1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Nameops open Namegen open Constr open Context open EConstr open Vars open Reduction open Tacticals.New open Tactics open Pretype_errors open Typeclasses open Constrexpr open Evd open Tactypes open Locus open Locusops open Elimschemes open Environ open Termops open EConstr open Libnames open Proofview.Notations open Context.Named.Declaration module NamedDecl = Context.Named.Declaration (* module RelDecl = Context.Rel.Declaration *) (** Typeclass-based generalized rewriting. *) type rewrite_attributes = { polymorphic : bool; global : bool } let rewrite_attributes = let open Attributes.Notations in Attributes.(polymorphic ++ program ++ locality) >>= fun ((polymorphic, program), locality) -> let global = not (Locality.make_section_locality locality) in Attributes.Notations.return { polymorphic; global } (** Constants used by the tactic. *) let classes_dirpath = Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"]) let init_relation_classes () = if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then () else Coqlib.check_required_library ["Coq";"Classes";"RelationClasses"] let init_setoid () = if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then () else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"] let find_reference dir s = Coqlib.find_reference "generalized rewriting" dir s [@@warning "-3"] let lazy_find_reference dir s = let gr = lazy (find_reference dir s) in fun () -> Lazy.force gr type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *) let find_global dir s = let gr = lazy (find_reference dir s) in fun (evd,cstrs) -> let (evd, c) = Evarutil.new_global evd (Lazy.force gr) in (evd, cstrs), c (** Utility for dealing with polymorphic applications *) (** Global constants. *) let coq_eq_ref () = Coqlib.lib_ref "core.eq.type" let coq_eq = find_global ["Coq"; "Init"; "Logic"] "eq" let coq_f_equal = find_global ["Coq"; "Init"; "Logic"] "f_equal" let coq_all = find_global ["Coq"; "Init"; "Logic"] "all" let impl = find_global ["Coq"; "Program"; "Basics"] "impl" (** Bookkeeping which evars are constraints so that we can remove them at the end of the tactic. *) let goalevars evars = fst evars let cstrevars evars = snd evars let new_cstr_evar (evd,cstrs) env t = (* We handle the typeclass resolution of constraints ourselves *) let (evd', t) = Evarutil.new_evar env evd ~typeclass_candidate:false t in let ev, _ = destEvar evd' t in (evd', Evar.Set.add ev cstrs), t (** Building or looking up instances. *) let e_new_cstr_evar env evars t = let evd', t = new_cstr_evar !evars env t in evars := evd'; t (** Building or looking up instances. *) let extends_undefined evars evars' = let f ev evi found = found || not (Evd.mem evars ev) in fold_undefined f evars' false let app_poly_check env evars f args = let (evars, cstrs), fc = f evars in let evars, t = Typing.solve_evars env evars (mkApp (fc, args)) in (evars, cstrs), t let app_poly_nocheck env evars f args = let evars, fc = f evars in evars, mkApp (fc, args) let app_poly_sort b = if b then app_poly_nocheck else app_poly_check let find_class_proof proof_type proof_method env evars carrier relation = try let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in let evars', c = Typeclasses.resolve_one_typeclass env (goalevars evars) goal in if extends_undefined (goalevars evars) evars' then raise Not_found else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |] with e when Logic.catchable_exception e -> raise Not_found (** Utility functions *) module GlobalBindings (M : sig val relation_classes : string list val morphisms : string list val relation : string list * string val app_poly : env -> evars -> (evars -> evars * constr) -> constr array -> evars * constr val arrow : evars -> evars * constr end) = struct open M open Context.Rel.Declaration let relation : evars -> evars * constr = find_global (fst relation) (snd relation) let reflexive_type = find_global relation_classes "Reflexive" let reflexive_proof = find_global relation_classes "reflexivity" let symmetric_type = find_global relation_classes "Symmetric" let symmetric_proof = find_global relation_classes "symmetry" let transitive_type = find_global relation_classes "Transitive" let transitive_proof = find_global relation_classes "transitivity" let forall_relation = find_global morphisms "forall_relation" let pointwise_relation = find_global morphisms "pointwise_relation" let forall_relation_ref = lazy_find_reference morphisms "forall_relation" let pointwise_relation_ref = lazy_find_reference morphisms "pointwise_relation" let respectful = find_global morphisms "respectful" let respectful_ref = lazy_find_reference morphisms "respectful" let default_relation = find_global ["Coq"; "Classes"; "SetoidTactics"] "DefaultRelation" let coq_forall = find_global morphisms "forall_def" let subrelation = find_global relation_classes "subrelation" let do_subrelation = find_global morphisms "do_subrelation" let apply_subrelation = find_global morphisms "apply_subrelation" let rewrite_relation_class = find_global relation_classes "RewriteRelation" let proper_class = let r = lazy (find_reference morphisms "Proper") in fun env sigma -> class_info env sigma (Lazy.force r) let proper_proxy_class = let r = lazy (find_reference morphisms "ProperProxy") in fun env sigma -> class_info env sigma (Lazy.force r) let proper_proj env sigma = mkConst (Option.get (pi3 (List.hd (proper_class env sigma).cl_projs))) let proper_type env (sigma,cstrs) = let l = (proper_class env sigma).cl_impl in let (sigma, c) = Evarutil.new_global sigma l in (sigma, cstrs), c let proper_proxy_type env (sigma,cstrs) = let l = (proper_proxy_class env sigma).cl_impl in let (sigma, c) = Evarutil.new_global sigma l in (sigma, cstrs), c let proper_proof env evars carrier relation x = let evars, goal = app_poly env evars (proper_proxy_type env) [| carrier ; relation; x |] in new_cstr_evar evars env goal let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env let get_transitive_proof env = find_class_proof transitive_type transitive_proof env let mk_relation env evd a = app_poly env evd relation [| a |] (** Build an inferred signature from constraints on the arguments and expected output relation *) let build_signature evars env m (cstrs : (types * types option) option list) (finalcstr : (types * types option) option) = let mk_relty evars newenv ty obj = match obj with | None | Some (_, None) -> let evars, relty = mk_relation env evars ty in if closed0 (goalevars evars) ty then let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in new_cstr_evar evars env' relty else new_cstr_evar evars newenv relty | Some (x, Some rel) -> evars, rel in let rec aux env evars ty l = let t = Reductionops.whd_all env (goalevars evars) ty in match EConstr.kind (goalevars evars) t, l with | Prod (na, ty, b), obj :: cstrs -> let b = Reductionops.nf_betaiota env (goalevars evars) b in if noccurn (goalevars evars) 1 b (* non-dependent product *) then let ty = Reductionops.nf_betaiota env (goalevars evars) ty in let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in let evars, relty = mk_relty evars env ty obj in let evars, newarg = app_poly env evars respectful [| ty ; b' ; relty ; arg |] in evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs else let (evars, b, arg, cstrs) = aux (push_rel (LocalAssum (na, ty)) env) evars b cstrs in let ty = Reductionops.nf_betaiota env (goalevars evars) ty in let pred = mkLambda (na, ty, b) in let liftarg = mkLambda (na, ty, arg) in let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs else user_err Pp.(str "build_signature: no constraint can apply on a dependent argument") | _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products.") | _, [] -> (match finalcstr with | None | Some (_, None) -> let t = Reductionops.nf_betaiota env (fst evars) ty in let evars, rel = mk_relty evars env t None in evars, t, rel, [t, Some rel] | Some (t, Some rel) -> evars, t, rel, [t, Some rel]) in aux env evars m cstrs (** Folding/unfolding of the tactic constants. *) let unfold_impl sigma t = match EConstr.kind sigma t with | App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) -> mkProd (make_annot Anonymous Sorts.Relevant, a, lift 1 b) | _ -> assert false let unfold_all sigma t = match EConstr.kind sigma t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match EConstr.kind sigma b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let unfold_forall sigma t = match EConstr.kind sigma t with | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) -> (match EConstr.kind sigma b with | Lambda (n, ty, b) -> mkProd (n, ty, b) | _ -> assert false) | _ -> assert false let arrow_morphism env evd ta tb a b = let ap = is_Prop (goalevars evd) ta and bp = is_Prop (goalevars evd) tb in if ap && bp then app_poly env evd impl [| a; b |], unfold_impl else if ap then (* Domain in Prop, CoDomain in Type *) (app_poly env evd arrow [| a; b |]), unfold_impl (* (evd, mkProd (Anonymous, a, b)), (fun x -> x) *) else if bp then (* Dummy forall *) (app_poly env evd coq_all [| a; mkLambda (make_annot Anonymous Sorts.Relevant, a, lift 1 b) |]), unfold_forall else (* None in Prop, use arrow *) (app_poly env evd arrow [| a; b |]), unfold_impl let rec decomp_pointwise sigma n c = if Int.equal n 0 then c else match EConstr.kind sigma c with | App (f, [| a; b; relb |]) when Termops.is_global sigma (pointwise_relation_ref ()) f -> decomp_pointwise sigma (pred n) relb | App (f, [| a; b; arelb |]) when Termops.is_global sigma (forall_relation_ref ()) f -> decomp_pointwise sigma (pred n) (Reductionops.beta_applist sigma (arelb, [mkRel 1])) | _ -> invalid_arg "decomp_pointwise" let rec apply_pointwise sigma rel = function | arg :: args -> (match EConstr.kind sigma rel with | App (f, [| a; b; relb |]) when Termops.is_global sigma (pointwise_relation_ref ()) f -> apply_pointwise sigma relb args | App (f, [| a; b; arelb |]) when Termops.is_global sigma (forall_relation_ref ()) f -> apply_pointwise sigma (Reductionops.beta_applist sigma (arelb, [arg])) args | _ -> invalid_arg "apply_pointwise") | [] -> rel let pointwise_or_dep_relation env evd n t car rel = if noccurn (goalevars evd) 1 car && noccurn (goalevars evd) 1 rel then app_poly env evd pointwise_relation [| t; lift (-1) car; lift (-1) rel |] else app_poly env evd forall_relation [| t; mkLambda (make_annot n Sorts.Relevant, t, car); mkLambda (make_annot n Sorts.Relevant, t, rel) |] let lift_cstr env evars (args : constr list) c ty cstr = let start evars env car = match cstr with | None | Some (_, None) -> let evars, rel = mk_relation env evars car in new_cstr_evar evars env rel | Some (ty, Some rel) -> evars, rel in let rec aux evars env prod n = if Int.equal n 0 then start evars env prod else let sigma = goalevars evars in match EConstr.kind sigma (Reductionops.whd_all env sigma prod) with | Prod (na, ty, b) -> if noccurn sigma 1 b then let b' = lift (-1) b in let evars, rb = aux evars env b' (pred n) in app_poly env evars pointwise_relation [| ty; b'; rb |] else let evars, rb = aux evars (push_rel (LocalAssum (na, ty)) env) b (pred n) in app_poly env evars forall_relation [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |] | _ -> raise Not_found in let rec find env c ty = function | [] -> None | arg :: args -> try let evars, found = aux evars env ty (succ (List.length args)) in Some (evars, found, c, ty, arg :: args) with Not_found -> let sigma = goalevars evars in let ty = Reductionops.whd_all env sigma ty in find env (mkApp (c, [| arg |])) (prod_applist sigma ty [arg]) args in find env c ty args let unlift_cstr env sigma = function | None -> None | Some codom -> Some (decomp_pointwise (goalevars sigma) 1 codom) (** Looking up declared rewrite relations (instances of [RewriteRelation]) *) let is_applied_rewrite_relation env sigma rels t = match EConstr.kind sigma t with | App (c, args) when Array.length args >= 2 -> let head = if isApp sigma c then fst (destApp sigma c) else c in if Termops.is_global sigma (coq_eq_ref ()) head then None else (try let params, args = Array.chop (Array.length args - 2) args in let env' = push_rel_context rels env in let (evars, (evar, _)) = Evarutil.new_type_evar env' sigma Evd.univ_flexible in let evars, inst = app_poly env (evars,Evar.Set.empty) rewrite_relation_class [| evar; mkApp (c, params) |] in let _ = Typeclasses.resolve_one_typeclass env' (goalevars evars) inst in Some (it_mkProd_or_LetIn t rels) with e when CErrors.noncritical e -> None) | _ -> None end (* let my_type_of env evars c = Typing.e_type_of env evars c *) (* let mytypeofkey = CProfile.declare_profile "my_type_of";; *) (* let my_type_of = CProfile.profile3 mytypeofkey my_type_of *) let type_app_poly env env evd f args = let evars, c = app_poly_nocheck env evd f args in let evd', t = Typing.type_of env (goalevars evars) c in (evd', cstrevars evars), c module PropGlobal = struct module Consts = struct let relation_classes = ["Coq"; "Classes"; "RelationClasses"] let morphisms = ["Coq"; "Classes"; "Morphisms"] let relation = ["Coq"; "Relations";"Relation_Definitions"], "relation" let app_poly = app_poly_nocheck let arrow = find_global ["Coq"; "Program"; "Basics"] "arrow" let coq_inverse = find_global ["Coq"; "Program"; "Basics"] "flip" end module G = GlobalBindings(Consts) include G include Consts let inverse env evd car rel = type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |] (* app_poly env evd coq_inverse [| car ; car; mkProp; rel |] *) end module TypeGlobal = struct module Consts = struct let relation_classes = ["Coq"; "Classes"; "CRelationClasses"] let morphisms = ["Coq"; "Classes"; "CMorphisms"] let relation = relation_classes, "crelation" let app_poly = app_poly_check let arrow = find_global ["Coq"; "Classes"; "CRelationClasses"] "arrow" let coq_inverse = find_global ["Coq"; "Classes"; "CRelationClasses"] "flip" end module G = GlobalBindings(Consts) include G include Consts let inverse env (evd,cstrs) car rel = let (evd, sort) = Evarutil.new_Type ~rigid:Evd.univ_flexible evd in app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |] end let sort_of_rel env evm rel = ESorts.kind evm (Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel)) let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation (* let _ = *) (* Hook.set Equality.is_applied_rewrite_relation is_applied_rewrite_relation *) let split_head = function hd :: tl -> hd, tl | [] -> assert(false) let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') = let equal x y = Constr.equal (EConstr.Unsafe.to_constr x) (EConstr.Unsafe.to_constr y) in pb == pb' || (ty == ty' && equal x x' && equal y y') let problem_inclusion x y = List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x let evd_convertible env evd x y = try (* Unfortunately, the_conv_x might say they are unifiable even if some unsolvable constraints remain, so we check that this unification does not introduce any new problem. *) let _, pbs = Evd.extract_all_conv_pbs evd in let evd' = Evarconv.unify_delay env evd x y in let _, pbs' = Evd.extract_all_conv_pbs evd' in if evd' == evd || problem_inclusion pbs' pbs then Some evd' else None with e when CErrors.noncritical e -> None let convertible env evd x y = Reductionops.is_conv_leq env evd x y type hypinfo = { prf : constr; car : constr; rel : constr; sort : bool; (* true = Prop; false = Type *) c1 : constr; c2 : constr; holes : Clenv.hole list; } let get_symmetric_proof b = if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof let error_no_relation () = user_err Pp.(str "Cannot find a relation to rewrite.") let rec decompose_app_rel env evd t = (* Head normalize for compatibility with the old meta mechanism *) let t = Reductionops.whd_betaiota evd t in match EConstr.kind evd t with | App (f, [||]) -> assert false | App (f, [|arg|]) -> let (f', argl, argr) = decompose_app_rel env evd arg in let ty = Typing.unsafe_type_of env evd argl in let r = Retyping.relevance_of_type env evd ty in let f'' = mkLambda (make_annot (Name default_dependent_ident) r, ty, mkLambda (make_annot (Name (Id.of_string "y")) r, lift 1 ty, mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |]))) in (f'', argl, argr) | App (f, args) -> let len = Array.length args in let fargs = Array.sub args 0 (Array.length args - 2) in let rel = mkApp (f, fargs) in rel, args.(len - 2), args.(len - 1) | _ -> error_no_relation () let decompose_app_rel env evd t = let (rel, t1, t2) = decompose_app_rel env evd t in let ty = Retyping.get_type_of env evd rel in let () = if not (Reductionops.is_arity env evd ty) then error_no_relation () in (rel, t1, t2) let decompose_applied_relation env sigma (c,l) = let open Context.Rel.Declaration in let ctype = Retyping.get_type_of env sigma c in let find_rel ty = let sigma, cl = Clenv.make_evar_clause env sigma ty in let sigma = Clenv.solve_evar_clause env sigma true cl l in let { Clenv.cl_holes = holes; Clenv.cl_concl = t } = cl in let (equiv, c1, c2) = decompose_app_rel env sigma t in let ty1 = Retyping.get_type_of env sigma c1 in let ty2 = Retyping.get_type_of env sigma c2 in match evd_convertible env sigma ty1 ty2 with | None -> None | Some sigma -> let sort = sort_of_rel env sigma equiv in let args = Array.map_of_list (fun h -> h.Clenv.hole_evar) holes in let value = mkApp (c, args) in Some (sigma, { prf=value; car=ty1; rel = equiv; sort = Sorts.is_prop sort; c1=c1; c2=c2; holes }) in match find_rel ctype with | Some c -> c | None -> let ctx,t' = Reductionops.splay_prod env sigma ctype in (* Search for underlying eq *) match find_rel (it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx)) with | Some c -> c | None -> user_err Pp.