1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Util
open Names
open Nameops
open Namegen
open Constr
open Context
open EConstr
open Vars
open Reduction
open Tacticals.New
open Tactics
open Pretype_errors
open Typeclasses
open Constrexpr
open Evd
open Tactypes
open Locus
open Locusops
open Elimschemes
open Environ
open Termops
open EConstr
open Libnames
open Proofview.Notations
open Context.Named.Declaration

module NamedDecl = Context.Named.Declaration
(* module RelDecl = Context.Rel.Declaration *)

(** Typeclass-based generalized rewriting. *)

type rewrite_attributes = { polymorphic : bool; global : bool }

let rewrite_attributes =
  let open Attributes.Notations in
  Attributes.(polymorphic ++ program ++ locality) >>= fun ((polymorphic, program), locality) ->
  let global = not (Locality.make_section_locality locality) in
  Attributes.Notations.return { polymorphic; global }

(** Constants used by the tactic. *)

let classes_dirpath =
  Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"])

let init_relation_classes () =
  if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
  else Coqlib.check_required_library ["Coq";"Classes";"RelationClasses"]

let init_setoid () =
  if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
  else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]

let find_reference dir s =
  Coqlib.find_reference "generalized rewriting" dir s
[@@warning "-3"]

let lazy_find_reference dir s =
  let gr = lazy (find_reference dir s) in
  fun () -> Lazy.force gr

type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *)

let find_global dir s =
  let gr = lazy (find_reference dir s) in
    fun (evd,cstrs) ->
      let (evd, c) = Evarutil.new_global evd (Lazy.force gr) in
        (evd, cstrs), c

(** Utility for dealing with polymorphic applications *)

(** Global constants. *)

let coq_eq_ref  () = Coqlib.lib_ref    "core.eq.type"
let coq_eq      = find_global    ["Coq"; "Init"; "Logic"] "eq"
let coq_f_equal = find_global    ["Coq"; "Init"; "Logic"] "f_equal"
let coq_all     = find_global    ["Coq"; "Init"; "Logic"] "all"
let impl        = find_global    ["Coq"; "Program"; "Basics"] "impl"

(** Bookkeeping which evars are constraints so that we can
    remove them at the end of the tactic. *)

let goalevars evars = fst evars
let cstrevars evars = snd evars

let new_cstr_evar (evd,cstrs) env t =
  (* We handle the typeclass resolution of constraints ourselves *)
  let (evd', t) = Evarutil.new_evar env evd ~typeclass_candidate:false t in
  let ev, _ = destEvar evd' t in
    (evd', Evar.Set.add ev cstrs), t

(** Building or looking up instances. *)
let e_new_cstr_evar env evars t =
  let evd', t = new_cstr_evar !evars env t in evars := evd'; t

(** Building or looking up instances. *)

let extends_undefined evars evars' =
  let f ev evi found = found || not (Evd.mem evars ev)
  in fold_undefined f evars' false

let app_poly_check env evars f args =
  let (evars, cstrs), fc = f evars in
  let evars, t = Typing.solve_evars env evars (mkApp (fc, args)) in
  (evars, cstrs), t

let app_poly_nocheck env evars f args =
  let evars, fc = f evars in
    evars, mkApp (fc, args)

let app_poly_sort b =
  if b then app_poly_nocheck
  else app_poly_check
    
let find_class_proof proof_type proof_method env evars carrier relation =
  try
    let evars, goal = app_poly_check env evars proof_type [| carrier ; relation |] in
    let evars', c = Typeclasses.resolve_one_typeclass env (goalevars evars) goal in
      if extends_undefined (goalevars evars) evars' then raise Not_found
      else app_poly_check env (evars',cstrevars evars) proof_method [| carrier; relation; c |]
  with e when Logic.catchable_exception e -> raise Not_found
 
(** Utility functions *)

module GlobalBindings (M : sig
  val relation_classes : string list
  val morphisms : string list
  val relation : string list * string
  val app_poly : env -> evars -> (evars -> evars * constr) -> constr array -> evars * constr
  val arrow : evars -> evars * constr
end) = struct
  open M
  open Context.Rel.Declaration
  let relation : evars -> evars * constr = find_global (fst relation) (snd relation)

  let reflexive_type = find_global relation_classes "Reflexive"
  let reflexive_proof = find_global relation_classes "reflexivity"
    
  let symmetric_type = find_global relation_classes "Symmetric"
  let symmetric_proof = find_global relation_classes "symmetry"

  let transitive_type = find_global relation_classes "Transitive"
  let transitive_proof = find_global relation_classes "transitivity"

  let forall_relation = find_global morphisms "forall_relation"
  let pointwise_relation = find_global morphisms "pointwise_relation"

  let forall_relation_ref = lazy_find_reference morphisms "forall_relation"
  let pointwise_relation_ref = lazy_find_reference morphisms "pointwise_relation"

  let respectful = find_global morphisms "respectful"
  let respectful_ref = lazy_find_reference morphisms "respectful"

  let default_relation = find_global ["Coq"; "Classes"; "SetoidTactics"] "DefaultRelation"

  let coq_forall = find_global morphisms "forall_def"

  let subrelation = find_global relation_classes "subrelation"
  let do_subrelation = find_global morphisms "do_subrelation"
  let apply_subrelation = find_global morphisms "apply_subrelation"

  let rewrite_relation_class = find_global relation_classes "RewriteRelation"

  let proper_class =
    let r = lazy (find_reference morphisms "Proper") in
    fun env sigma -> class_info env sigma (Lazy.force r)

  let proper_proxy_class =
    let r = lazy (find_reference morphisms "ProperProxy") in
    fun env sigma -> class_info env sigma (Lazy.force r)

  let proper_proj env sigma =
    mkConst (Option.get (pi3 (List.hd (proper_class env sigma).cl_projs)))

  let proper_type env (sigma,cstrs) =
    let l = (proper_class env sigma).cl_impl in
    let (sigma, c) = Evarutil.new_global sigma l in
    (sigma, cstrs), c

  let proper_proxy_type env (sigma,cstrs) =
    let l = (proper_proxy_class env sigma).cl_impl in
    let (sigma, c) = Evarutil.new_global sigma l in
    (sigma, cstrs), c

  let proper_proof env evars carrier relation x =
    let evars, goal = app_poly env evars (proper_proxy_type env) [| carrier ; relation; x |] in
      new_cstr_evar evars env goal

  let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
  let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
  let get_transitive_proof env = find_class_proof transitive_type transitive_proof env

  let mk_relation env evd a = 
    app_poly env evd relation [| a |]

