1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *) open Util open Names open Printer open Term open Constr open Context open Termops open Tactypes open Tacmach open Ssrmatching_plugin open Ssrmatching open Ssrast open Ssrprinters open Ssrcommon module RelDecl = Context.Rel.Declaration (** The "case" and "elim" tactic *) (* TASSI: given the type of an elimination principle, it finds the higher order * argument (index), it computes it's arity and the arity of the eliminator and * checks if the eliminator is recursive or not *) let analyze_eliminator elimty env sigma = let rec loop ctx t = match EConstr.kind_of_type sigma t with | AtomicType (hd, args) when EConstr.isRel sigma hd -> ctx, EConstr.destRel sigma hd, not (EConstr.Vars.noccurn sigma 1 t), Array.length args, t | CastType (t, _) -> loop ctx t | ProdType (x, ty, t) -> loop (RelDecl.LocalAssum (x, ty) :: ctx) t | LetInType (x,b,ty,t) -> loop (RelDecl.LocalDef (x, b, ty) :: ctx) (EConstr.Vars.subst1 b t) | _ -> let env' = EConstr.push_rel_context ctx env in let t' = Reductionops.whd_all env' sigma t in if not (EConstr.eq_constr sigma t t') then loop ctx t' else errorstrm Pp.(str"The eliminator has the wrong shape."++spc()++ str"A (applied) bound variable was expected as the conclusion of "++ str"the eliminator's"++Pp.cut()++str"type:"++spc()++pr_econstr_env env' sigma elimty) in let ctx, pred_id, elim_is_dep, n_pred_args,concl = loop [] elimty in let n_elim_args = Context.Rel.nhyps ctx in let is_rec_elim = let count_occurn n term = let count = ref 0 in let rec occur_rec n c = match EConstr.kind sigma c with | Rel m -> if m = n then incr count | _ -> EConstr.iter_with_binders sigma succ occur_rec n c in occur_rec n term; !count in let occurr2 n t = count_occurn n t > 1 in not (List.for_all_i (fun i (_,rd) -> pred_id <= i || not (occurr2 (pred_id - i) rd)) 1 (assums_of_rel_context ctx)) in n_elim_args - pred_id, n_elim_args, is_rec_elim, elim_is_dep, n_pred_args, (ctx,concl) let subgoals_tys sigma (relctx, concl) = let rec aux cur_depth acc = function | hd :: rest -> let ty = Context.Rel.Declaration.get_type hd in if EConstr.Vars.noccurn sigma cur_depth concl && List.for_all_i (fun i -> function | Context.Rel.Declaration.LocalAssum(_, t) -> EConstr.Vars.noccurn sigma i t | Context.Rel.Declaration.LocalDef (_, b, t) -> EConstr.Vars.noccurn sigma i t && EConstr.Vars.noccurn sigma i b) 1 rest then aux (cur_depth - 1) (ty :: acc) rest else aux (cur_depth - 1) acc rest | [] -> Array.of_list (List.rev acc) in aux (List.length relctx) [] (List.rev relctx) (* A case without explicit dependent terms but with both a view and an *) (* occurrence switch and/or an equation is treated as dependent, with the *) (* viewed term as the dependent term (the occurrence switch would be *) (* meaningless otherwise). When both a view and explicit dependents are *) (* present, it is forbidden to put a (meaningless) occurrence switch on *) (* the viewed term. *) (* This is both elim and case (defaulting to the former). If ~elim is omitted * the standard eliminator is chosen. The code is made of 4 parts: * 1. find the eliminator if not given as ~elim and analyze it * 2. build the patterns to be matched against the conclusion, looking at * (occ, c), deps and the pattern inferred from the type of the eliminator * 3. build the new predicate matching the patterns, and the tactic to * generalize the equality in case eqid is not None * 4. build the tactic handle instructions and clears as required in ipats and * by eqid *) let get_eq_type gl = let eq, gl = pf_fresh_global Coqlib.