(str "Cannot find an homogeneous relation to rewrite.") let rewrite_db = "rewrite" let conv_transparent_state = TransparentState.cst_full let rewrite_transparent_state () = Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db) let rewrite_core_unif_flags = { Unification.modulo_conv_on_closed_terms = None; Unification.use_metas_eagerly_in_conv_on_closed_terms = true; Unification.use_evars_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = TransparentState.empty; Unification.modulo_delta_types = TransparentState.full; Unification.check_applied_meta_types = true; Unification.use_pattern_unification = true; Unification.use_meta_bound_pattern_unification = true; Unification.allowed_evars = Unification.AllowAll; Unification.restrict_conv_on_strict_subterms = false; Unification.modulo_betaiota = false; Unification.modulo_eta = true; } (* Flags used for the setoid variant of "rewrite" and for the strategies "hints"/"old_hints"/"terms" of "rewrite_strat", and for solving pre-existing evars in "rewrite" (see unify_abs) *) let rewrite_unif_flags = let flags = rewrite_core_unif_flags in { Unification.core_unify_flags = flags; Unification.merge_unify_flags = flags; Unification.subterm_unify_flags = flags; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } let rewrite_core_conv_unif_flags = { rewrite_core_unif_flags with Unification.modulo_conv_on_closed_terms = Some conv_transparent_state; Unification.modulo_delta_types = conv_transparent_state; Unification.modulo_betaiota = true } (* Fallback flags for the setoid variant of "rewrite" *) let rewrite_conv_unif_flags = let flags = rewrite_core_conv_unif_flags in { Unification.core_unify_flags = flags; Unification.merge_unify_flags = flags; Unification.subterm_unify_flags = flags; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } (* Flags for "setoid_rewrite c"/"rewrite_strat -> c" *) let general_rewrite_unif_flags () = let ts = rewrite_transparent_state () in let core_flags = { rewrite_core_unif_flags with Unification.modulo_conv_on_closed_terms = Some ts; Unification.use_evars_eagerly_in_conv_on_closed_terms = true; Unification.modulo_delta = ts; Unification.modulo_delta_types = TransparentState.full; Unification.modulo_betaiota = true } in { Unification.core_unify_flags = core_flags; Unification.merge_unify_flags = core_flags; Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = TransparentState.empty }; Unification.allow_K_in_toplevel_higher_order_unification = true; Unification.resolve_evars = true } let refresh_hypinfo env sigma (is, cb) = let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma cb in let sigma, hypinfo = decompose_applied_relation env sigma cbl in let { c1; c2; car; rel; prf; sort; holes } = hypinfo in sigma, (car, rel, prf, c1, c2, holes, sort) (** FIXME: write this in the new monad interface *) let solve_remaining_by env sigma holes by = match by with | None -> sigma | Some tac -> let map h = if h.Clenv.hole_deps then None else match EConstr.kind sigma h.Clenv.hole_evar with | Evar (evk, _) -> Some evk | _ -> None in (* Only solve independent holes *) let indep = List.map_filter map holes in let ist = { Geninterp.lfun = Id.Map.empty ; poly = false ; extra = Geninterp.TacStore.empty } in let solve_tac = match tac with | Genarg.GenArg (Genarg.Glbwit tag, tac) -> Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ()) in let solve_tac = tclCOMPLETE solve_tac in let solve sigma evk = let evi = try Some (Evd.find_undefined sigma evk) with Not_found -> None in match evi with | None -> sigma (* Evar should not be defined, but just in case *) | Some evi -> let env = Environ.reset_with_named_context evi.evar_hyps env in let ty = evi.evar_concl in let name, poly = Id.of_string "rewrite", false in let c, sigma = Pfedit.refine_by_tactic ~name ~poly env sigma ty solve_tac in Evd.define evk (EConstr.of_constr c) sigma in List.fold_left solve sigma indep let no_constraints cstrs = fun ev _ -> not (Evar.Set.mem ev cstrs) let poly_inverse sort = if sort then PropGlobal.inverse else TypeGlobal.inverse type rewrite_proof = | RewPrf of constr * constr (** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *) | RewCast of cast_kind (** A proof of convertibility (with casts) *) type rewrite_result_info = { rew_car : constr ; (** A type *) rew_from : constr ; (** A term of type rew_car *) rew_to : constr ; (** A term of type rew_car *) rew_prf : rewrite_proof ; (** A proof of rew_from == rew_to *) rew_evars : evars; } type rewrite_result = | Fail | Identity | Success of rewrite_result_info type 'a strategy_input = { state : 'a ; (* a parameter: for instance, a state *) env : Environ.env ; unfresh : Id.Set.t; (* Unfresh names *) term1 : constr ; ty1 : types ; (* first term and its type (convertible to rew_from) *) cstr : (bool (* prop *) * constr option) ; evars : evars } type 'a pure_strategy = { strategy : 'a strategy_input -> 'a * rewrite_result (* the updated state and the "result" *) } type strategy = unit pure_strategy let symmetry env sort rew = let { rew_evars = evars; rew_car = car; } = rew in let (rew_evars, rew_prf) = match rew.rew_prf with | RewCast _ -> (rew.rew_evars, rew.rew_prf) | RewPrf (rel, prf) -> try let evars, symprf = get_symmetric_proof sort env evars car rel in let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in (evars, RewPrf (rel, prf)) with Not_found -> let evars, rel = poly_inverse sort env evars car rel in (evars, RewPrf (rel, prf)) in { rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; } (* Matching/unifying the rewriting rule against [t] *) let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t = try let left = if l2r then c1 else c2 in let sigma = Unification.w_unify ~flags env sigma CONV left t in let sigma = Typeclasses.resolve_typeclasses ~filter:(no_constraints cstrs) ~fail:true env sigma in let evd = solve_remaining_by env sigma holes by in let nf c = Reductionops.nf_evar evd (Reductionops.nf_meta evd c) in let c1 = nf c1 and c2 = nf c2 and rew_car = nf car and rel = nf rel and prf = nf prf in let ty1 = Retyping.get_type_of env evd c1 in let ty2 = Retyping.get_type_of env evd c2 in let () = if not (convertible env evd ty2 ty1) then raise Reduction.NotConvertible in let rew_evars = evd, cstrs in let rew_prf = RewPrf (rel, prf) in let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in let rew = if l2r then rew else symmetry env sort rew in Some rew with | e when Class_tactics.catchable e -> None | Reduction.NotConvertible -> None let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t = try let left = if l2r then c1 else c2 in (* The pattern is already instantiated, so the next w_unify is basically an eq_constr, except when preexisting evars occur in either the lemma or the goal, in which case the eq_constr also solved this evars *) let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in let rew_evars = sigma, cstrs in let rew_prf = RewPrf (rel, prf) in let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in let rew = if l2r then rew else symmetry env sort rew in Some rew with | e when Class_tactics.catchable e -> None | Reduction.NotConvertible -> None type rewrite_flags = { under_lambdas : bool; on_morphisms : bool } let default_flags = { under_lambdas = true; on_morphisms = true; } let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None let new_global (evars, cstrs) gr = let (sigma,c) = Evarutil.new_global evars gr in (sigma, cstrs), c let make_eq sigma = new_global sigma Coqlib.(lib_ref "core.eq.type") let make_eq_refl sigma = new_global sigma Coqlib.(lib_ref "core.eq.refl") let get_rew_prf evars r = match r.rew_prf with | RewPrf (rel, prf) -> evars, (rel, prf) | RewCast c -> let evars, eq = make_eq evars in let evars, eq_refl = make_eq_refl evars in let rel = mkApp (eq, [| r.rew_car |]) in evars, (rel, mkCast (mkApp (eq_refl, [| r.rew_car; r.rew_from |]), c, mkApp (rel, [| r.rew_from; r.rew_to |]))) let poly_subrelation sort = if sort then PropGlobal.subrelation else TypeGlobal.subrelation let resolve_subrelation env avoid car rel sort prf rel' res = if Termops.eq_constr (fst res.rew_evars) rel rel' then res else let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in let evars, subrel = new_cstr_evar evars env app in let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in { res with rew_prf = RewPrf (rel', appsub); rew_evars = evars } let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' (b,cstr) evars = let evars, morph_instance, proj, sigargs, m', args, args' = let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with | Some i -> i | None -> invalid_arg "resolve_morphism" in let morphargs, morphobjs = Array.chop first args in let morphargs', morphobjs' = Array.chop first args' in let appm = mkApp(m, morphargs) in let appmtype = Typing.unsafe_type_of env (goalevars evars) appm in let cstrs = List.map (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf)) (Array.to_list morphobjs') in (* Desired signature *) let evars, appmtype', signature, sigargs = if b then PropGlobal.build_signature evars env appmtype cstrs cstr else TypeGlobal.build_signature evars env appmtype cstrs cstr in (* Actual signature found *) let cl_args = [| appmtype' ; signature ; appm |] in let evars, app = app_poly_sort b env evars (if b then PropGlobal.proper_type env else TypeGlobal.proper_type env) cl_args in let env' = let dosub, appsub = if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation in EConstr.push_named (LocalDef (make_annot (Id.of_string "do_subrelation") Sorts.Relevant, snd (app_poly_sort b env evars dosub [||]), snd (app_poly_nocheck env evars appsub [||]))) env in let evars, morph = new_cstr_evar evars env' app in evars, morph, morph, sigargs, appm, morphobjs, morphobjs' in let projargs, subst, evars, respars, typeargs = Array.fold_left2 (fun (acc, subst, evars, sigargs, typeargs') x y -> let (carrier, relation), sigargs = split_head sigargs in match relation with | Some relation -> let carrier = substl subst carrier and relation = substl subst relation in (match y with | None -> let evars, proof = (if b then PropGlobal.proper_proof else TypeGlobal.proper_proof) env evars carrier relation x in [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs' | Some r -> let evars, proof = get_rew_prf evars r in [ snd proof; r.rew_to; x ] @ acc, subst, evars, sigargs, r.rew_to :: typeargs') | None -> if not (Option.is_empty y) then user_err Pp.