makes the first part of the predicate and their instantiations. *) let avoid = Id.Set.empty in build_dependent_signature !!env sigma avoid tomatchs arsign in let sigma, tycon, arity = let nar = List.fold_left (fun n sign -> List.length sign + n) 0 sign in match tycon' with | None -> let sigma, ev = mkExistential !!env sigma in sigma, ev, lift nar ev | Some t -> let sigma, pred = match prepare_predicate_from_arsign_tycon ~program_mode:true env sigma loc tomatchs sign t with | Some (evd, pred, arsign) -> evd, pred | None -> sigma, lift nar t in sigma, Option.get tycon, pred in let neqs, arity = let ctx = context_of_arsign eqs in let neqs = List.length ctx in neqs, it_mkProd_or_LetIn (lift neqs arity) ctx in let sigma, lets, matx = (* Type the rhs under the assumption of equations *) constrs_of_pats typing_fun env sigma matx tomatchs sign neqs arity in let matx = List.rev matx in let _ = assert (Int.equal len (List.length lets)) in let _,env = push_rel_context ~hypnaming:ProgramNaming sigma lets env in let matx = List.map (fun eqn -> { eqn with rhs = { eqn.rhs with rhs_env = env } }) matx in let tomatchs = List.map (fun (x, y) -> lift len x, lift_tomatch_type len y) tomatchs in let args = List.rev_map (lift len) args in let pred = liftn len (succ signlen) arity in let nal, pred = build_initial_predicate sign pred in (* We push the initial terms to match and push their alias to rhs' envs *) (* names of aliases will be recovered from patterns (hence Anonymous here) *) (* TODO relevance *) let out_tmt na = function NotInd (None,t) -> LocalAssum (make_annot na Sorts.Relevant,t) | NotInd (Some b, t) -> LocalDef (make_annot na Sorts.Relevant,b,t) | IsInd (typ,_,_) -> LocalAssum (make_annot na Sorts.Relevant,typ) in let typs = List.map2 (fun (na,_) (tm,tmt) -> (tm,out_tmt na tmt)) nal tomatchs in let typs = List.map (fun (c,d) -> (c,extract_inductive_data !!env sigma d,d)) typs in let dep_sign = find_dependencies_signature sigma (List.make (List.length typs) true) typs in let typs' = List.map3 (fun (tm,tmt) deps (na,realnames) -> let deps = if not (isRel sigma tm) then [] else deps in let tmt = set_tomatch_realnames realnames tmt in ((tm,tmt),deps,na)) tomatchs dep_sign nal in let initial_pushed = List.map (fun x -> Pushed (true,x)) typs' in let typing_function tycon env sigma = function | Some t -> typing_function tycon env sigma t | None -> use_unit_judge env sigma in let pb = { env = env; pred = pred; tomatch = initial_pushed; history = start_history (List.length initial_pushed); mat = matx; caseloc = loc; casestyle= style; typing_function = typing_function } in let sigma, j = compile ~program_mode:true sigma pb in (* We check for unused patterns *) List.iter (check_unused_pattern !!env) matx; let body = it_mkLambda_or_LetIn (applist (j.uj_val, args)) lets in let j = { uj_val = it_mkLambda_or_LetIn body tomatchs_lets; (* XXX: is this normalization needed? *) uj_type = Evarutil.nf_evar sigma tycon; } in sigma, j (**************************************************************************) (* Main entry of the matching compilation *) let compile_cases ?loc ~program_mode style (typing_fun, sigma) tycon env (predopt, tomatchl, eqns) = if predopt == None && program_mode && Program.is_program_cases () then compile_program_cases ?loc style (typing_fun, sigma) tycon env (predopt, tomatchl, eqns) else (* We build the matrix of patterns and right-hand side *) let matx = matx_of_eqns env eqns in (* We build the vector of terms to match consistently with the *) (* constructors found in patterns *) let predenv, sigma, tomatchs = coerce_to_indtype ~program_mode typing_fun env sigma matx tomatchl in (* If an elimination predicate is provided, we check it is compatible with the type of arguments to match; if none is provided, we build alternative possible predicates *) let arsign = extract_arity_signature !!env tomatchs tomatchl in let preds = prepare_predicate ?loc ~program_mode typing_fun predenv sigma tomatchs arsign tycon predopt in let compile_for_one_predicate (sigma,nal,pred) = (* We push the initial terms to match and push their alias to rhs' envs *) (* names of aliases will be recovered from patterns (hence Anonymous *) (* here) *) (* TODO relevance *) let out_tmt na = function NotInd (None,t) -> LocalAssum (na,t) | NotInd (Some b,t) -> LocalDef (na,b,t) | IsInd (typ,_,_) -> LocalAssum (na,typ) in let typs = List.map2 (fun (na,_) (tm,tmt) -> (tm,out_tmt (make_annot na Sorts.Relevant) tmt)) nal tomatchs in let typs = List.map (fun (c,d) -> (c,extract_inductive_data !!env sigma d,d)) typs in let dep_sign = find_dependencies_signature sigma (List.make (List.length typs) true) typs in let typs' = List.map3 (fun (tm,tmt) deps (na,realnames) -> let deps = if not (isRel sigma tm) then [] else deps in let tmt = set_tomatch_realnames realnames tmt in ((tm,tmt),deps,na)) tomatchs dep_sign nal in let initial_pushed = List.map (fun x -> Pushed (true,x)) typs' in (* A typing function that provides with a canonical term for absurd cases*) let typing_fun tycon env sigma = function | Some t -> typing_fun tycon env sigma t | None -> use_unit_judge env sigma in let pb = { env = env; pred = pred; tomatch = initial_pushed; history = start_history (List.length initial_pushed); mat = matx; caseloc = loc; casestyle = style; typing_function = typing_fun } in let sigma, j = compile ~program_mode sigma pb in (* We coerce to the tycon (if an elim predicate was provided) *) inh_conv_coerce_to_tycon ?loc ~program_mode !!env sigma j tycon in (* Return the term compiled with the first possible elimination *) (* predicate for which the compilation succeeds *) let j = list_try_compile compile_for_one_predicate preds in (* We check for unused patterns *) List.iter (check_unused_pattern !!env) matx; j