(lib_ref "core.eq.type") gl in gl, EConstr.of_constr eq let ssrelim ?(is_case=false) deps what ?elim eqid elim_intro_tac = let open Proofview.Notations in Proofview.tclEVARMAP >>= begin fun sigma -> (* some sanity checks *) match what with | `EConstr(_,_,t) when EConstr.isEvar sigma t -> anomaly "elim called on a constr evar" | `EGen (_, g) when elim = None && is_wildcard g -> errorstrm Pp.(str"Indeterminate pattern and no eliminator") | `EGen ((Some clr,occ), g) when is_wildcard g -> Proofview.tclUNIT (None, clr, occ, None) | `EGen ((None, occ), g) when is_wildcard g -> Proofview.tclUNIT (None,[],occ,None) | `EGen ((_, occ), p as gen) -> pfLIFT (pf_interp_gen true gen) >>= fun (_,c,clr) -> Proofview.tclUNIT (Some c, clr, occ, Some p) | `EConstr (clr, occ, c) -> Proofview.tclUNIT (Some c, clr, occ, None) end >>= fun (oc, orig_clr, occ, c_gen) -> pfLIFT begin fun gl -> let orig_gl, concl, env = gl, pf_concl gl, pf_env gl in ppdebug(lazy(Pp.str(if is_case then "==CASE==" else "==ELIM=="))); let fire_subst gl t = Reductionops.nf_evar (project gl) t in let is_undef_pat = function | sigma, T t -> EConstr.isEvar sigma (EConstr.of_constr t) | _ -> false in let match_pat env p occ h cl = let sigma0 = project orig_gl in ppdebug(lazy Pp.(str"matching: " ++ pr_occ occ ++ pp_pattern env p)); let (c,ucst), cl = fill_occ_pattern ~raise_NoMatch:true env sigma0 (EConstr.Unsafe.to_constr cl) p occ h in ppdebug(lazy Pp.(str" got: " ++ pr_constr_env env sigma0 c)); c, EConstr.of_constr cl, ucst in let mkTpat gl t = (* takes a term, refreshes it and makes a T pattern *) let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in let t, _, _, sigma = saturate ~beta:true env (project gl) t n in Evd.merge_universe_context sigma ucst, T (EConstr.Unsafe.to_constr t) in let unif_redex gl (sigma, r as p) t = (* t is a hint for the redex of p *) let n, t, _, ucst = pf_abs_evars orig_gl (project gl, fire_subst gl t) in let t, _, _, sigma = saturate ~beta:true env sigma t n in let sigma = Evd.merge_universe_context sigma ucst in match r with | X_In_T (e, p) -> sigma, E_As_X_In_T (EConstr.Unsafe.to_constr t, e, p) | _ -> try unify_HO env sigma t (EConstr.of_constr (fst (redex_of_pattern env p))), r with e when CErrors.noncritical e -> p in (* finds the eliminator applies it to evars and c saturated as needed *) (* obtaining "elim ??? (c ???)". pred is the higher order evar *) (* cty is None when the user writes _ (hence we can't make a pattern *) (* `seed` represents the array of types from which we derive the name seeds for the block intro patterns *) let seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl = match elim with | Some elim -> let gl, elimty = pf_e_type_of gl elim in let elimty = let rename_elimty r = EConstr.of_constr (Arguments_renaming.rename_type (EConstr.to_constr ~abort_on_undefined_evars:false (project gl) elimty) r) in match EConstr.kind (project gl) elim with | Constr.Var kn -> rename_elimty (GlobRef.VarRef kn) | Constr.Const (kn,_) -> rename_elimty (GlobRef.ConstRef kn) | _ -> elimty in let pred_id, n_elim_args, is_rec, elim_is_dep, n_pred_args,ctx_concl = analyze_eliminator elimty env (project gl) in let seed = subgoals_tys (project gl) ctx_concl in let elim, elimty, elim_args, gl = pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in let pred = List.assoc pred_id elim_args in let elimty = Reductionops.whd_all env (project gl) elimty in let cty, gl = if Option.is_empty oc then None, gl else let c = Option.get oc in let gl, c_ty = pfe_type_of gl c in let pc = match c_gen with | Some p -> interp_cpattern orig_gl p None | _ -> mkTpat gl c in