(str "Cannot rewrite inside dependent arguments of a function"); x :: acc, x :: subst, evars, sigargs, x :: typeargs') ([], [], evars, sigargs, []) args args' in let proof = applist (proj, List.rev projargs) in let newt = applist (m', List.rev typeargs) in match respars with [ a, Some r ] -> evars, proof, substl subst a, substl subst r, oldt, fnewt newt | _ -> assert(false) let apply_constraint env avoid car rel prf cstr res = match snd cstr with | None -> res | Some r -> resolve_subrelation env avoid car rel (fst cstr) prf r res let coerce env avoid cstr res = let evars, (rel, prf) = get_rew_prf res.rew_evars res in let res = { res with rew_evars = evars } in apply_constraint env avoid res.rew_car rel prf cstr res let apply_rule unify loccs : int pure_strategy = let (nowhere_except_in,occs) = convert_occs loccs in let is_occ occ = if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in { strategy = fun { state = occ ; env ; unfresh ; term1 = t ; ty1 = ty ; cstr ; evars } -> let unif = if isEvar (goalevars evars) t then None else unify env evars t in match unif with | None -> (occ, Fail) | Some rew -> let occ = succ occ in if not (is_occ occ) then (occ, Fail) else if Termops.eq_constr (fst rew.rew_evars) t rew.rew_to then (occ, Identity) else let res = { rew with rew_car = ty } in let res = Success (coerce env unfresh cstr res) in (occ, res) } let apply_lemma l2r flags oc by loccs : strategy = { strategy = fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) -> let sigma, c = oc sigma in let sigma, hypinfo = decompose_applied_relation env sigma c in let { c1; c2; car; rel; prf; sort; holes } = hypinfo in let rew = (car, rel, prf, c1, c2, holes, sort) in let evars = (sigma, cstrs) in let unify env evars t = let rew = unify_eqn rew l2r flags env evars by t in match rew with | None -> None | Some rew -> Some rew in let _, res = (apply_rule unify loccs).strategy { input with state = 0 ; evars } in (), res } let e_app_poly env evars f args = let evars', c = app_poly_nocheck env !evars f args in evars := evars'; c let make_leibniz_proof env c ty r = let evars = ref r.rew_evars in let prf = match r.rew_prf with | RewPrf (rel, prf) -> let rel = e_app_poly env evars coq_eq [| ty |] in let prf = e_app_poly env evars coq_f_equal [| r.rew_car; ty; mkLambda (make_annot Anonymous Sorts.Relevant, r.rew_car, c); r.rew_from; r.rew_to; prf |] in RewPrf (rel, prf) | RewCast k -> r.rew_prf in { rew_car = ty; rew_evars = !evars; rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf } let reset_env env = let env' = Global.env_of_context (Environ.named_context_val env) in Environ.push_rel_context (Environ.rel_context env) env' let fold_match ?(force=false) env sigma c = let (ci, p, c, brs) = destCase sigma c in let cty = Retyping.get_type_of env sigma c in let dep, pred, exists, (sk,eff) = let env', ctx, body = let ctx, pred = decompose_lam_assum sigma p in let env' = push_rel_context ctx env in env', ctx, pred in let sortp = Retyping.get_sort_family_of env' sigma body in let sortc = Retyping.get_sort_family_of env sigma cty in let dep = not (noccurn sigma 1 body) in let pred = if dep then p else it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx) in let sk = if sortp == Sorts.InProp then if sortc == Sorts.InProp then if dep then case_dep_scheme_kind_from_prop else case_scheme_kind_from_prop else ( if dep then case_dep_scheme_kind_from_type_in_prop else case_scheme_kind_from_type) else ((* sortc <> InProp by typing *) if dep then case_dep_scheme_kind_from_type else case_scheme_kind_from_type) in let exists = Ind_tables.check_scheme sk ci.ci_ind in if exists || force then dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind else raise Not_found in let app = let ind, args = Inductiveops.find_mrectype env sigma cty in let pars, args = List.chop ci.ci_npar args in let meths = List.map (fun br -> br) (Array.to_list brs) in applist (mkConst sk, pars @ [pred] @ meths @ args @ [c]) in sk, (if exists then env else reset_env env), app, eff let unfold_match env sigma sk app = match EConstr.kind sigma app with | App (f', args) when Constant.equal (fst (destConst sigma f')) sk -> let v = Environ.constant_value_in (Global.env ()) (sk,Univ.Instance.empty)(*FIXME*) in let v = EConstr.of_constr v in Reductionops.whd_beta sigma (mkApp (v, args)) | _ -> app let is_rew_cast = function RewCast _ -> true | _ -> false let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy = let rec aux { state ; env ; unfresh ; term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } = let cstr' = Option.map (fun c -> (ty, Some c)) cstr in match EConstr.kind (goalevars evars) t with | App (m, args) -> let rewrite_args state success = let state, (args', evars', progress) = Array.fold_left (fun (state, (acc, evars, progress)) arg -> if not (Option.is_empty progress) && not all then state, (None :: acc, evars, progress) else let argty = Retyping.get_type_of env (goalevars evars) arg in let state, res = s.strategy { state ; env ; unfresh ; term1 = arg ; ty1 = argty ; cstr = (prop,None) ; evars } in let res' = match res with | Identity -> let progress = if Option.is_empty progress then Some false else progress in (None :: acc, evars, progress) | Success r -> (Some r :: acc, r.rew_evars, Some true) | Fail -> (None :: acc, evars, progress) in state, res') (state, ([], evars, success)) args in let res = match progress with | None -> Fail | Some false -> Identity | Some true -> let args' = Array.of_list (List.rev args') in if Array.exists (function | None -> false | Some r -> not (is_rew_cast r.rew_prf)) args' then let evars', prf, car, rel, c1, c2 = resolve_morphism env unfresh t m args args' (prop, cstr') evars' in let res = { rew_car = ty; rew_from = c1; rew_to = c2; rew_prf = RewPrf (rel, prf); rew_evars = evars' } in Success res else let args' = Array.map2 (fun aorig anew -> match anew with None -> aorig | Some r -> r.rew_to) args args' in let res = { rew_car = ty; rew_from = t; rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast; rew_evars = evars' } in Success res in state, res in if flags.on_morphisms then let mty = Retyping.get_type_of env (goalevars evars) m in let evars, cstr', m, mty, argsl, args = let argsl = Array.to_list args in let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in match lift env evars argsl m mty None with | Some (evars, cstr', m, mty, args) -> evars, Some cstr', m, mty, args, Array.of_list args | None -> evars, None, m, mty, argsl, args in let state, m' = s.strategy { state ; env ; unfresh ; term1 = m ; ty1 = mty ; cstr = (prop, cstr') ; evars } in match m' with | Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *) | Identity -> rewrite_args state (Some false) | Success r -> (* We rewrote the function and get a proof of pointwise rel for the arguments. We just apply it. *) let prf = match r.rew_prf with | RewPrf (rel, prf) -> let app = if prop then PropGlobal.apply_pointwise else TypeGlobal.apply_pointwise in RewPrf (app (goalevars evars) rel argsl, mkApp (prf, args)) | x -> x in let res = { rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args; rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args); rew_prf = prf; rew_evars = r.rew_evars } in let res = match prf with | RewPrf (rel, prf) -> Success (apply_constraint env unfresh res.rew_car rel prf (prop,cstr) res) | _ -> Success res in state, res else rewrite_args state None | Prod (n, x, b) when noccurn (goalevars evars) 1 b -> let b = subst1 mkProp b in let tx = Retyping.get_type_of env (goalevars evars) x and tb = Retyping.get_type_of env (goalevars evars) b in let arr = if prop then PropGlobal.arrow_morphism else TypeGlobal.arrow_morphism in let (evars', mor), unfold = arr env evars tx tb x b in let state, res = aux { state ; env ; unfresh ; term1 = mor ; ty1 = ty ; cstr = (prop,cstr) ; evars = evars' } in let res = match res with | Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to } | Fail | Identity -> res in state, res (* if x' = None && flags.under_lambdas then *) (* let lam = mkLambda (n, x, b) in *) (* let lam', occ = aux env lam occ None in *) (* let res = *) (* match lam' with *) (* | None -> None *) (* | Some (prf, (car, rel, c1, c2)) -> *) (* Some (resolve_morphism env sigma t *) (* ~fnewt:unfold_all *) (* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *) (* cstr evars) *) (* in res, occ *) (* else *) | Prod (n, dom, codom) -> let lam = mkLambda (n, dom, codom) in let (evars', app), unfold = if eq_constr (fst evars) ty mkProp then (app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all else let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in (app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall in let state, res = aux { state ; env ; unfresh ; term1 = app ; ty1 = ty ; cstr = (prop,cstr) ; evars = evars' } in let res = match res with | Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to } | Fail | Identity -> res in state, res (* TODO: real rewriting under binders: introduce x x' (H : R x x') and rewrite with H at any occurrence of x. Ask for (R ==> R') for the lambda. Formalize this. B. Barras' idea is to have a context of relations, of length 1, with Σ for gluing dependent relations and using projections to get them out. *) (* | Lambda (n, t, b) when flags.under_lambdas -> *) (* let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in *) (* let n'' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n' in *) (* let n''' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n'' in *) (* let rel = new_cstr_evar cstr env (mkApp (Lazy.force coq_relation, [|t|])) in *) (* let env' = Environ.push_rel_context [(n'',None,lift 2 rel);(n'',None,lift 1 t);(n', None, t)] env in *) (* let b' = s env' avoid b (Typing.type_of env' (goalevars evars) (lift 2 b)) (unlift_cstr env (goalevars evars) cstr) evars in *) (* (match b' with *) (* | Some (Some r) -> *) (* let prf = match r.rew_prf with *) (* | RewPrf (rel, prf) -> *) (* let rel = pointwise_or_dep_relation n' t r.rew_car rel in *) (* let prf = mkLambda (n', t, prf) in *) (* RewPrf (rel, prf) *) (* | x -> x *) (* in *) (* Some (Some { r with *) (* rew_prf = prf; *) (* rew_car = mkProd (n, t, r.rew_car); *) (* rew_from = mkLambda(n, t, r.rew_from); *) (* rew_to = mkLambda (n, t, r.rew_to) }) *) (* | _ -> b') *) | Lambda (n, t, b) when flags.under_lambdas -> let n' = map_annot (Nameops.Name.map (fun id -> Tactics.fresh_id_in_env unfresh id env)) n in let open Context.Rel.Declaration in let env' = EConstr.push_rel (LocalAssum (n', t)) env in let bty = Retyping.get_type_of env' (goalevars evars) b in let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in let state, b' = s.strategy { state ; env = env' ; unfresh ; term1 = b ; ty1 = bty ; cstr = (prop, unlift env evars cstr) ; evars } in let res = match b' with | Success r -> let r = match r.rew_prf with | RewPrf (rel, prf) -> let point = if prop then PropGlobal.pointwise_or_dep_relation else TypeGlobal.pointwise_or_dep_relation in let evars, rel = point env r.rew_evars n'.binder_name t r.rew_car rel in let prf = mkLambda (n', t, prf) in { r with rew_prf = RewPrf (rel, prf); rew_evars = evars } | x -> r in Success { r with rew_car = mkProd (n, t, r.rew_car); rew_from = mkLambda(n, t, r.rew_from); rew_to = mkLambda (n, t, r.rew_to) } | Fail | Identity -> b' in state, res | Case (ci, p, c, brs) -> let cty = Retyping.get_type_of env (goalevars evars) c in let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in let cstr' = Some eqty in let state, c' = s.strategy { state ; env ; unfresh ; term1 = c ; ty1 = cty ; cstr = (prop, cstr') ; evars = evars' } in let state, res = match c' with | Success r -> let case = mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs) in let res = make_leibniz_proof env case ty r in state, Success (coerce env unfresh (prop,cstr) res) | Fail | Identity -> if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in let cstr = Some eqty in let state, found, brs' = Array.fold_left (fun (state, found, acc) br -> if not (Option.is_empty found) then (state, found, fun x -> lift 1 br :: acc x) else let state, res = s.strategy { state ; env ; unfresh ; term1 = br ; ty1 = ty ; cstr = (prop,cstr) ; evars } in match res with | Success r -> (state, Some r, fun x -> mkRel 1 :: acc x) | Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x)) (state, None, fun x -> []) brs in match found with | Some r -> let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' c'))) in state, Success (make_leibniz_proof env ctxc ty r) | None -> state, c' else match try Some (fold_match env (goalevars evars) t) with Not_found -> None with | None -> state, c' | Some (cst, _, t', eff (*FIXME*)) -> let state, res = aux { state ; env ; unfresh ; term1 = t' ; ty1 = ty ; cstr = (prop,cstr) ; evars } in let res = match res with | Success prf -> Success { prf with rew_from = t; rew_to = unfold_match env (goalevars evars) cst prf.rew_to } | x' -> c' in state, res in let res = match res with | Success r -> Success (coerce env unfresh (prop,cstr) r) | Fail | Identity -> res in state, res | _ -> state, Fail in { strategy = aux } let all_subterms = subterm true default_flags let one_subterm = subterm false default_flags (** Requires transitivity of the rewrite step, if not a reduction. Not tail-recursive. *) let transitivity state env unfresh prop (res : rewrite_result_info) (next : 'a pure_strategy) : 'a * rewrite_result = let state, nextres = next.strategy { state ; env ; unfresh ; term1 = res.rew_to ; ty1 = res.rew_car ; cstr = (prop, get_opt_rew_rel res.rew_prf) ; evars = res.rew_evars } in let res = match nextres with | Fail -> Fail | Identity -> Success res | Success res' -> match res.rew_prf with | RewCast c -> Success { res' with rew_from = res.rew_from } | RewPrf (rew_rel, rew_prf) -> match res'.rew_prf with | RewCast _ -> Success { res with rew_to = res'.rew_to } | RewPrf (res'_rel, res'_prf) -> let trans = if prop then PropGlobal.transitive_type else TypeGlobal.transitive_type in let evars, prfty = app_poly_sort prop env res'.rew_evars trans [| res.rew_car; rew_rel |] in let evars, prf = new_cstr_evar evars env prfty in let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to; rew_prf; res'_prf |]) in Success { res' with rew_from = res.rew_from; rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) } in state, res (** Rewriting strategies. Inspired by ELAN's rewriting strategies: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049 *) module Strategies = struct let fail : 'a pure_strategy = { strategy = fun { state } -> state, Fail } let id : 'a pure_strategy = { strategy = fun { state } -> state, Identity } let refl : 'a pure_strategy = { strategy = fun { state ; env ; term1 = t ; ty1 = ty ; cstr = (prop,cstr) ; evars } -> let evars, rel = match cstr with | None -> let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in let evars, rty = mkr env evars ty in new_cstr_evar evars env rty | Some r -> evars, r in let evars, proof = let proxy = if prop then PropGlobal.proper_proxy_type env else TypeGlobal.proper_proxy_type env in let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in new_cstr_evar evars env mty in let res = Success { rew_car = ty; rew_from = t; rew_to = t; rew_prf = RewPrf (rel, proof); rew_evars = evars } in state, res } let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy = fun input -> let state, res = s.strategy input in match res with | Fail -> state, Fail | Identity -> state, Fail | Success r -> state, Success r } let seq first snd : 'a pure_strategy = { strategy = fun ({ env ; unfresh ; cstr } as input) -> let state, res = first.strategy input in match res with | Fail -> state, Fail | Identity -> snd.strategy { input with state } | Success res -> transitivity state env unfresh (fst cstr) res snd } let choice fst snd : 'a pure_strategy = { strategy = fun input -> let state, res = fst.strategy input in match res with | Fail -> snd.strategy { input with state } | Identity | Success _ -> state, res } let try_ str : 'a pure_strategy = choice str id let check_interrupt str input = Control.check_for_interrupt (); str input let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy = let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in { strategy = aux } let any (s : 'a pure_strategy) : 'a pure_strategy = fix (fun any -> try_ (seq s any)) let repeat (s : 'a pure_strategy) : 'a pure_strategy = seq s (any s) let bu (s : 'a pure_strategy) : 'a pure_strategy = fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s')) let td (s : 'a pure_strategy) : 'a pure_strategy = fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s')) let innermost (s : 'a pure_strategy) : 'a pure_strategy = fix (fun ins -> choice (one_subterm ins) s) let outermost (s : 'a pure_strategy) : 'a pure_strategy = fix (fun out -> choice s (one_subterm out)) let lemmas cs : 'a pure_strategy = List.fold_left (fun tac (l,l2r,by) -> choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences)) fail cs let inj_open hint = (); fun sigma -> let ctx = UState.of_context_set hint.Autorewrite.rew_ctx in let sigma = Evd.merge_universe_context sigma ctx in (sigma, (EConstr.of_constr hint.Autorewrite.rew_lemma, NoBindings)) let old_hints (db : string) : 'a pure_strategy = let rules = Autorewrite.find_rewrites db in lemmas (List.map (fun hint -> (inj_open hint, hint.Autorewrite.rew_l2r, hint.Autorewrite.rew_tac)) rules) let hints (db : string) : 'a pure_strategy = { strategy = fun ({ term1 = t } as input) -> let t = EConstr.Unsafe.to_constr t in let rules = Autorewrite.find_matches db t in let lemma hint = (inj_open hint, hint.Autorewrite.rew_l2r, hint.Autorewrite.rew_tac) in let lems = List.map lemma rules in (lemmas lems).strategy input } let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy = fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } -> let rfn, ckind = Redexpr.reduction_of_red_expr env r in let sigma = goalevars evars in let (sigma, t') = rfn env sigma t in if Termops.eq_constr sigma t' t then state, Identity else state, Success { rew_car = ty; rew_from = t; rew_to = t'; rew_prf = RewCast ckind; rew_evars = sigma, cstrevars evars } } let fold_glob c : 'a pure_strategy = { strategy = fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } -> (* let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *) let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in let unfolded = try Tacred.try_red_product env sigma c with e when CErrors.noncritical e -> user_err Pp.