  (** Build an inferred signature from constraints on the arguments and expected output
      relation *)
    
  let build_signature evars env m (cstrs : (types * types option) option list)
      (finalcstr : (types * types option) option) =
    let mk_relty evars newenv ty obj =
      match obj with
      | None | Some (_, None) ->
        let evars, relty = mk_relation env evars ty in
          if closed0 (goalevars evars) ty then 
            let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in
              new_cstr_evar evars env' relty
          else new_cstr_evar evars newenv relty
      | Some (x, Some rel) -> evars, rel
    in
    let rec aux env evars ty l =
      let t = Reductionops.whd_all env (goalevars evars) ty in
        match EConstr.kind (goalevars evars) t, l with
        | Prod (na, ty, b), obj :: cstrs ->
          let b = Reductionops.nf_betaiota env (goalevars evars) b in
          if noccurn (goalevars evars) 1 b (* non-dependent product *) then
            let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
            let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
            let evars, relty = mk_relty evars env ty obj in
            let evars, newarg = app_poly env evars respectful [| ty ; b' ; relty ; arg |] in
              evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
          else
            let (evars, b, arg, cstrs) =
              aux (push_rel (LocalAssum (na, ty)) env) evars b cstrs
            in
            let ty = Reductionops.nf_betaiota env (goalevars evars) ty in
            let pred = mkLambda (na, ty, b) in
            let liftarg = mkLambda (na, ty, arg) in
            let evars, arg' = app_poly env evars forall_relation [| ty ; pred ; liftarg |] in
              if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
              else user_err Pp.(str "build_signature: no constraint can apply on a dependent argument")
        | _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products.")
        | _, [] ->
          (match finalcstr with
          | None | Some (_, None) ->
            let t = Reductionops.nf_betaiota env (fst evars) ty in
            let evars, rel = mk_relty evars env t None in
              evars, t, rel, [t, Some rel]
          | Some (t, Some rel) -> evars, t, rel, [t, Some rel])
    in aux env evars m cstrs

  (** Folding/unfolding of the tactic constants. *)

  let unfold_impl sigma t =
    match EConstr.kind sigma t with
    | App (arrow, [| a; b |])(*  when eq_constr arrow (Lazy.force impl) *) ->
      mkProd (make_annot Anonymous Sorts.Relevant, a, lift 1 b)
    | _ -> assert false

  let unfold_all sigma t =
    match EConstr.kind sigma t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
      (match EConstr.kind sigma b with
      | Lambda (n, ty, b) -> mkProd (n, ty, b)
      | _ -> assert false)
    | _ -> assert false

  let unfold_forall sigma t =
    match EConstr.kind sigma t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
      (match EConstr.kind sigma b with
      | Lambda (n, ty, b) -> mkProd (n, ty, b)
      | _ -> assert false)
    | _ -> assert false

  let arrow_morphism env evd ta tb a b =
    let ap = is_Prop (goalevars evd) ta and bp = is_Prop (goalevars evd) tb in
      if ap && bp then app_poly env evd impl [| a; b |], unfold_impl
      else if ap then (* Domain in Prop, CoDomain in Type *)
        (app_poly env evd arrow [| a; b |]), unfold_impl
        (* (evd, mkProd (Anonymous, a, b)), (fun x -> x) *)
      else if bp then (* Dummy forall *)
        (app_poly env evd coq_all [| a; mkLambda (make_annot Anonymous Sorts.Relevant, a, lift 1 b) |]), unfold_forall
      else (* None in Prop, use arrow *)
        (app_poly env evd arrow [| a; b |]), unfold_impl

  let rec decomp_pointwise sigma n c =
    if Int.equal n 0 then c
    else
      match EConstr.kind sigma c with
      | App (f, [| a; b; relb |]) when Termops.is_global sigma (pointwise_relation_ref ()) f ->
        decomp_pointwise sigma (pred n) relb
      | App (f, [| a; b; arelb |]) when Termops.is_global sigma (forall_relation_ref ()) f ->
        decomp_pointwise sigma (pred n) (Reductionops.beta_applist sigma (arelb, [mkRel 1]))
      | _ -> invalid_arg "decomp_pointwise"

  let rec apply_pointwise sigma rel = function
    | arg :: args ->
      (match EConstr.kind sigma rel with
      | App (f, [| a; b; relb |]) when Termops.is_global sigma (pointwise_relation_ref ()) f ->
        apply_pointwise sigma relb args
      | App (f, [| a; b; arelb |]) when Termops.is_global sigma (forall_relation_ref ()) f ->
        apply_pointwise sigma (Reductionops.beta_applist sigma (arelb, [arg])) args
      | _ -> invalid_arg "apply_pointwise")
    | [] -> rel

  let pointwise_or_dep_relation env evd n t car rel =
    if noccurn (goalevars evd) 1 car && noccurn (goalevars evd) 1 rel then
      app_poly env evd pointwise_relation [| t; lift (-1) car; lift (-1) rel |]
    else
      app_poly env evd forall_relation
        [| t; mkLambda (make_annot n Sorts.Relevant, t, car);
           mkLambda (make_annot n Sorts.Relevant, t, rel) |]

  let lift_cstr env evars (args : constr list) c ty cstr =
    let start evars env car =
      match cstr with
      | None | Some (_, None) -> 
        let evars, rel = mk_relation env evars car in
          new_cstr_evar evars env rel
      | Some (ty, Some rel) -> evars, rel
    in
    let rec aux evars env prod n = 
      if Int.equal n 0 then start evars env prod
      else
        let sigma = goalevars evars in
        match EConstr.kind sigma (Reductionops.whd_all env sigma prod) with
        | Prod (na, ty, b) ->
          if noccurn sigma 1 b then
            let b' = lift (-1) b in
            let evars, rb = aux evars env b' (pred n) in
              app_poly env evars pointwise_relation [| ty; b'; rb |]
          else
            let evars, rb = aux evars (push_rel (LocalAssum (na, ty)) env) b (pred n) in
              app_poly env evars forall_relation
                [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |]
        | _ -> raise Not_found
    in 
    let rec find env c ty = function
      | [] -> None
      | arg :: args ->
        try let evars, found = aux evars env ty (succ (List.length args)) in
              Some (evars, found, c, ty, arg :: args)
        with Not_found ->
          let sigma = goalevars evars in
          let ty = Reductionops.whd_all env sigma ty in
          find env (mkApp (c, [| arg |])) (prod_applist sigma ty [arg]) args
    in find env c ty args

  let unlift_cstr env sigma = function
    | None -> None
    | Some codom -> Some (decomp_pointwise (goalevars sigma) 1 codom)