Some(c, c_ty, pc), gl in seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl | None -> let c = Option.get oc in let gl, c_ty = pfe_type_of gl c in let ((kn, i),_ as indu), unfolded_c_ty = pf_reduce_to_quantified_ind gl c_ty in let sort = Tacticals.elimination_sort_of_goal gl in let gl, elim = if not is_case then let t,gl= pf_fresh_global (Indrec.lookup_eliminator env (kn,i) sort) gl in gl, t else Tacmach.pf_eapply (fun env sigma () -> let indu = (fst indu, EConstr.EInstance.kind sigma (snd indu)) in let (sigma, ind) = Indrec.build_case_analysis_scheme env sigma indu true sort in (sigma, ind)) gl () in let elim = EConstr.of_constr elim in let gl, elimty = pfe_type_of gl elim in let pred_id,n_elim_args,is_rec,elim_is_dep,n_pred_args,ctx_concl = analyze_eliminator elimty env (project gl) in let seed = if is_case then let mind,indb = Inductive.lookup_mind_specif env (kn,i) in let tys = indb.Declarations.mind_nf_lc in let renamed_tys = Array.mapi (fun j (ctx, cty) -> let t = Term.it_mkProd_or_LetIn cty ctx in ppdebug(lazy Pp.(str "Search" ++ Printer.pr_constr_env env (project gl) t)); let t = Arguments_renaming.rename_type t (GlobRef.ConstructRef((kn,i),j+1)) in ppdebug(lazy Pp.(str"Done Search " ++ Printer.pr_constr_env env (project gl) t)); t) tys in let drop_params x = snd @@ EConstr.decompose_prod_n_assum (project gl) mind.Declarations.mind_nparams (EConstr.of_constr x) in Array.map drop_params renamed_tys else subgoals_tys (project gl) ctx_concl in let rctx = fst (EConstr.decompose_prod_assum (project gl) unfolded_c_ty) in let n_c_args = Context.Rel.length rctx in let c, c_ty, t_args, gl = pf_saturate gl c ~ty:c_ty n_c_args in let elim, elimty, elim_args, gl = pf_saturate ~beta:is_case gl elim ~ty:elimty n_elim_args in let pred = List.assoc pred_id elim_args in let pc = match n_c_args, c_gen with | 0, Some p -> interp_cpattern orig_gl p None | _ -> mkTpat gl c in let cty = Some (c, c_ty, pc) in let elimty = Reductionops.whd_all env (project gl) elimty in seed, cty, elim, elimty, elim_args, n_elim_args, elim_is_dep, is_rec, pred, gl in let () = let sigma = project gl in ppdebug(lazy Pp.(str"elim= "++ pr_econstr_pat env sigma elim)); ppdebug(lazy Pp.(str"elimty= "++ pr_econstr_pat env sigma elimty)) in let inf_deps_r = match EConstr.kind_of_type (project gl) elimty with | AtomicType (_, args) -> List.rev (Array.to_list args) | _ -> assert false in let saturate_until gl c c_ty f = let rec loop n = try let c, c_ty, _, gl = pf_saturate gl c ~ty:c_ty n in let gl' = f c c_ty gl in Some (c, c_ty, gl, gl') with | NotEnoughProducts -> None | e when CErrors.noncritical e -> loop (n+1) in loop 0 in (* Here we try to understand if the main pattern/term the user gave is * the first pattern to be matched (i.e. if elimty ends in P t1 .. tn, * weather tn is the t the user wrote in 'elim: t' *) let c_is_head_p, gl = match cty with | None -> true, gl (* The user wrote elim: _ *) | Some (c, c_ty, _) -> let rec first = function | [] -> errorstrm Pp.(str"Unable to apply the eliminator to the term"++ spc()++pr_econstr_env env (project gl) c++spc()) | x :: rest -> match x () with | None -> first rest | Some (b,gl) -> b, gl in (* Unify two terms if their heads are not applied unif variables, eg * not (?P x). The idea is to rule out cases where the problem is too * vague to drive the current heuristics. *) let pf_unify_HO_rigid gl a b = let is_applied_evar x = match EConstr.kind (project gl) x with | App(x,_) -> EConstr.isEvar (project gl) x | _ -> false in if is_applied_evar a || is_applied_evar b then raise Evarconv.