(str "fold: the term is not unfoldable!") in try let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in let c' = Reductionops.nf_evar sigma c in state, Success { rew_car = ty; rew_from = t; rew_to = c'; rew_prf = RewCast DEFAULTcast; rew_evars = (sigma, snd evars) } with e when CErrors.noncritical e -> state, Fail } end (** The strategy for a single rewrite, dealing with occurrences. *) (** A dummy initial clauseenv to avoid generating initial evars before even finding a first application of the rewriting lemma, in setoid_rewrite mode *) let rewrite_with l2r flags c occs : strategy = { strategy = fun ({ state = () } as input) -> let unify env evars t = let (sigma, cstrs) = evars in let (sigma, rew) = refresh_hypinfo env sigma c in unify_eqn rew l2r flags env (sigma, cstrs) None t in let app = apply_rule unify occs in let strat = Strategies.fix (fun aux -> Strategies.choice app (subterm true default_flags aux)) in let _, res = strat.strategy { input with state = 0 } in ((), res) } let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars = let ty = Retyping.get_type_of env (goalevars evars) concl in let _, res = s.strategy { state = () ; env ; unfresh ; term1 = concl ; ty1 = ty ; cstr = (prop, Some cstr) ; evars } in res let solve_constraints env (evars,cstrs) = let oldtcs = Evd.get_typeclass_evars evars in let evars' = Evd.set_typeclass_evars evars cstrs in let evars' = Typeclasses.resolve_typeclasses env ~filter:all_evars ~split:false ~fail:true evars' in Evd.set_typeclass_evars evars' oldtcs let nf_zeta = Reductionops.clos_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA]) exception RewriteFailure of Pp.t type result = (evar_map * constr option * types) option option let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result = let sigma, sort = Typing.sort_of env sigma concl in let evdref = ref sigma in let evars = (!evdref, Evar.Set.empty) in let evars, cstr = let prop, (evars, arrow) = if Sorts.is_prop sort then true, app_poly_sort true env evars impl [||] else false, app_poly_sort false env evars TypeGlobal.arrow [||] in match is_hyp with | None -> let evars, t = poly_inverse prop env evars (mkSort sort) arrow in evars, (prop, t) | Some _ -> evars, (prop, arrow) in let eq = apply_strategy strat env avoid concl cstr evars in match eq with | Fail -> None | Identity -> Some None | Success res -> let (_, cstrs) = res.rew_evars in let evars' = solve_constraints env res.rew_evars in let newt = Reductionops.nf_evar evars' res.rew_to in let evars = (* Keep only original evars (potentially instantiated) and goal evars, the rest has been defined and substituted already. *) Evar.Set.fold (fun ev acc -> if not (Evd.is_defined acc ev) then user_err ~hdr:"rewrite" (str "Unsolved constraint remaining: " ++ spc () ++ Termops.pr_evar_info env acc (Evd.find acc ev)) else Evd.remove acc ev) cstrs evars' in let res = match res.rew_prf with | RewCast c -> None | RewPrf (rel, p) -> let p = nf_zeta env evars' (Reductionops.nf_evar evars' p) in let term = match abs with | None -> p | Some (t, ty) -> let t = Reductionops.nf_evar evars' t in let ty = Reductionops.nf_evar evars' ty in mkApp (mkLambda (make_annot (Name (Id.of_string "lemma")) Sorts.Relevant, ty, p), [| t |]) in let proof = match is_hyp with | None -> term | Some id -> mkApp (term, [| mkVar id |]) in Some proof in Some (Some (evars, res, newt)) (** Insert a declaration after the last declaration it depends on *) let rec insert_dependent env sigma decl accu hyps = match hyps with | [] -> List.rev_append accu [decl] | ndecl :: rem -> if occur_var_in_decl env sigma (NamedDecl.get_id ndecl) decl then List.rev_append accu (decl :: hyps) else insert_dependent env sigma decl (ndecl :: accu) rem let assert_replacing id newt tac = let prf = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ctx = named_context env in let after, before = List.split_when (NamedDecl.get_id %> Id.equal id) ctx in let nc = match before with | [] -> assert false | d :: rem -> insert_dependent env sigma (LocalAssum (make_annot (NamedDecl.get_id d) Sorts.Relevant, newt)) [] after @ rem in let env' = Environ.reset_with_named_context (val_of_named_context nc) env in Refine.refine ~typecheck:true begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env' sigma concl in let (sigma, ev') = Evarutil.new_evar env sigma newt in let map d = let n = NamedDecl.get_id d in if Id.equal n id then ev' else mkVar n in let (e, _) = destEvar sigma ev in (sigma, mkEvar (e, Array.map_of_list map nc)) end end in Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac) let newfail n s = Proofview.tclZERO (Refiner.FailError (n, lazy s)) let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause = let open Proofview.Notations in (* For compatibility *) let beta = Tactics.reduct_in_concl ~check:false (Reductionops.nf_betaiota, DEFAULTcast) in let beta_hyp id = Tactics.reduct_in_hyp ~check:false ~reorder:false Reductionops.nf_betaiota (id, InHyp) in let treat sigma res = match res with | None -> newfail 0 (str "Nothing to rewrite") | Some None -> if progress then newfail 0 (str"Failed to progress") else Proofview.tclUNIT () | Some (Some res) -> let (undef, prf, newt) = res in let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in let gls = List.rev (Evd.fold_undefined fold undef []) in let gls = List.map Proofview.with_empty_state gls in match clause, prf with | Some id, Some p -> let tac = tclTHENLIST [ Refine.refine ~typecheck:true (fun h -> (h,p)); Proofview.Unsafe.tclNEWGOALS gls; ] in Proofview.Unsafe.tclEVARS undef <*> tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id) | Some id, None -> Proofview.Unsafe.tclEVARS undef <*> convert_hyp ~check:false ~reorder:false (LocalAssum (make_annot id Sorts.Relevant, newt)) <*> beta_hyp id | None, Some p -> Proofview.Unsafe.tclEVARS undef <*> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let make = begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma newt in (sigma, mkApp (p, [| ev |])) end in Refine.refine ~typecheck:true make <*> Proofview.Unsafe.tclNEWGOALS gls end | None, None -> Proofview.Unsafe.tclEVARS undef <*> convert_concl ~check:false newt DEFAULTcast in Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let ty = match clause with | None -> concl | Some id -> EConstr.of_constr (Environ.named_type id env) in let env = match clause with | None -> env | Some id -> (* Only consider variables not depending on [id] *) let ctx = named_context env in let filter decl = not (occur_var_in_decl env sigma id decl) in let nctx = List.filter filter ctx in Environ.reset_with_named_context (val_of_named_context nctx) env in try let res = cl_rewrite_clause_aux ?abs strat env Id.Set.empty sigma ty clause in let sigma = match origsigma with None -> sigma | Some sigma -> sigma in treat sigma res <*> (* For compatibility *) beta <*> Proofview.shelve_unifiable with | PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) -> raise (RewriteFailure (Himsg.explain_pretype_error env evd e)) end let tactic_init_setoid () = try init_setoid (); Proofview.tclUNIT () with e when CErrors.noncritical e -> Tacticals.New.tclFAIL 0 (str"Setoid library not loaded") let cl_rewrite_clause_strat progress strat clause = tactic_init_setoid () <*> (if progress then Proofview.tclPROGRESS else fun x -> x) (Proofview.tclOR (cl_rewrite_clause_newtac ~progress strat clause) (fun (e, info) -> match e with | RewriteFailure e -> tclZEROMSG (str"setoid rewrite failed: " ++ e) | Refiner.FailError (n, pp) -> tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp) | e -> Proofview.tclZERO ~info e)) (** Setoid rewriting when called with "setoid_rewrite" *) let cl_rewrite_clause l left2right occs clause = let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in cl_rewrite_clause_strat true strat clause (** Setoid rewriting when called with "rewrite_strat" *) let cl_rewrite_clause_strat strat clause = cl_rewrite_clause_strat false strat clause let apply_glob_constr c l2r occs = (); fun ({ state = () ; env = env } as input) -> let c sigma = let (sigma, c) = Pretyping.understand_tcc env sigma c in (sigma, (c, NoBindings)) in let flags = general_rewrite_unif_flags () in (apply_lemma l2r flags c None occs).strategy input let interp_glob_constr_list env = let make c = (); fun sigma -> let sigma, c = Pretyping.understand_tcc env sigma c in (sigma, (c, NoBindings)) in List.map (fun c -> make c, true, None) (* Syntax for rewriting with strategies *) type unary_strategy = Subterms | Subterm | Innermost | Outermost | Bottomup | Topdown | Progress | Try | Any | Repeat type binary_strategy = | Compose | Choice type ('constr,'redexpr) strategy_ast = | StratId | StratFail | StratRefl | StratUnary