  (** Looking up declared rewrite relations (instances of [RewriteRelation]) *)
  let is_applied_rewrite_relation env sigma rels t =
    match EConstr.kind sigma t with
    | App (c, args) when Array.length args >= 2 ->
      let head = if isApp sigma c then fst (destApp sigma c) else c in
        if Termops.is_global sigma (coq_eq_ref ()) head then None
        else
          (try
           let params, args = Array.chop (Array.length args - 2) args in
           let env' = push_rel_context rels env in
           let (evars, (evar, _)) = Evarutil.new_type_evar env' sigma Evd.univ_flexible in
           let evars, inst = 
             app_poly env (evars,Evar.Set.empty)
               rewrite_relation_class [| evar; mkApp (c, params) |] in
           let _ = Typeclasses.resolve_one_typeclass env' (goalevars evars) inst in
             Some (it_mkProd_or_LetIn t rels)
           with e when CErrors.noncritical e -> None)
  | _ -> None


end

(* let my_type_of env evars c = Typing.e_type_of env evars c *)
(* let mytypeofkey = CProfile.declare_profile "my_type_of";; *)
(* let my_type_of = CProfile.profile3 mytypeofkey my_type_of *)


let type_app_poly env env evd f args =
  let evars, c = app_poly_nocheck env evd f args in
  let evd', t = Typing.type_of env (goalevars evars) c in
    (evd', cstrevars evars), c

module PropGlobal = struct
  module Consts =
  struct 
    let relation_classes = ["Coq"; "Classes"; "RelationClasses"]
    let morphisms = ["Coq"; "Classes"; "Morphisms"]
    let relation = ["Coq"; "Relations";"Relation_Definitions"], "relation"
    let app_poly = app_poly_nocheck
    let arrow = find_global ["Coq"; "Program"; "Basics"] "arrow"
    let coq_inverse = find_global ["Coq"; "Program"; "Basics"] "flip"
  end

  module G = GlobalBindings(Consts)

  include G
  include Consts
  let inverse env evd car rel = 
    type_app_poly env env evd coq_inverse [| car ; car; mkProp; rel |]
      (* app_poly env evd coq_inverse [| car ; car; mkProp; rel |] *)

end

module TypeGlobal = struct
  module Consts = 
    struct 
      let relation_classes = ["Coq"; "Classes"; "CRelationClasses"]
      let morphisms = ["Coq"; "Classes"; "CMorphisms"]
      let relation = relation_classes, "crelation"
      let app_poly = app_poly_check
      let arrow = find_global ["Coq"; "Classes"; "CRelationClasses"] "arrow"
      let coq_inverse = find_global ["Coq"; "Classes"; "CRelationClasses"] "flip"
    end

  module G = GlobalBindings(Consts)
  include G
  include Consts


  let inverse env (evd,cstrs) car rel = 
    let (evd, sort) = Evarutil.new_Type ~rigid:Evd.univ_flexible evd in
      app_poly_check env (evd,cstrs) coq_inverse [| car ; car; sort; rel |]

end

let sort_of_rel env evm rel =
  ESorts.kind evm (Reductionops.sort_of_arity env evm (Retyping.get_type_of env evm rel))

let is_applied_rewrite_relation = PropGlobal.is_applied_rewrite_relation

(* let _ = *)
(*   Hook.set Equality.is_applied_rewrite_relation is_applied_rewrite_relation *)

let split_head = function
    hd :: tl -> hd, tl
  | [] -> assert(false)

let eq_pb (ty, env, x, y as pb) (ty', env', x', y' as pb') =
  let equal x y = Constr.equal (EConstr.Unsafe.to_constr x) (EConstr.Unsafe.to_constr y) in
  pb == pb' || (ty == ty' && equal x x' && equal y y')

let problem_inclusion x y =
  List.for_all (fun pb -> List.exists (fun pb' -> eq_pb pb pb') y) x

let evd_convertible env evd x y =
  try
    (* Unfortunately, the_conv_x might say they are unifiable even if some
       unsolvable constraints remain, so we check that this unification
       does not introduce any new problem. *)
    let _, pbs = Evd.extract_all_conv_pbs evd in
    let evd' = Evarconv.unify_delay env evd x y in
    let _, pbs' = Evd.extract_all_conv_pbs evd' in
    if evd' == evd || problem_inclusion pbs' pbs then Some evd'
    else None
  with e when CErrors.noncritical e -> None

let convertible env evd x y =
  Reductionops.is_conv_leq env evd x y

type hypinfo = {
  prf : constr;
  car : constr;
  rel : constr;
  sort : bool; (* true = Prop; false = Type *)
  c1 : constr;
  c2 : constr;
  holes : Clenv.hole list;
}

let get_symmetric_proof b = 
  if b then PropGlobal.get_symmetric_proof else TypeGlobal.get_symmetric_proof

let error_no_relation () = user_err Pp.(str "Cannot find a relation to rewrite.")

let rec decompose_app_rel env evd t = 
  (* Head normalize for compatibility with the old meta mechanism *)
  let t = Reductionops.whd_betaiota evd t in
  match EConstr.kind evd t with
  | App (f, [||]) -> assert false
  | App (f, [|arg|]) ->
    let (f', argl, argr) = decompose_app_rel env evd arg in
    let ty = Typing.unsafe_type_of env evd argl in
    let r = Retyping.relevance_of_type env evd ty in
    let f'' = mkLambda (make_annot (Name default_dependent_ident) r, ty,
      mkLambda (make_annot (Name (Id.of_string "y")) r, lift 1 ty,
        mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
    in (f'', argl, argr)
  | App (f, args) ->
    let len = Array.length args in
    let fargs = Array.sub args 0 (Array.length args - 2) in
    let rel = mkApp (f, fargs) in
    rel, args.(len - 2), args.(len - 1)
  | _ -> error_no_relation ()

let decompose_app_rel env evd t =
  let (rel, t1, t2) = decompose_app_rel env evd t in
  let ty = Retyping.get_type_of env evd rel in
  let () = if not (Reductionops.is_arity env evd ty) then error_no_relation () in
  (rel, t1, t2)

let decompose_applied_relation env sigma (c,l) =
  let open Context.Rel.Declaration in
  let ctype = Retyping.get_type_of env sigma c in
  let find_rel ty =
    let sigma, cl = Clenv.make_evar_clause env sigma ty in
    let sigma = Clenv.solve_evar_clause env sigma true cl l in
    let { Clenv.cl_holes = holes; Clenv.cl_concl = t } = cl in
    let (equiv, c1, c2) = decompose_app_rel env sigma t in
    let ty1 = Retyping.get_type_of env sigma c1 in
    let ty2 = Retyping.get_type_of env sigma c2 in
    match evd_convertible env sigma ty1 ty2 with
    | None -> None
    | Some sigma ->
      let sort = sort_of_rel env sigma equiv in
      let args = Array.map_of_list (fun h -> h.Clenv.hole_evar) holes in
      let value = mkApp (c, args) in
        Some (sigma, { prf=value;
                car=ty1; rel = equiv; sort = Sorts.is_prop sort;
                c1=c1; c2=c2; holes })
  in
    match find_rel ctype with
    | Some c -> c
    | None ->
        let ctx,t' = Reductionops.splay_prod env sigma ctype in (* Search for underlying eq *)
        match find_rel (it_mkProd_or_LetIn t' (List.map (fun (n,t) -> LocalAssum (n, t)) ctx)) with
        | Some c -> c
        | None -> user_err Pp.(str "Cannot find an homogeneous relation to rewrite.")