(UnableToUnify(project gl, Pretype_errors.ProblemBeyondCapabilities)) else pf_unify_HO gl a b in let try_c_last_arg () = (* we try to see if c unifies with the last arg of elim *) if elim_is_dep then None else let arg = List.assoc (n_elim_args - 1) elim_args in let gl, arg_ty = pfe_type_of gl arg in match saturate_until gl c c_ty (fun c c_ty gl -> pf_unify_HO (pf_unify_HO_rigid gl c_ty arg_ty) arg c) with | Some (c, _, _, gl) -> Some (false, gl) | None -> None in let try_c_last_pattern () = (* we try to see if c unifies with the last inferred pattern *) if inf_deps_r = [] then None else let inf_arg = List.hd inf_deps_r in let gl, inf_arg_ty = pfe_type_of gl inf_arg in match saturate_until gl c c_ty (fun _ c_ty gl -> pf_unify_HO_rigid gl c_ty inf_arg_ty) with | Some (c, _, _,gl) -> Some(true, gl) | None -> None in first [try_c_last_arg;try_c_last_pattern] in ppdebug(lazy Pp.(str"c_is_head_p= " ++ bool c_is_head_p)); let gl, predty = pfe_type_of gl pred in (* Patterns for the inductive types indexes to be bound in pred are computed * looking at the ones provided by the user and the inferred ones looking at * the type of the elimination principle *) let pp_pat (_,p,_,occ) = Pp.(pr_occ occ ++ pp_pattern env p) in let pp_inf_pat gl (_,_,t,_) = pr_econstr_pat env (project gl) (fire_subst gl t) in let patterns, clr, gl = let rec loop patterns clr i = function | [],[] -> patterns, clr, gl | ((oclr, occ), t):: deps, inf_t :: inf_deps -> let p = interp_cpattern orig_gl t None in let clr_t = interp_clr (project gl) (oclr,(tag_of_cpattern t,EConstr.of_constr (fst (redex_of_pattern env p)))) in (* if we are the index for the equation we do not clear *) let clr_t = if deps = [] && eqid <> None then [] else clr_t in let p = if is_undef_pat p then mkTpat gl inf_t else p in loop (patterns @ [i, p, inf_t, occ]) (clr_t @ clr) (i+1) (deps, inf_deps) | [], c :: inf_deps -> ppdebug(lazy Pp.(str"adding inf pattern " ++ pr_econstr_pat env (project gl) c)); loop (patterns @ [i, mkTpat gl c, c, allocc]) clr (i+1) ([], inf_deps) | _::_, [] -> errorstrm Pp.(str "Too many dependent abstractions") in let deps, head_p, inf_deps_r = match what, c_is_head_p, cty with | `EConstr _, _, None -> anomaly "Simple elim with no term" | _, false, _ -> deps, [], inf_deps_r | `EGen gen, true, None -> deps @ [gen], [], inf_deps_r | _, true, Some (c, _, pc) -> let occ = if occ = None then allocc else occ in let inf_p, inf_deps_r = List.hd inf_deps_r, List.tl inf_deps_r in deps, [1, pc, inf_p, occ], inf_deps_r in let patterns, clr, gl = loop [] orig_clr (List.length head_p+1) (List.rev deps, inf_deps_r) in head_p @ patterns, Util.List.uniquize clr, gl in ppdebug(lazy Pp.(pp_concat (str"patterns=") (List.map pp_pat patterns))); ppdebug(lazy Pp.(pp_concat (str"inf. patterns=") (List.map (pp_inf_pat gl) patterns))); (* Predicate generation, and (if necessary) tactic to generalize the * equation asked by the user *) let elim_pred, gen_eq_tac, clr, gl = let error gl t inf_t = errorstrm Pp.(str"The given pattern matches the term"++ spc()++pp_term gl t++spc()++str"while the inferred pattern"++ spc()++pr_econstr_pat env (project gl) (fire_subst gl inf_t)++spc()++ str"doesn't") in let match_or_postpone (cl, gl, post) (h, p, inf_t, occ) = let p = unif_redex gl p inf_t in if is_undef_pat p then let () = ppdebug(lazy Pp.