1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Context open Ltac_plugin open Proofview open Notations open Ssrcommon open Ssrast module AdaptorDb = struct type kind = Forward | Backward | Equivalence module AdaptorKind = struct type t = kind let compare = pervasives_compare end module AdaptorMap = Map.Make(AdaptorKind) let term_view_adaptor_db = Summary.ref ~name:"view_adaptor_db" AdaptorMap.empty let get k = try AdaptorMap.find k !term_view_adaptor_db with Not_found -> [] let cache_adaptor (_, (k, t)) = let lk = get k in if not (List.exists (Glob_ops.glob_constr_eq t) lk) then term_view_adaptor_db := AdaptorMap.add k (t :: lk) !term_view_adaptor_db let subst_adaptor ( subst, (k, t as a)) = let t' = Detyping.subst_glob_constr (Global.env()) subst t in if t' == t then a else k, t' let in_db = let open Libobject in declare_object @@ global_object_nodischarge "VIEW_ADAPTOR_DB" ~cache:cache_adaptor ~subst:(Some subst_adaptor) let declare kind terms = List.iter (fun term -> Lib.add_anonymous_leaf (in_db (kind,term))) (List.rev terms) end (* Forward View application code *****************************************) let reduce_or l = tclUNIT (List.fold_left (||) false l) module State : sig (* View storage API *) val vsINIT : view:EConstr.t -> subject_name:Id.t list -> to_clear:Id.t list -> unit tactic val vsPUSH : (EConstr.t -> (EConstr.t * Id.t list) tactic) -> unit tactic val vsCONSUME : (names:Id.t list -> EConstr.t -> to_clear:Id.t list -> unit tactic) -> unit tactic (* The bool is the || of the bool returned by the continuations *) val vsCONSUME_IF_PRESENT : (names:Id.t list -> EConstr.t option -> to_clear:Id.t list -> bool tactic) -> bool tactic val vsASSERT_EMPTY : unit tactic end = struct (* {{{ *) type vstate = { subject_name : Id.t list; (* top *) (* None if views are being applied to a term *) view : EConstr.t; (* v2 (v1 top) *) to_clear : Id.t list; } include Ssrcommon.MakeState(struct type state = vstate option let init = None end) let vsINIT ~view ~subject_name ~to_clear = tclSET (Some { subject_name; view; to_clear }) (** Initializes the state in which view data is accumulated when views are applied to the first assumption in the goal *) let vsBOOTSTRAP = Goal.enter_one ~__LOC__ begin fun gl -> let concl = Goal.concl gl in let id = (* We keep the orig name for checks in "in" tcl *) match EConstr.kind_of_type (Goal.sigma gl) concl with | Term.ProdType({binder_name=Name.Name id}, _, _) when Ssrcommon.is_discharged_id id -> id | _ -> mk_anon_id "view_subject" (Tacmach.New.pf_ids_of_hyps gl) in let view = EConstr.mkVar id in Ssrcommon.tclINTRO_ID id <*> tclSET (Some { subject_name = [id]; view; to_clear = [] }) end let rec vsPUSH k = tclINDEPENDENT (tclGET (function | Some { subject_name; view; to_clear } -> k view >>= fun (view, clr) -> tclSET (Some { subject_name; view; to_clear = to_clear @ clr }) | None -> vsBOOTSTRAP <*> vsPUSH k)) let rec vsCONSUME k = tclINDEPENDENT (tclGET (function | Some { subject_name; view; to_clear } -> tclSET None <*> k ~names:subject_name view ~to_clear | None -> vsBOOTSTRAP <*> vsCONSUME k)) let vsCONSUME_IF_PRESENT k = tclINDEPENDENTL (tclGET1 (function | Some { subject_name; view; to_clear } -> tclSET None <*> k ~names:subject_name (Some view) ~to_clear | None -> k ~names:[] None ~to_clear:[])) >>= reduce_or let vsASSERT_EMPTY = tclGET (function | Some _ -> anomaly ("vsASSERT_EMPTY: not empty") | _ -> tclUNIT ()) end (* }}} *) let intern_constr_expr { Genintern.genv; ltacvars = vars } sigma ce = let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in Constrintern.intern_gen Pretyping.WithoutTypeConstraint ~ltacvars genv sigma ce (* Disambiguation of /t - t is ltac:(tactic args) - t is a term To allow for t being a notation, like "Notation foo x := ltac:(foo x)", we need to internalize t. *) let is_tac_in_term ?extra_scope { annotation; body; glob_env; interp_env } = Goal.