let rewrite_db = "rewrite"

let conv_transparent_state = TransparentState.cst_full

let rewrite_transparent_state () =
  Hints.Hint_db.transparent_state (Hints.searchtable_map rewrite_db)

let rewrite_core_unif_flags = {
  Unification.modulo_conv_on_closed_terms = None;
  Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
  Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
  Unification.modulo_delta = TransparentState.empty;
  Unification.modulo_delta_types = TransparentState.full;
  Unification.check_applied_meta_types = true;
  Unification.use_pattern_unification = true;
  Unification.use_meta_bound_pattern_unification = true;
  Unification.allowed_evars = Unification.AllowAll;
  Unification.restrict_conv_on_strict_subterms = false;
  Unification.modulo_betaiota = false;
  Unification.modulo_eta = true;
}

(* Flags used for the setoid variant of "rewrite" and for the strategies
   "hints"/"old_hints"/"terms" of "rewrite_strat", and for solving pre-existing
   evars in "rewrite" (see unify_abs) *)
let rewrite_unif_flags =
  let flags = rewrite_core_unif_flags in {
  Unification.core_unify_flags = flags;
  Unification.merge_unify_flags = flags;
  Unification.subterm_unify_flags = flags;
  Unification.allow_K_in_toplevel_higher_order_unification = true;
  Unification.resolve_evars = true
  }

let rewrite_core_conv_unif_flags = {
  rewrite_core_unif_flags with
    Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
    Unification.modulo_delta_types = conv_transparent_state;
    Unification.modulo_betaiota = true
}

(* Fallback flags for the setoid variant of "rewrite" *)
let rewrite_conv_unif_flags =
  let flags = rewrite_core_conv_unif_flags in {
  Unification.core_unify_flags = flags;
  Unification.merge_unify_flags = flags;
  Unification.subterm_unify_flags = flags;
  Unification.allow_K_in_toplevel_higher_order_unification = true;
  Unification.resolve_evars = true
  }

(* Flags for "setoid_rewrite c"/"rewrite_strat -> c" *)
let general_rewrite_unif_flags () =
  let ts = rewrite_transparent_state () in
  let core_flags =
    { rewrite_core_unif_flags with
      Unification.modulo_conv_on_closed_terms = Some ts;
      Unification.use_evars_eagerly_in_conv_on_closed_terms = true;
      Unification.modulo_delta = ts;
      Unification.modulo_delta_types = TransparentState.full;
      Unification.modulo_betaiota = true }
  in {
    Unification.core_unify_flags = core_flags;
    Unification.merge_unify_flags = core_flags;
    Unification.subterm_unify_flags = { core_flags with Unification.modulo_delta = TransparentState.empty };
    Unification.allow_K_in_toplevel_higher_order_unification = true;
    Unification.resolve_evars = true
  }

let refresh_hypinfo env sigma (is, cb) =
  let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma cb in
  let sigma, hypinfo = decompose_applied_relation env sigma cbl in
  let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
  sigma, (car, rel, prf, c1, c2, holes, sort)

(** FIXME: write this in the new monad interface *)
let solve_remaining_by env sigma holes by =
  match by with
  | None -> sigma
  | Some tac ->
    let map h =
      if h.Clenv.hole_deps then None
      else match EConstr.kind sigma h.Clenv.hole_evar with
      | Evar (evk, _) ->
        Some evk
      | _ -> None
    in
    (* Only solve independent holes *)
    let indep = List.map_filter map holes in
    let ist = { Geninterp.lfun = Id.Map.empty
              ; poly = false
              ; extra = Geninterp.TacStore.empty } in
    let solve_tac = match tac with
    | Genarg.GenArg (Genarg.Glbwit tag, tac) ->
      Ftactic.run (Geninterp.interp tag ist tac) (fun _ -> Proofview.tclUNIT ())
    in
    let solve_tac = tclCOMPLETE solve_tac in
    let solve sigma evk =
      let evi =
        try Some (Evd.find_undefined sigma evk)
        with Not_found -> None
      in
      match evi with
      | None -> sigma
        (* Evar should not be defined, but just in case *)
      | Some evi ->
        let env = Environ.reset_with_named_context evi.evar_hyps env in
        let ty = evi.evar_concl in
        let name, poly = Id.of_string "rewrite", false in
        let c, sigma = Pfedit.refine_by_tactic ~name ~poly env sigma ty solve_tac in
        Evd.define evk (EConstr.of_constr c) sigma
    in
    List.fold_left solve sigma indep

let no_constraints cstrs = 
  fun ev _ -> not (Evar.Set.mem ev cstrs)

let poly_inverse sort =
  if sort then PropGlobal.inverse else TypeGlobal.inverse

type rewrite_proof = 
  | RewPrf of constr * constr
  (** A Relation (R : rew_car -> rew_car -> Prop) and a proof of R rew_from rew_to *)

  | RewCast of cast_kind
  (** A proof of convertibility (with casts) *)

type rewrite_result_info = {
  rew_car : constr ;
  (** A type *)
  rew_from : constr ;
  (** A term of type rew_car *)
  rew_to : constr ;
  (** A term of type rew_car *)
  rew_prf : rewrite_proof ;
  (** A proof of rew_from == rew_to *)
  rew_evars : evars;
}

type rewrite_result =
| Fail
| Identity
| Success of rewrite_result_info

type 'a strategy_input = { state : 'a ; (* a parameter: for instance, a state *)
                           env : Environ.env ;
                           unfresh : Id.Set.t; (* Unfresh names *)
                           term1 : constr ;
                           ty1 : types ; (* first term and its type (convertible to rew_from) *)
                           cstr : (bool (* prop *) * constr option) ;
                           evars : evars }
               
type 'a pure_strategy = { strategy :
  'a strategy_input ->
  'a * rewrite_result (* the updated state and the "result" *) }

type strategy = unit pure_strategy

let symmetry env sort rew =
  let { rew_evars = evars; rew_car = car; } = rew in
  let (rew_evars, rew_prf) = match rew.rew_prf with
  | RewCast _ -> (rew.rew_evars, rew.rew_prf)
  | RewPrf (rel, prf) ->
    try
      let evars, symprf = get_symmetric_proof sort env evars car rel in
      let prf = mkApp (symprf, [| rew.rew_from ; rew.rew_to ; prf |]) in
      (evars, RewPrf (rel, prf))
    with Not_found ->
      let evars, rel = poly_inverse sort env evars car rel in
      (evars, RewPrf (rel, prf))
  in
  { rew with rew_from = rew.rew_to; rew_to = rew.rew_from; rew_prf; rew_evars; }