(str"postponing " ++ pp_pattern env p)) in cl, gl, post @ [h, p, inf_t, occ] else try let c, cl, ucst = match_pat env p occ h cl in let gl = pf_merge_uc ucst gl in let c = EConstr.of_constr c in let gl = try pf_unify_HO gl inf_t c with exn when CErrors.noncritical exn -> error gl c inf_t in cl, gl, post with | NoMatch | NoProgress -> let e, ucst = redex_of_pattern env p in let gl = pf_merge_uc ucst gl in let e = EConstr.of_constr e in let n, e, _, _ucst = pf_abs_evars gl (fst p, e) in let e, _, _, gl = pf_saturate ~beta:true gl e n in let gl = try pf_unify_HO gl inf_t e with exn when CErrors.noncritical exn -> error gl e inf_t in cl, gl, post in let rec match_all concl gl patterns = let concl, gl, postponed = List.fold_left match_or_postpone (concl, gl, []) patterns in if postponed = [] then concl, gl else if List.length postponed = List.length patterns then errorstrm Pp.(str "Some patterns are undefined even after all"++spc()++ str"the defined ones matched") else match_all concl gl postponed in let concl, gl = match_all concl gl patterns in let pred_rctx, _ = EConstr.decompose_prod_assum (project gl) (fire_subst gl predty) in let concl, gen_eq_tac, clr, gl = match eqid with | Some (IPatId _) when not is_rec -> let k = List.length deps in let c = fire_subst gl (List.assoc (n_elim_args - k - 1) elim_args) in let gl, t = pfe_type_of gl c in let gl, eq = get_eq_type gl in let gen_eq_tac, eq_ty, gl = let refl = EConstr.mkApp (eq, [|t; c; c|]) in let new_concl = EConstr.mkArrow refl Sorts.Relevant (EConstr.Vars.lift 1 (pf_concl orig_gl)) in let new_concl = fire_subst gl new_concl in let erefl, gl = mkRefl t c gl in let erefl = fire_subst gl erefl in let erefl_ty = Retyping.get_type_of (pf_env gl) (project gl) erefl in let eq_ty = Retyping.get_type_of (pf_env gl) (project gl) erefl_ty in let gen_eq_tac s = let open Evd in let sigma = merge_universe_context s.sigma (evar_universe_context (project gl)) in apply_type new_concl [erefl] { s with sigma } in gen_eq_tac, eq_ty, gl in let rel = k + if c_is_head_p then 1 else 0 in let src, gl = mkProt eq_ty EConstr.(mkApp (eq,[|t; c; mkRel rel|])) gl in let concl = EConstr.mkArrow src Sorts.Relevant (EConstr.Vars.lift 1 concl) in let clr = if deps <> [] then clr else [] in concl, gen_eq_tac, clr, gl | _ -> concl, Tacticals.tclIDTAC, clr, gl in let mk_lam t r = EConstr.mkLambda_or_LetIn r t in let concl = List.fold_left mk_lam concl pred_rctx in let gl, concl = if eqid <> None && is_rec then let gl, concls = pfe_type_of gl concl in let concl, gl = mkProt concls concl gl in let gl, _ = pfe_type_of gl concl in gl, concl else gl, concl in concl, gen_eq_tac, clr, gl in let gl, pty = pf_e_type_of gl elim_pred in ppdebug(lazy Pp.(str"elim_pred=" ++ pp_term gl elim_pred)); ppdebug(lazy Pp.(str"elim_pred_ty=" ++ pp_term gl pty)); let gl = pf_unify_HO gl pred elim_pred in let elim = fire_subst gl elim in let gl = pf_resolve_typeclasses ~where:elim ~fail:false gl in let gl, _ = pf_e_type_of gl elim in (* check that the patterns do not contain non instantiated dependent metas *) let () = let evars_of_term = Evarutil.undefined_evars_of_term (project gl) in let patterns = List.map (fun (_,_,t,_) -> fire_subst gl t) patterns in let patterns_ev = List.map evars_of_term patterns in let ev = List.fold_left Evar.Set.union Evar.Set.empty patterns_ev in let ty_ev = Evar.Set.fold (fun i e -> let ex = i in let i_ty = Evd.evar_concl (Evd.find (project gl) ex) in Evar.Set.union e (evars_of_term i_ty)) ev Evar.Set.empty in let inter = Evar.Set.inter ev ty_ev in if not (Evar.Set.is_empty inter) then begin let i = Evar.Set.choose inter in let pat = List.find (fun t -> Evar.Set.mem i (evars_of_term t)) patterns in errorstrm Pp.