of unary_strategy * ('constr,'redexpr) strategy_ast | StratBinary of binary_strategy * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast | StratConstr of 'constr * bool | StratTerms of 'constr list | StratHints of bool * string | StratEval of 'redexpr | StratFold of 'constr let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function | StratId | StratFail | StratRefl as s -> s | StratUnary (s, str) -> StratUnary (s, map_strategy f g str) | StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str') | StratConstr (c, b) -> StratConstr (f c, b) | StratTerms l -> StratTerms (List.map f l) | StratHints (b, id) -> StratHints (b, id) | StratEval r -> StratEval (g r) | StratFold c -> StratFold (f c) let pr_ustrategy = function | Subterms -> str "subterms" | Subterm -> str "subterm" | Innermost -> str "innermost" | Outermost -> str "outermost" | Bottomup -> str "bottomup" | Topdown -> str "topdown" | Progress -> str "progress" | Try -> str "try" | Any -> str "any" | Repeat -> str "repeat" let paren p = str "(" ++ p ++ str ")" let rec pr_strategy prc prr = function | StratId -> str "id" | StratFail -> str "fail" | StratRefl -> str "refl" | StratUnary (s, str) -> pr_ustrategy s ++ spc () ++ paren (pr_strategy prc prr str) | StratBinary (Choice, str1, str2) -> str "choice" ++ spc () ++ paren (pr_strategy prc prr str1) ++ spc () ++ paren (pr_strategy prc prr str2) | StratBinary (Compose, str1, str2) -> pr_strategy prc prr str1 ++ str ";" ++ spc () ++ pr_strategy prc prr str2 | StratConstr (c, true) -> prc c | StratConstr (c, false) -> str "<-" ++ spc () ++ prc c | StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl | StratHints (old, id) -> let cmd = if old then "old_hints" else "hints" in str cmd ++ spc () ++ str id | StratEval r -> str "eval" ++ spc () ++ prr r | StratFold c -> str "fold" ++ spc () ++ prc c let rec strategy_of_ast = function | StratId -> Strategies.id | StratFail -> Strategies.fail | StratRefl -> Strategies.refl | StratUnary (f, s) -> let s' = strategy_of_ast s in let f' = match f with | Subterms -> all_subterms | Subterm -> one_subterm | Innermost -> Strategies.innermost | Outermost -> Strategies.outermost | Bottomup -> Strategies.bu | Topdown -> Strategies.td | Progress -> Strategies.progress | Try -> Strategies.try_ | Any -> Strategies.any | Repeat -> Strategies.repeat in f' s' | StratBinary (f, s, t) -> let s' = strategy_of_ast s in let t' = strategy_of_ast t in let f' = match f with | Compose -> Strategies.seq | Choice -> Strategies.choice in f' s' t' | StratConstr (c, b) -> { strategy = apply_glob_constr (fst c) b AllOccurrences } | StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id | StratTerms l -> { strategy = (fun ({ state = () ; env } as input) -> let l' = interp_glob_constr_list env (List.map fst l) in (Strategies.lemmas l').strategy input) } | StratEval r -> { strategy = (fun ({ state = () ; env ; evars } as input) -> let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in (Strategies.reduce r_interp).strategy { input with evars = (sigma,cstrevars evars) }) } | StratFold c -> Strategies.fold_glob (fst c) (* By default the strategy for "rewrite_db" is top-down *) let mkappc s l = CAst.make @@ CAppExpl ((None,qualid_of_ident (Id.of_string s),None),l) let declare_an_instance n s args = (((CAst.make @@ Name n),None), CAst.make @@ CAppExpl ((None, qualid_of_string s,None), args)) let declare_instance a aeq n s = declare_an_instance n s [a;aeq] let anew_instance atts binders (name,t) fields = let _id = Classes.new_instance ~poly:atts.polymorphic name binders t (true, CAst.make @@ CRecord (fields)) ~global:atts.global ~generalize:false Hints.empty_hint_info in () let declare_instance_refl atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "reflexivity"),lemma)] let declare_instance_sym atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "symmetry"),lemma)] let declare_instance_trans atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "transitivity"),lemma)] let declare_relation atts ?(binders=[]) a aeq n refl symm trans = init_setoid (); let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in let () = anew_instance atts binders instance [] in match (refl,symm,trans) with (None, None, None) -> () | (Some lemma1, None, None) -> declare_instance_refl atts binders a aeq n lemma1 | (None, Some lemma2, None) -> declare_instance_sym atts binders a aeq n lemma2 | (None, None, Some lemma3) -> declare_instance_trans atts binders a aeq n lemma3 | (Some lemma1, Some lemma2, None) -> let () = declare_instance_refl atts binders a aeq n lemma1 in declare_instance_sym atts binders a aeq n lemma2 | (Some lemma1, None, Some lemma3) -> let () = declare_instance_refl atts binders a aeq n lemma1 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "PreOrder_Reflexive"), lemma1); (qualid_of_ident (Id.of_string "PreOrder_Transitive"),lemma3)] | (None, Some lemma2, Some lemma3) -> let () = declare_instance_sym atts binders a aeq n lemma2 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "PER_Symmetric"), lemma2); (qualid_of_ident (Id.of_string "PER_Transitive"),lemma3)] | (Some lemma1, Some lemma2, Some lemma3) -> let () = declare_instance_refl atts binders a aeq n lemma1 in let () = declare_instance_sym atts binders a aeq n lemma2 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), lemma1); (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), lemma2); (qualid_of_ident (Id.of_string "Equivalence_Transitive"), lemma3)] let cHole = CAst.make @@ CHole (None, Namegen.IntroAnonymous, None) let proper_projection env sigma r ty = let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in let ctx, inst = decompose_prod_assum sigma ty in let mor, args = destApp sigma inst in let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in let app = mkApp (PropGlobal.proper_proj env sigma, Array.append args [| instarg |]) in it_mkLambda_or_LetIn app ctx let declare_projection n instance_id r = let poly = Global.is_polymorphic r in let env = Global.env () in let sigma = Evd.from_env env in let sigma,c = Evd.fresh_global env sigma r in let ty = Retyping.get_type_of env sigma c in let term = proper_projection env sigma c ty in let sigma, typ = Typing.type_of env sigma term in let ctx, typ = decompose_prod_assum sigma typ in let typ = let n = let rec aux t = match EConstr.kind sigma t with | App (f, [| a ; a' ; rel; rel' |]) when Termops.is_global sigma (PropGlobal.respectful_ref ()) f -> succ (aux rel') | _ -> 0 in let init = match EConstr.kind sigma typ with App (f, args) when Termops.is_global sigma (PropGlobal.respectful_ref ()) f -> mkApp (f, fst (Array.chop (Array.length args - 2) args)) | _ -> typ in aux init in let ctx,ccl = Reductionops.splay_prod_n env sigma (3 * n) typ in it_mkProd_or_LetIn ccl ctx in let typ = it_mkProd_or_LetIn typ ctx in let univs = Evd.univ_entry ~poly sigma in let typ = EConstr.to_constr sigma typ in let term = EConstr.to_constr sigma term in let cst = Declare.definition_entry ~types:typ ~univs term in let _ : Constant.t = Declare.declare_constant ~name:n ~kind:Decls.(IsDefinition Definition) (Declare.DefinitionEntry cst) in () let build_morphism_signature env sigma m = let m,ctx = Constrintern.interp_constr env sigma m in let sigma = Evd.from_ctx ctx in let t = Typing.unsafe_type_of env sigma m in let cstrs = let rec aux t = match EConstr.kind sigma t with | Prod (na, a, b) -> None :: aux b | _ -> [] in aux t in let evars, t', sig_, cstrs = PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in let evd = ref evars in let _ = List.iter (fun (ty, rel) -> Option.iter (fun rel -> let default = e_app_poly env evd PropGlobal.default_relation [| ty; rel |] in ignore(e_new_cstr_evar env evd default)) rel) cstrs in let morph = e_app_poly env evd (PropGlobal.proper_type env) [| t; sig_; m |] in let evd = solve_constraints env !evd in let evd = Evd.minimize_universes evd in let m = Evarutil.nf_evars_universes evd (EConstr.Unsafe.to_constr morph) in Pretyping.check_evars env (Evd.from_env env) evd (EConstr.of_constr m); Evd.evar_universe_context evd, m let default_morphism sign m = let env = Global.env () in let sigma = Evd.from_env env in let t = Typing.unsafe_type_of env sigma m in let evars, _, sign, cstrs = PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign) in let evars, morph = app_poly_check env evars (PropGlobal.proper_type env) [| t; sign; m |] in let evars, mor = resolve_one_typeclass env (goalevars evars) morph in mor, proper_projection env sigma mor morph let warn_add_setoid_deprecated = CWarnings.create ~name:"add-setoid" ~category:"deprecated" (fun () -> Pp.(str "Add Setoid is deprecated, please use Add Parametric Relation.")) let add_setoid atts binders a aeq t n = warn_add_setoid_deprecated ?loc:a.CAst.loc (); init_setoid (); let () = declare_instance_refl atts binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in let () = declare_instance_sym atts binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in let () = declare_instance_trans atts binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]); (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]); (qualid_of_ident (Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])] let make_tactic name = let open Tacexpr in let tacqid = Libnames.qualid_of_string name in TacArg (CAst.make @@ (TacCall (CAst.make (tacqid, [])))) let warn_add_morphism_deprecated = CWarnings.create ~name:"add-morphism" ~category:"deprecated" (fun () -> Pp.