(enter_one ~__LOC__ begin fun goal -> let genv = env goal in let sigma = sigma goal in let ist = Ssrcommon.option_assert_get glob_env (Pp.str"not a term") in (* We use the env of the goal, not the global one *) let ist = { ist with Genintern.genv } in (* We open extra_scope *) let body = match extra_scope with | None -> body | Some s -> CAst.make (Constrexpr.CDelimiters(s,body)) in (* We unravel notations *) let g = intern_constr_expr ist sigma body in match DAst.get g with | Glob_term.GHole (_,_, Some x) when Genarg.has_type x (Genarg.glbwit Tacarg.wit_tactic) -> tclUNIT (`Tac (Genarg.out_gen (Genarg.glbwit Tacarg.wit_tactic) x)) | _ -> tclUNIT (`Term (annotation, interp_env, g)) end) (* To inject a constr into a glob_constr we use an Ltac variable *) let tclINJ_CONSTR_IST ist p = let fresh_id = Ssrcommon.mk_internal_id "ssr_inj_constr_in_glob" in let ist = { ist with Geninterp.lfun = Id.Map.add fresh_id (Taccoerce.Value.of_constr p) ist.Geninterp.lfun} in tclUNIT (ist,Glob_term.GVar fresh_id) let mkGHole = DAst.make (Glob_term.GHole(Evar_kinds.InternalHole, Namegen.IntroAnonymous, None)) let rec mkGHoles n = if n > 0 then mkGHole :: mkGHoles (n - 1) else [] let mkGApp f args = if args = [] then f else DAst.make (Glob_term.GApp (f, args)) (* From glob_constr to open_constr === (env,sigma,constr) *) let interp_glob ist glob = Goal.enter_one ~__LOC__ begin fun goal -> let env = Goal.env goal in let sigma = Goal.sigma goal in Ssrprinters.ppdebug (lazy Pp.(str"interp-in: " ++ Printer.pr_glob_constr_env env glob)); try let sigma,term = Tacinterp.interp_open_constr ist env sigma (glob,None) in Ssrprinters.ppdebug (lazy Pp.(str"interp-out: " ++ Printer.pr_econstr_env env sigma term)); tclUNIT (env,sigma,term) with e -> Ssrprinters.ppdebug (lazy Pp.(str"interp-err: " ++ Printer.pr_glob_constr_env env glob)); tclZERO e end (* Commits the term to the monad *) (* I think we should make the API safe by storing here the original evar map, * so that one cannot commit it wrongly. * We could also commit the term automatically, but this makes the code less * modular, see the 2 functions below that would need to "uncommit" *) let tclKeepOpenConstr (_env, sigma, t) = Unsafe.tclEVARS sigma <*> tclUNIT t let tclADD_CLEAR_IF_ID (env, ist, t) x = Ssrprinters.ppdebug (lazy Pp.(str"tclADD_CLEAR_IF_ID: " ++ Printer.pr_econstr_env env ist t)); let hd, args = EConstr.decompose_app ist t in match EConstr.kind ist hd with | Constr.Var id when Ssrcommon.not_section_id id -> tclUNIT (x, [id]) | _ -> tclUNIT (x,[]) let tclPAIR p x = tclUNIT (x, p) (* The ssr heuristic : *) (* Estimate a bound on the number of arguments of a raw constr. *) (* This is not perfect, because the unifier may fail to *) (* typecheck the partial application, so we use a minimum of 5. *) (* Also, we don't handle delayed or iterated coercions to *) (* FUNCLASS, which is probably just as well