(* Matching/unifying the rewriting rule against [t] *)
let unify_eqn (car, rel, prf, c1, c2, holes, sort) l2r flags env (sigma, cstrs) by t =
  try
    let left = if l2r then c1 else c2 in
    let sigma = Unification.w_unify ~flags env sigma CONV left t in
    let sigma = Typeclasses.resolve_typeclasses ~filter:(no_constraints cstrs)
      ~fail:true env sigma in
    let evd = solve_remaining_by env sigma holes by in
    let nf c = Reductionops.nf_evar evd (Reductionops.nf_meta evd c) in
    let c1 = nf c1 and c2 = nf c2
    and rew_car = nf car and rel = nf rel
    and prf = nf prf in
    let ty1 = Retyping.get_type_of env evd c1 in
    let ty2 = Retyping.get_type_of env evd c2 in
    let () = if not (convertible env evd ty2 ty1) then raise Reduction.NotConvertible in
    let rew_evars = evd, cstrs in
    let rew_prf = RewPrf (rel, prf) in
    let rew = { rew_evars; rew_prf; rew_car; rew_from = c1; rew_to = c2; } in
    let rew = if l2r then rew else symmetry env sort rew in
    Some rew
  with 
  | e when Class_tactics.catchable e -> None
  | Reduction.NotConvertible -> None

let unify_abs (car, rel, prf, c1, c2) l2r sort env (sigma, cstrs) t =
  try
    let left = if l2r then c1 else c2 in
    (* The pattern is already instantiated, so the next w_unify is
       basically an eq_constr, except when preexisting evars occur in
       either the lemma or the goal, in which case the eq_constr also
       solved this evars *)
    let sigma = Unification.w_unify ~flags:rewrite_unif_flags env sigma CONV left t in
    let rew_evars = sigma, cstrs in
    let rew_prf = RewPrf (rel, prf) in
    let rew = { rew_car = car; rew_from = c1; rew_to = c2; rew_prf; rew_evars; } in
    let rew = if l2r then rew else symmetry env sort rew in
    Some rew
  with 
  | e when Class_tactics.catchable e -> None
  | Reduction.NotConvertible -> None

type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }

let default_flags = { under_lambdas = true; on_morphisms = true; }

let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None

let new_global (evars, cstrs) gr =
  let (sigma,c) = Evarutil.new_global evars gr in
  (sigma, cstrs), c

let make_eq sigma =
  new_global sigma Coqlib.(lib_ref "core.eq.type")
let make_eq_refl sigma =
  new_global sigma Coqlib.(lib_ref "core.eq.refl")

let get_rew_prf evars r = match r.rew_prf with
  | RewPrf (rel, prf) -> evars, (rel, prf)
  | RewCast c ->
    let evars, eq = make_eq evars in
    let evars, eq_refl = make_eq_refl evars in
    let rel = mkApp (eq, [| r.rew_car |]) in
    evars, (rel, mkCast (mkApp (eq_refl, [| r.rew_car; r.rew_from |]),
                         c, mkApp (rel, [| r.rew_from; r.rew_to |])))

let poly_subrelation sort = 
  if sort then PropGlobal.subrelation else TypeGlobal.subrelation

let resolve_subrelation env avoid car rel sort prf rel' res =
  if Termops.eq_constr (fst res.rew_evars) rel rel' then res
  else
    let evars, app = app_poly_check env res.rew_evars (poly_subrelation sort) [|car; rel; rel'|] in
    let evars, subrel = new_cstr_evar evars env app in
    let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
      { res with
        rew_prf = RewPrf (rel', appsub);
        rew_evars = evars }

let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' (b,cstr) evars =
  let evars, morph_instance, proj, sigargs, m', args, args' =
    let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with
    | Some i -> i
    | None -> invalid_arg "resolve_morphism" in
    let morphargs, morphobjs = Array.chop first args in
    let morphargs', morphobjs' = Array.chop first args' in
    let appm = mkApp(m, morphargs) in
    let appmtype = Typing.unsafe_type_of env (goalevars evars) appm in
    let cstrs = List.map 
      (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf)) 
      (Array.to_list morphobjs') 
    in
      (* Desired signature *)
    let evars, appmtype', signature, sigargs = 
      if b then PropGlobal.build_signature evars env appmtype cstrs cstr
      else TypeGlobal.build_signature evars env appmtype cstrs cstr
    in
      (* Actual signature found *)
    let cl_args = [| appmtype' ; signature ; appm |] in
    let evars, app = app_poly_sort b env evars (if b then PropGlobal.proper_type env else TypeGlobal.proper_type env)
      cl_args in
    let env' = 
      let dosub, appsub = 
        if b then PropGlobal.do_subrelation, PropGlobal.apply_subrelation 
        else TypeGlobal.do_subrelation, TypeGlobal.apply_subrelation
      in
        EConstr.push_named
          (LocalDef (make_annot (Id.of_string "do_subrelation") Sorts.Relevant,
                     snd (app_poly_sort b env evars dosub [||]),
                     snd (app_poly_nocheck env evars appsub [||])))
          env
    in
    let evars, morph = new_cstr_evar evars env' app in
      evars, morph, morph, sigargs, appm, morphobjs, morphobjs'
  in
  let projargs, subst, evars, respars, typeargs =
    Array.fold_left2
      (fun (acc, subst, evars, sigargs, typeargs') x y ->
        let (carrier, relation), sigargs = split_head sigargs in
          match relation with
          | Some relation ->
              let carrier = substl subst carrier
              and relation = substl subst relation in
              (match y with
              | None ->
                  let evars, proof = 
                    (if b then PropGlobal.proper_proof else TypeGlobal.proper_proof) 
                      env evars carrier relation x in
                    [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
              | Some r ->
                 let evars, proof = get_rew_prf evars r in
                 [ snd proof; r.rew_to; x ] @ acc, subst, evars, 
              sigargs, r.rew_to :: typeargs')
          | None ->
              if not (Option.is_empty y) then 
                user_err Pp.(str "Cannot rewrite inside dependent arguments of a function");
              x :: acc, x :: subst, evars, sigargs, x :: typeargs')
      ([], [], evars, sigargs, []) args args'
  in
  let proof = applist (proj, List.rev projargs) in
  let newt = applist (m', List.rev typeargs) in
    match respars with
        [ a, Some r ] -> evars, proof, substl subst a, substl subst r, oldt, fnewt newt
      | _ -> assert(false)