(str "Add Morphism f : id is deprecated, please use Add Morphism f with signature (...) as id")) let add_morphism_as_parameter atts m n : unit = init_setoid (); let instance_id = add_suffix n "_Proper" in let env = Global.env () in let evd = Evd.from_env env in let uctx, instance = build_morphism_signature env evd m in let uctx = UState.univ_entry ~poly:atts.polymorphic uctx in let cst = Declare.declare_constant ~name:instance_id ~kind:Decls.(IsAssumption Logical) (Declare.ParameterEntry (None,(instance,uctx),None)) in Classes.add_instance (Classes.mk_instance (PropGlobal.proper_class env evd) Hints.empty_hint_info atts.global (GlobRef.ConstRef cst)); declare_projection n instance_id (GlobRef.ConstRef cst) let add_morphism_interactive atts m n : Lemmas.t = warn_add_morphism_deprecated ?loc:m.CAst.loc (); init_setoid (); let instance_id = add_suffix n "_Proper" in let env = Global.env () in let evd = Evd.from_env env in let uctx, instance = build_morphism_signature env evd m in let poly = atts.polymorphic in let kind = Decls.(IsDefinition Instance) in let tac = make_tactic "Coq.Classes.SetoidTactics.add_morphism_tactic" in let hook { DeclareDef.Hook.S.dref; _ } = dref |> function | GlobRef.ConstRef cst -> Classes.add_instance (Classes.mk_instance (PropGlobal.proper_class env evd) Hints.empty_hint_info atts.global (GlobRef.ConstRef cst)); declare_projection n instance_id (GlobRef.ConstRef cst) | _ -> assert false in let hook = DeclareDef.Hook.make hook in let info = Lemmas.Info.make ~hook ~kind () in Flags.silently (fun () -> let lemma = Lemmas.start_lemma ~name:instance_id ~poly ~info (Evd.from_ctx uctx) (EConstr.of_constr instance) in fst (Lemmas.by (Tacinterp.interp tac) lemma)) () let add_morphism atts binders m s n = init_setoid (); let instance_id = add_suffix n "_Proper" in let instance_name = (CAst.make @@ Name instance_id),None in let instance_t = CAst.make @@ CAppExpl ((None, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper",None), [cHole; s; m]) in let tac = Tacinterp.interp (make_tactic "add_morphism_tactic") in let _id, lemma = Classes.new_instance_interactive ~global:atts.global ~poly:atts.polymorphic instance_name binders instance_t ~generalize:false ~tac ~hook:(declare_projection n instance_id) Hints.empty_hint_info in lemma (* no instance body -> always open proof *) (** Bind to "rewrite" too *) (** Taken from original setoid_replace, to emulate the old rewrite semantics where lemmas are first instantiated and then rewrite proceeds. *) let check_evar_map_of_evars_defs env evd = let metas = Evd.meta_list evd in let check_freemetas_is_empty rebus = Evd.Metaset.iter (fun m -> if Evd.meta_defined evd m then () else begin raise (Logic.RefinerError (env, evd, Logic.UnresolvedBindings [Evd.meta_name evd m])) end) in List.iter (fun (_,binding) -> match binding with Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) -> check_freemetas_is_empty rebus freemetas | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_), {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) -> check_freemetas_is_empty rebus1 freemetas1 ; check_freemetas_is_empty rebus2 freemetas2 ) metas (* Find a subterm which matches the pattern to rewrite for "rewrite" *) let unification_rewrite l2r c1 c2 sigma prf car rel but env = let (sigma,c') = try (* ~flags:(false,true) to allow to mark occurrences that must not be rewritten simply by replacing them with let-defined definitions in the context *) Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env sigma ((if l2r then c1 else c2),but) with | ex when Pretype_errors.precatchable_exception ex -> (* ~flags:(true,true) to make Ring work (since it really exploits conversion) *) Unification.w_unify_to_subterm ~flags:rewrite_conv_unif_flags env sigma ((if l2r then c1 else c2),but) in let nf c = Reductionops.nf_evar sigma c in let c1 = if l2r then nf c' else nf c1 and c2 = if l2r then nf c2 else nf c' and car = nf car and rel = nf rel in check_evar_map_of_evars_defs env sigma; let prf = nf prf in let prfty = nf (Retyping.get_type_of env sigma prf) in let sort = sort_of_rel env sigma but in let abs = prf, prfty in let prf = mkRel 1 in let res = (car, rel, prf, c1, c2) in abs, sigma, res, Sorts.is_prop sort let get_hyp gl (c,l) clause l2r = let evars = Tacmach.New.project gl in let env = Tacmach.New.pf_env gl in let sigma, hi = decompose_applied_relation env evars (c,l) in let but = match clause with | Some id -> Tacmach.New.pf_get_hyp_typ id gl | None -> Reductionops.nf_evar evars (Tacmach.New.pf_concl gl) in unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env let general_rewrite_flags = { under_lambdas = false; on_morphisms = true } (* let rewriteclaustac_key = CProfile.declare_profile "cl_rewrite_clause_tac";; *) (* let cl_rewrite_clause_tac = CProfile.profile5 rewriteclaustac_key cl_rewrite_clause_tac *) (** Setoid rewriting when called with "rewrite" *) let general_s_rewrite cl l2r occs (c,l) ~new_goals = Proofview.Goal.enter begin fun gl -> let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in let unify env evars t = unify_abs res l2r sort env evars t in let app = apply_rule unify occs in let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in let substrat = Strategies.fix recstrat in let strat = { strategy = fun ({ state = () } as input) -> let _, res = substrat.strategy { input with state = 0 } in (), res } in let origsigma = Tacmach.New.project gl in tactic_init_setoid () <*> Proofview.tclOR (tclPROGRESS (tclTHEN (Proofview.Unsafe.tclEVARS evd) (cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl))) (fun (e, info) -> match e with | RewriteFailure e -> tclFAIL 0 (str"setoid rewrite failed: " ++ e) | e -> Proofview.tclZERO ~info e) end let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite (** [setoid_]{reflexivity,symmetry,transitivity} tactics *) let not_declared env sigma ty rel = tclFAIL 0 (str" The relation " ++ Printer.pr_econstr_env env sigma rel ++ str" is not a declared " ++ str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library") let setoid_proof ty fn fallback = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.New.project gl in let concl = Proofview.Goal.concl gl in Proofview.tclORELSE begin try let rel, _, _ = decompose_app_rel env sigma concl in let (sigma, t) = Typing.type_of env sigma rel in let car = snd (List.hd (fst (Reductionops.splay_prod env sigma t))) in (try init_relation_classes () with _ -> raise Not_found); fn env sigma car rel with e -> Proofview.tclZERO e end begin function | e -> Proofview.tclORELSE fallback begin function (e', info) -> match e' with | Hipattern.NoEquationFound -> begin match e with | (Not_found, _) -> let rel, _, _ = decompose_app_rel env sigma concl in not_declared env sigma ty rel | (e, info) -> Proofview.tclZERO ~info e end | e' -> Proofview.tclZERO ~info e' end end end let tac_open ((evm,_), c) tac = (tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c)) let poly_proof getp gett env evm car rel = if Sorts.is_prop (sort_of_rel env evm rel) then getp env (evm,Evar.Set.empty) car rel else gett env (evm,Evar.Set.empty) car rel let setoid_reflexivity = setoid_proof "reflexive" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_reflexive_proof TypeGlobal.get_reflexive_proof env evm car rel) (fun c -> tclCOMPLETE (apply c))) (reflexivity_red true) let setoid_symmetry = setoid_proof "symmetric" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof env evm car rel) (fun c -> apply c)) (symmetry_red true) let setoid_transitivity c = setoid_proof "transitive" (fun env evm car rel -> tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof env evm car rel) (fun proof -> match c with | None -> eapply proof | Some c -> apply_with_bindings (proof,ImplicitBindings [ c ]))) (transitivity_red true c) let setoid_symmetry_in id = let open Tacmach.New in Proofview.Goal.enter begin fun gl -> let sigma = project gl in let ctype = pf_unsafe_type_of gl (mkVar id) in let binders,concl = decompose_prod_assum sigma ctype in let (equiv, args) = decompose_app sigma concl in let rec split_last_two = function | [c1;c2] -> [],(c1, c2) | x::y::z -> let l,res = split_last_two (y::z) in x::l, res | _ -> user_err Pp.(str "Cannot find an equivalence relation to rewrite.") in let others,(c1,c2) = split_last_two args in let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in let new_hyp' = mkApp (he, [| c2 ; c1 |]) in let new_hyp = it_mkProd_or_LetIn new_hyp' binders in (tclTHENLAST (Tactics.assert_after_replacing id new_hyp) (tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ])) end let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity let get_lemma_proof f env evm x y = let (evm, _), c = f env (evm,Evar.Set.empty) x y in evm, c let get_reflexive_proof = get_lemma_proof PropGlobal.get_reflexive_proof let get_symmetric_proof = get_lemma_proof PropGlobal.get_symmetric_proof let get_transitive_proof = get_lemma_proof PropGlobal.get_transitive_proof