since these can *) (* lead to infinite arities. *) let guess_max_implicits ist glob = Proofview.tclORELSE (interp_glob ist (mkGApp glob (mkGHoles 6)) >>= fun (env,sigma,term) -> let term_ty = Retyping.get_type_of env sigma term in let ctx, _ = Reductionops.splay_prod env sigma term_ty in tclUNIT (List.length ctx + 6)) (fun _ -> tclUNIT 5) let pad_to_inductive ist glob = Goal.enter_one ~__LOC__ begin fun goal -> interp_glob ist glob >>= fun (env, sigma, term as ot) -> let term_ty = Retyping.get_type_of env sigma term in let ctx, i = Reductionops.splay_prod env sigma term_ty in let rel_ctx = List.map (fun (a,b) -> Context.Rel.Declaration.LocalAssum(a,b)) ctx in if not (Ssrcommon.isAppInd (EConstr.push_rel_context rel_ctx env) sigma i) then Tacticals.New.tclZEROMSG Pp.(str"not an inductive") else tclUNIT (mkGApp glob (mkGHoles (List.length ctx))) >>= tclADD_CLEAR_IF_ID ot end (* There are two ways of "applying" a view to term: *) (* 1- using a view hint if the view is an instance of some *) (* (reflection) inductive predicate. *) (* 2- applying the view if it coerces to a function, adding *) (* implicit arguments. *) (* They require guessing the view hints and the number of *) (* implicits, respectively, which we do by brute force. *) (* Builds v p *) let interp_view ~clear_if_id ist v p = let is_specialize hd = match DAst.get hd with Glob_term.GHole _ -> true | _ -> false in (* We cast the pile of views p into a term p_id *) tclINJ_CONSTR_IST ist p >>= fun (ist, p_id) -> let p_id = DAst.make p_id in match DAst.get v with | Glob_term.GApp (hd, rargs) when is_specialize hd -> Ssrprinters.ppdebug (lazy Pp.(str "specialize")); interp_glob ist (mkGApp p_id rargs) >>= tclKeepOpenConstr >>= tclPAIR [] | _ -> Ssrprinters.ppdebug (lazy Pp.(str "view")); (* We find out how to build (v p) eventually using an adaptor *) let adaptors = AdaptorDb.(get Forward) in Proofview.tclORELSE (pad_to_inductive ist v >>= fun (vpad,clr) -> Ssrcommon.tclFIRSTa (List.map (fun a -> interp_glob ist (mkGApp a [vpad; p_id])) adaptors) >>= tclPAIR clr) (fun _ -> guess_max_implicits ist v >>= fun n -> Ssrcommon.tclFIRSTi (fun n -> interp_glob ist (mkGApp v (mkGHoles n @ [p_id]))) n >>= fun x -> tclADD_CLEAR_IF_ID x x) >>= fun (ot,clr) -> if clear_if_id then tclKeepOpenConstr ot >>= tclPAIR clr else tclKeepOpenConstr ot >>= tclPAIR [] (* we store in the state (v top), then (v1 (v2 top))... *) let pile_up_view ~clear_if_id (annotation, ist, v) = let ist = Ssrcommon.option_assert_get ist (Pp.str"not a term") in let clear_if_id = clear_if_id && annotation <> `Parens in State.vsPUSH (fun p -> interp_view ~clear_if_id ist v p) let finalize_view s0 ?(simple_types=true) p = Goal.enter_one ~__LOC__ begin fun g -> let env = Goal.env g in let sigma = Goal.sigma g in let evars_of_p = Evd.evars_of_term sigma p in let filter x _ = Evar.Set.mem x evars_of_p in let sigma = Typeclasses.resolve_typeclasses ~fail:false ~filter env sigma in let p = Reductionops.nf_evar sigma p in let get_body = function Evd.Evar_defined x -> x | _ -> assert false in let evars_of_econstr sigma t = Evarutil.undefined_evars_of_term sigma (EConstr.of_constr t) in let rigid_of s = List.fold_left (fun l k -> if Evd.is_defined sigma k then let bo = get_body Evd.