let apply_constraint env avoid car rel prf cstr res =
  match snd cstr with
  | None -> res
  | Some r -> resolve_subrelation env avoid car rel (fst cstr) prf r res

let coerce env avoid cstr res = 
  let evars, (rel, prf) = get_rew_prf res.rew_evars res in
  let res = { res with rew_evars = evars } in
    apply_constraint env avoid res.rew_car rel prf cstr res

let apply_rule unify loccs : int pure_strategy =
  let (nowhere_except_in,occs) = convert_occs loccs in
  let is_occ occ =
    if nowhere_except_in 
    then List.mem occ occs 
    else not (List.mem occ occs) 
  in
  { strategy = fun { state = occ ; env ; unfresh ;
                     term1 = t ; ty1 = ty ; cstr ; evars } ->
      let unif = if isEvar (goalevars evars) t then None else unify env evars t in
        match unif with
        | None -> (occ, Fail)
        | Some rew ->
          let occ = succ occ in
            if not (is_occ occ) then (occ, Fail)
            else if Termops.eq_constr (fst rew.rew_evars) t rew.rew_to then (occ, Identity)
            else
              let res = { rew with rew_car = ty } in
              let res = Success (coerce env unfresh cstr res) in
              (occ, res)
    }

let apply_lemma l2r flags oc by loccs : strategy = { strategy =
  fun ({ state = () ; env ; term1 = t ; evars = (sigma, cstrs) } as input) ->
    let sigma, c = oc sigma in
    let sigma, hypinfo = decompose_applied_relation env sigma c in
    let { c1; c2; car; rel; prf; sort; holes } = hypinfo in
    let rew = (car, rel, prf, c1, c2, holes, sort) in
    let evars = (sigma, cstrs) in
    let unify env evars t =
      let rew = unify_eqn rew l2r flags env evars by t in
      match rew with
      | None -> None
      | Some rew -> Some rew
    in
    let _, res = (apply_rule unify loccs).strategy { input with
                                                     state = 0 ;
                                                     evars } in
    (), res
                                                   }

let e_app_poly env evars f args =
  let evars', c = app_poly_nocheck env !evars f args in
    evars := evars';
    c

let make_leibniz_proof env c ty r =
  let evars = ref r.rew_evars in
  let prf = 
    match r.rew_prf with
    | RewPrf (rel, prf) -> 
        let rel = e_app_poly env evars coq_eq [| ty |] in
        let prf =
          e_app_poly env evars coq_f_equal
                [| r.rew_car; ty;
                   mkLambda (make_annot Anonymous Sorts.Relevant, r.rew_car, c);
                   r.rew_from; r.rew_to; prf |]
        in RewPrf (rel, prf)
    | RewCast k -> r.rew_prf
  in
    { rew_car = ty; rew_evars = !evars;
      rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }

let reset_env env =
  let env' = Global.env_of_context (Environ.named_context_val env) in
    Environ.push_rel_context (Environ.rel_context env) env'
      
let fold_match ?(force=false) env sigma c =
  let (ci, p, c, brs) = destCase sigma c in
  let cty = Retyping.get_type_of env sigma c in
  let dep, pred, exists, (sk,eff) = 
    let env', ctx, body =
      let ctx, pred = decompose_lam_assum sigma p in
      let env' = push_rel_context ctx env in
        env', ctx, pred
    in
    let sortp = Retyping.get_sort_family_of env' sigma body in
    let sortc = Retyping.get_sort_family_of env sigma cty in
    let dep = not (noccurn sigma 1 body) in
    let pred = if dep then p else
        it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
    in
    let sk = 
      if sortp == Sorts.InProp then
        if sortc == Sorts.InProp then
          if dep then case_dep_scheme_kind_from_prop
          else case_scheme_kind_from_prop
        else (
          if dep
          then case_dep_scheme_kind_from_type_in_prop
          else case_scheme_kind_from_type)
      else ((* sortc <> InProp by typing *)
        if dep
        then case_dep_scheme_kind_from_type
        else case_scheme_kind_from_type)
    in 
    let exists = Ind_tables.check_scheme sk ci.ci_ind in
      if exists || force then
        dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind
      else raise Not_found
  in
  let app =
    let ind, args = Inductiveops.find_mrectype env sigma cty in
    let pars, args = List.chop ci.ci_npar args in
    let meths = List.map (fun br -> br) (Array.to_list brs) in
      applist (mkConst sk, pars @ [pred] @ meths @ args @ [c])
  in 
    sk, (if exists then env else reset_env env), app, eff

let unfold_match env sigma sk app =
  match EConstr.kind sigma app with
  | App (f', args) when Constant.equal (fst (destConst sigma f')) sk ->
      let v = Environ.constant_value_in (Global.env ()) (sk,Univ.Instance.empty)(*FIXME*) in
      let v = EConstr.of_constr v in
        Reductionops.whd_beta sigma (mkApp (v, args))
  | _ -> app