(str"Pattern"++spc()++pr_econstr_pat env (project gl) pat++spc()++ str"was not completely instantiated and one of its variables"++spc()++ str"occurs in the type of another non-instantiated pattern variable"); end in (* the elim tactic, with the eliminator and the predicated we computed *) let elim = project gl, elim in let seed = Array.map (fun ty -> let ctx,_ = EConstr.decompose_prod_assum (project gl) ty in CList.rev_map Context.Rel.Declaration.get_name ctx) seed in (elim,seed,clr,is_rec,gen_eq_tac), orig_gl end >>= fun (elim, seed,clr,is_rec,gen_eq_tac) -> let elim_tac = Tacticals.New.tclTHENLIST [ Proofview.V82.tactic (refine_with ~with_evars:false elim); cleartac clr] in let gen_eq_tac = Proofview.V82.tactic gen_eq_tac in Tacticals.New.tclTHENLIST [gen_eq_tac; elim_intro_tac ?seed:(Some seed) what eqid elim_tac is_rec clr] ;; let elimtac x = let k ?seed:_ _what _eqid elim_tac _is_rec _clr = elim_tac in ssrelim ~is_case:false [] (`EConstr ([],None,x)) None k let casetac x k = let k ?seed _what _eqid elim_tac _is_rec _clr = k ?seed elim_tac in ssrelim ~is_case:true [] (`EConstr ([],None,x)) None k let pf_nb_prod gl = nb_prod (project gl) (pf_concl gl) let rev_id = mk_internal_id "rev concl" let injecteq_id = mk_internal_id "injection equation" let revtoptac n0 gl = let n = pf_nb_prod gl - n0 in let dc, cl = EConstr.decompose_prod_n_assum (project gl) n (pf_concl gl) in let dc' = dc @ [Context.Rel.Declaration.LocalAssum(make_annot (Name rev_id) Sorts.Relevant, EConstr.it_mkProd_or_LetIn cl (List.rev dc))] in let f = EConstr.it_mkLambda_or_LetIn (mkEtaApp (EConstr.mkRel (n + 1)) (-n) 1) dc' in Refiner.refiner ~check:true EConstr.Unsafe.(to_constr (EConstr.mkApp (f, [|Evarutil.mk_new_meta ()|]))) gl let equality_inj l b id c gl = let msg = ref "" in try Proofview.V82.of_tactic (Equality.inj None l b None c) gl with | Gramlib.Ploc.Exc(_,CErrors.UserError (_,s)) | CErrors.UserError (_,s) when msg := Pp.string_of_ppcmds s; !msg = "Not a projectable equality but a discriminable one." || !msg = "Nothing to inject." -> Feedback.msg_warning (Pp.str !msg); discharge_hyp (id, (id, "")) gl let injectidl2rtac id c gl = Tacticals.tclTHEN (equality_inj None true id c) (revtoptac (pf_nb_prod gl)) gl let injectl2rtac sigma c = match EConstr.kind sigma c with | Var id -> injectidl2rtac id (EConstr.mkVar id, NoBindings) | _ -> let id = injecteq_id in let xhavetac id c = Proofview.V82.of_tactic (Tactics.pose_proof (Name id) c) in Tacticals.tclTHENLIST [xhavetac id c; injectidl2rtac id (EConstr.mkVar id, NoBindings); Proofview.V82.of_tactic (Tactics.clear [id])] let is_injection_case c gl = let gl, cty = pfe_type_of gl c in let (mind,_), _ = pf_reduce_to_quantified_ind gl cty in Coqlib.check_ind_ref "core.eq.type" mind let perform_injection c gl = let gl, cty = pfe_type_of gl c in let mind, t = pf_reduce_to_quantified_ind gl cty in let dc, eqt = EConstr.decompose_prod (project gl) t in if dc = [] then injectl2rtac (project gl) c gl else if not (EConstr.Vars.closed0 (project gl) eqt) then CErrors.user_err (Pp.str "can't decompose a quantified equality") else let cl = pf_concl gl in let n = List.length dc in let c_eq = mkEtaApp c n 2 in let cl1 = EConstr.mkLambda EConstr.(make_annot Anonymous Sorts.Relevant, mkArrow eqt Sorts.Relevant cl, mkApp (mkRel 1, [|c_eq|])) in let id = injecteq_id in let id_with_ebind = (EConstr.mkVar id, NoBindings) in let injtac = Tacticals.tclTHEN (introid id) (injectidl2rtac id id_with_ebind) in Tacticals.tclTHENLAST (Proofview.V82.of_tactic (Tactics.apply (EConstr.compose_lam dc cl1))) injtac gl let ssrscase_or_inj_tac c = Proofview.V82.tactic ~nf_evars:false (fun gl -> if is_injection_case c gl then perform_injection c gl else Proofview.V82.of_tactic (casetac c (fun ?seed:_ k -> k)) gl)