(evar_body (find sigma k)) in k :: l @ Evar.Set.elements (evars_of_econstr sigma (EConstr.Unsafe.to_constr bo)) else l ) [] s in let und0 = (* Unassigned evars in the initial goal *) let sigma0 = Tacmach.project s0 in let g0info = Evd.find sigma0 (Tacmach.sig_it s0) in let g0 = Evd.evars_of_filtered_evar_info sigma0 g0info in List.filter (fun k -> Evar.Set.mem k g0) (List.map fst (Evar.Map.bindings (Evd.undefined_map sigma0))) in let rigid = rigid_of und0 in let n, p, to_prune, _ucst = pf_abs_evars2 s0 rigid (sigma, p) in let p = if simple_types then pf_abs_cterm s0 n p else p in Ssrprinters.ppdebug (lazy Pp.(str"view@finalized: " ++ Printer.pr_econstr_env env sigma p)); let sigma = List.fold_left Evd.remove sigma to_prune in Unsafe.tclEVARS sigma <*> tclUNIT p end let pose_proof subject_name p = Tactics.generalize [p] <*> begin match subject_name with | id :: _ -> Ssrcommon.tclRENAME_HD_PROD (Name.Name id) | _ -> tclUNIT() end <*> Tactics.New.reduce_after_refine (* returns true if the last item was a tactic *) let rec apply_all_views_aux ~clear_if_id vs finalization conclusion s0 = match vs with | [] -> finalization s0 (fun name p -> (match p with | None -> conclusion ~to_clear:[] | Some p -> pose_proof name p <*> conclusion ~to_clear:name) <*> tclUNIT false) | v :: vs -> Ssrprinters.ppdebug (lazy Pp.(str"piling...")); is_tac_in_term ~extra_scope:"ssripat" v >>= function | `Term v -> Ssrprinters.ppdebug (lazy Pp.(str"..a term")); pile_up_view ~clear_if_id v <*> apply_all_views_aux ~clear_if_id vs finalization conclusion s0 | `Tac tac -> Ssrprinters.ppdebug (lazy Pp.(str"..a tactic")); finalization s0 (fun name p -> (match p with | None -> tclUNIT () | Some p -> pose_proof name p) <*> Tacinterp.eval_tactic tac <*> if vs = [] then begin Ssrprinters.ppdebug (lazy Pp.(str"..was the last view")); conclusion ~to_clear:name <*> tclUNIT true end else Tactics.clear name <*> tclINDEPENDENTL begin Ssrprinters.ppdebug (lazy Pp.(str"..was NOT the last view")); Ssrcommon.tacSIGMA >>= apply_all_views_aux ~clear_if_id vs finalization conclusion end >>= reduce_or) let apply_all_views vs ~conclusion ~clear_if_id = let finalization s0 k = State.vsCONSUME_IF_PRESENT (fun ~names t ~to_clear -> match t with | None -> k [] None | Some t -> finalize_view s0 t >>= fun p -> k (names @ to_clear) (Some p)) in Ssrcommon.tacSIGMA >>= apply_all_views_aux ~clear_if_id vs finalization conclusion (* We apply a view to a term given by the user, e.g. `case/V: x`. `x` is `subject` *) let apply_all_views_to subject ~simple_types vs ~conclusion = begin let rec process_all_vs = function | [] -> tclUNIT () | v :: vs -> is_tac_in_term v >>= function | `Tac _ -> Ssrcommon.errorstrm Pp.(str"tactic view not supported") | `Term v -> pile_up_view ~clear_if_id:false v <*> process_all_vs vs in State.vsASSERT_EMPTY <*> State.vsINIT ~subject_name:[] ~to_clear:[] ~view:subject <*> Ssrcommon.tacSIGMA >>= fun s0 -> process_all_vs vs <*> State.vsCONSUME (fun ~names:_ t ~to_clear:_ -> finalize_view s0 ~simple_types t >>= conclusion) end (* Entry points *********************************************************) let tclIPAT_VIEWS ~views:vs ?(clear_if_id=false) ~conclusion = tclINDEPENDENTL begin State.vsASSERT_EMPTY <*> apply_all_views vs ~conclusion ~clear_if_id >>= fun was_tac -> State.vsASSERT_EMPTY <*> tclUNIT was_tac end >>= reduce_or let tclWITH_FWD_VIEWS ~simple_types ~subject ~views:vs ~conclusion = tclINDEPENDENT (apply_all_views_to subject ~simple_types vs ~conclusion) (* vim: set filetype=ocaml foldmethod=marker: *)