let is_rew_cast = function RewCast _ -> true | _ -> false

let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy =
  let rec aux { state ; env ; unfresh ;
                term1 = t ; ty1 = ty ; cstr = (prop, cstr) ; evars } =
    let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
      match EConstr.kind (goalevars evars) t with
      | App (m, args) ->
          let rewrite_args state success =
            let state, (args', evars', progress) =
              Array.fold_left
                (fun (state, (acc, evars, progress)) arg ->
                  if not (Option.is_empty progress) && not all then 
                    state, (None :: acc, evars, progress)
                  else
                    let argty = Retyping.get_type_of env (goalevars evars) arg in
                    let state, res = s.strategy { state ; env ;
                                                  unfresh ;
                                                  term1 = arg ;        ty1 = argty ;
                                                  cstr = (prop,None) ;
                                                  evars } in
                    let res' = 
                      match res with
                      | Identity ->
                        let progress = if Option.is_empty progress then Some false else progress in
                          (None :: acc, evars, progress)
                      | Success r -> 
                        (Some r :: acc, r.rew_evars, Some true)
                      | Fail -> (None :: acc, evars, progress)
                    in state, res')
                (state, ([], evars, success)) args
            in
            let res = 
              match progress with
              | None -> Fail
              | Some false -> Identity
              | Some true ->
                let args' = Array.of_list (List.rev args') in
                  if Array.exists
                    (function 
                      | None -> false 
                      | Some r -> not (is_rew_cast r.rew_prf)) args'
                  then
                    let evars', prf, car, rel, c1, c2 = 
                      resolve_morphism env unfresh t m args args' (prop, cstr') evars' 
                    in
                    let res = { rew_car = ty; rew_from = c1;
                                rew_to = c2; rew_prf = RewPrf (rel, prf);
                                rew_evars = evars' } 
                    in Success res
                  else 
                    let args' = Array.map2
                      (fun aorig anew ->
                        match anew with None -> aorig
                        | Some r -> r.rew_to) args args' 
                    in
                    let res = { rew_car = ty; rew_from = t;
                                rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
                                rew_evars = evars' }
                    in Success res
            in state, res
          in
            if flags.on_morphisms then
              let mty = Retyping.get_type_of env (goalevars evars) m in
              let evars, cstr', m, mty, argsl, args = 
                let argsl = Array.to_list args in
                let lift = if prop then PropGlobal.lift_cstr else TypeGlobal.lift_cstr in
                  match lift env evars argsl m mty None with
                  | Some (evars, cstr', m, mty, args) -> 
                    evars, Some cstr', m, mty, args, Array.of_list args
                  | None -> evars, None, m, mty, argsl, args
              in
              let state, m' = s.strategy { state ; env ; unfresh ;
                                           term1 = m ; ty1 = mty ;
                                           cstr = (prop, cstr') ; evars } in
                match m' with
                | Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *)
                | Identity -> rewrite_args state (Some false)
                | Success r ->
                    (* We rewrote the function and get a proof of pointwise rel for the arguments.
                       We just apply it. *)
                    let prf = match r.rew_prf with
                      | RewPrf (rel, prf) ->
                        let app = if prop then PropGlobal.apply_pointwise 
                          else TypeGlobal.apply_pointwise 
                        in
                          RewPrf (app (goalevars evars) rel argsl, mkApp (prf, args))
                      | x -> x
                    in
                    let res =
                      { rew_car = Reductionops.hnf_prod_appvect env (goalevars evars) r.rew_car args;
                        rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
                        rew_prf = prf; rew_evars = r.rew_evars }
                    in 
                    let res = 
                      match prf with
                      | RewPrf (rel, prf) ->
                        Success (apply_constraint env unfresh res.rew_car
                                      rel prf (prop,cstr) res)
                      | _ -> Success res
                    in state, res
            else rewrite_args state None
              
      | Prod (n, x, b) when noccurn (goalevars evars) 1 b ->
          let b = subst1 mkProp b in
          let tx = Retyping.get_type_of env (goalevars evars) x
          and tb = Retyping.get_type_of env (goalevars evars) b in
          let arr = if prop then PropGlobal.arrow_morphism 
            else TypeGlobal.arrow_morphism 
          in
          let (evars', mor), unfold = arr env evars tx tb x b in
          let state, res = aux { state ; env ; unfresh ;
                                 term1 = mor ; ty1 = ty ;
                                 cstr = (prop,cstr) ; evars = evars' } in
          let res = 
            match res with
            | Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
            | Fail | Identity -> res
          in state, res

      (*                 if x' = None && flags.under_lambdas then *)
      (*                   let lam = mkLambda (n, x, b) in *)
      (*                   let lam', occ = aux env lam occ None in *)
      (*                   let res =  *)
      (*                     match lam' with *)
      (*                     | None -> None *)
      (*                     | Some (prf, (car, rel, c1, c2)) -> *)
      (*                         Some (resolve_morphism env sigma t *)
      (*                                  ~fnewt:unfold_all *)
      (*                                  (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
      (*                                  cstr evars) *)
      (*                   in res, occ *)
      (*                 else *)

      | Prod (n, dom, codom) ->
          let lam = mkLambda (n, dom, codom) in
          let (evars', app), unfold = 
            if eq_constr (fst evars) ty mkProp then
              (app_poly_sort prop env evars coq_all [| dom; lam |]), TypeGlobal.unfold_all
            else 
              let forall = if prop then PropGlobal.coq_forall else TypeGlobal.coq_forall in
                (app_poly_sort prop env evars forall [| dom; lam |]), TypeGlobal.unfold_forall
          in
          let state, res = aux { state ; env ; unfresh ;
                                 term1 = app ; ty1 = ty ;
                                 cstr = (prop,cstr) ; evars = evars' } in
          let res = 
            match res with
            | Success r -> Success { r with rew_to = unfold (goalevars r.rew_evars) r.rew_to }
            | Fail | Identity -> res
          in state, res

(* TODO: real rewriting under binders: introduce x x' (H : R x x') and rewrite with 
   H at any occurrence of x. Ask for (R ==> R') for the lambda. Formalize this.
   B. Barras' idea is to have a context of relations, of length 1, with Σ for gluing
   dependent relations and using projections to get them out.
 *)
      (* | Lambda (n, t, b) when flags.under_lambdas -> *)
      (*           let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in *)
      (*           let n'' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n' in *)
      (*           let n''' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n'' in *)
      (*           let rel = new_cstr_evar cstr env (mkApp (Lazy.force coq_relation, [|t|])) in *)
      (*           let env' = Environ.push_rel_context [(n'',None,lift 2 rel);(n'',None,lift 1 t);(n', None, t)] env in *)
      (*           let b' = s env' avoid b (Typing.type_of env' (goalevars evars) (lift 2 b)) (unlift_cstr env (goalevars evars) cstr) evars in *)
      (*             (match b' with *)
      (*             | Some (Some r) -> *)
      (*                 let prf = match r.rew_prf with *)
      (*                   | RewPrf (rel, prf) -> *)
      (*                       let rel = pointwise_or_dep_relation n' t r.rew_car rel in *)
      (*                       let prf = mkLambda (n', t, prf) in *)
      (*                         RewPrf (rel, prf) *)
      (*                   | x -> x *)
      (*                 in *)
      (*                   Some (Some { r with *)
      (*                     rew_prf = prf; *)
      (*                     rew_car = mkProd (n, t, r.rew_car); *)
      (*                     rew_from = mkLambda(n, t, r.rew_from); *)
      (*                     rew_to = mkLambda (n, t, r.rew_to) }) *)
      (*             | _ -> b') *)

      | Lambda (n, t, b) when flags.under_lambdas ->
        let n' = map_annot (Nameops.Name.map (fun id -> Tactics.fresh_id_in_env unfresh id env)) n in
        let open Context.Rel.Declaration in
        let env' = EConstr.push_rel (LocalAssum (n', t)) env in
        let bty = Retyping.get_type_of env' (goalevars evars) b in
        let unlift = if prop then PropGlobal.unlift_cstr else TypeGlobal.unlift_cstr in
        let state, b' = s.strategy { state ; env = env' ; unfresh ;
                                     term1 = b ; ty1 = bty ;
                                     cstr = (prop, unlift env evars cstr) ;
                                     evars } in
        let res = 
          match b' with
          | Success r ->
            let r = match r.rew_prf with
              | RewPrf (rel, prf) ->
                let point = if prop then PropGlobal.pointwise_or_dep_relation else
                    TypeGlobal.pointwise_or_dep_relation
                in
                let evars, rel = point env r.rew_evars n'.binder_name t r.rew_car rel in
                let prf = mkLambda (n', t, prf) in
                  { r with rew_prf = RewPrf (rel, prf); rew_evars = evars }
              | x -> r
            in
              Success { r with
                rew_car = mkProd (n, t, r.rew_car);
                rew_from = mkLambda(n, t, r.rew_from);
                rew_to = mkLambda (n, t, r.rew_to) }
          | Fail | Identity -> b'
        in state, res
            
      | Case (ci, p, c, brs) ->
        let cty = Retyping.get_type_of env (goalevars evars) c in
        let evars', eqty = app_poly_sort prop env evars coq_eq [| cty |] in
        let cstr' = Some eqty in
        let state, c' = s.strategy { state ; env ; unfresh ;
                                     term1 = c ; ty1 = cty ;
                                     cstr = (prop, cstr') ; evars = evars' } in
        let state, res = 
          match c' with
          | Success r ->
            let case = mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs) in
            let res = make_leibniz_proof env case ty r in
              state, Success (coerce env unfresh (prop,cstr) res)
          | Fail | Identity ->
            if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then
              let evars', eqty = app_poly_sort prop env evars coq_eq [| ty |] in
              let cstr = Some eqty in
              let state, found, brs' = Array.fold_left 
                (fun (state, found, acc) br ->
                  if not (Option.is_empty found) then 
                    (state, found, fun x -> lift 1 br :: acc x)
                  else
                    let state, res = s.strategy { state ; env ; unfresh ;
                                                  term1 = br ; ty1 = ty ;
                                                  cstr = (prop,cstr) ; evars } in
                      match res with
                      | Success r -> (state, Some r, fun x -> mkRel 1 :: acc x)
                      | Fail | Identity -> (state, None, fun x -> lift 1 br :: acc x))
                (state, None, fun x -> []) brs
              in
                match found with
                | Some r ->
                  let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' c'))) in
                    state, Success (make_leibniz_proof env ctxc ty r)
                | None -> state, c'
            else
              match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
              | None -> state, c'
              | Some (cst, _, t', eff (*FIXME*)) ->
                 let state, res = aux { state ; env ; unfresh ;
                                        term1 = t' ; ty1 = ty ;
                                        cstr = (prop,cstr) ; evars } in
                let res = 
                  match res with
                  | Success prf -> 
                    Success { prf with
                      rew_from = t; 
                      rew_to = unfold_match env (goalevars evars) cst prf.rew_to }
                  | x' -> c'
                in state, res
        in 
        let res = 
          match res with
          | Success r -> Success (coerce env unfresh (prop,cstr) r)
          | Fail | Identity -> res
        in state, res
      | _ -> state, Fail
  in { strategy = aux }

let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags

(** Requires transitivity of the rewrite step, if not a reduction.
    Not tail-recursive. *)

let transitivity state env unfresh prop (res : rewrite_result_info) (next : 'a pure_strategy) : 
    'a * rewrite_result =
  let state, nextres =
    next.strategy { state ; env ; unfresh ;
                    term1 = res.rew_to ; ty1 = res.rew_car ;
                    cstr = (prop, get_opt_rew_rel res.rew_prf) ;
                    evars = res.rew_evars }
  in 
  let res = 
    match nextres with
    | Fail -> Fail
    | Identity -> Success res
    | Success res' ->
      match res.rew_prf with
      | RewCast c -> Success { res' with rew_from = res.rew_from }
      | RewPrf (rew_rel, rew_prf) ->
        match res'.rew_prf with
        | RewCast _ -> Success { res with rew_to = res'.rew_to }
        | RewPrf (res'_rel, res'_prf) ->
          let trans = 
            if prop then PropGlobal.transitive_type 
            else TypeGlobal.transitive_type
          in
          let evars, prfty = 
            app_poly_sort prop env res'.rew_evars trans [| res.rew_car; rew_rel |] 
          in
          let evars, prf = new_cstr_evar evars env prfty in
          let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
                                  rew_prf; res'_prf |])
          in Success { res' with rew_from = res.rew_from; 
            rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }
  in state, res

(** Rewriting strategies.

    Inspired by ELAN's rewriting strategies:
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)

module Strategies =
  struct

    let fail : 'a pure_strategy =
      { strategy = fun { state } -> state, Fail }

    let id : 'a pure_strategy =
      { strategy = fun { state } -> state, Identity }

    let refl : 'a pure_strategy =
      { strategy =
        fun { state ; env ;
              term1 = t ; ty1 = ty ;
              cstr = (prop,cstr) ; evars } ->
        let evars, rel = match cstr with
          | None -> 
            let mkr = if prop then PropGlobal.mk_relation else TypeGlobal.mk_relation in
            let evars, rty = mkr env evars ty in
              new_cstr_evar evars env rty
          | Some r -> evars, r
        in
        let evars, proof =
          let proxy = 
            if prop then PropGlobal.proper_proxy_type env
            else TypeGlobal.proper_proxy_type env
          in
          let evars, mty = app_poly_sort prop env evars proxy [| ty ; rel; t |] in
            new_cstr_evar evars env mty
        in
        let res = Success { rew_car = ty; rew_from = t; rew_to = t;
                               rew_prf = RewPrf (rel, proof); rew_evars = evars }
        in state, res
      }

    let progress (s : 'a pure_strategy) : 'a pure_strategy = { strategy =
      fun input ->
        let state, res = s.strategy input in
          match res with
          | Fail -> state, Fail
          | Identity -> state, Fail
          | Success r -> state, Success r
                                                             }
            
    let seq first snd : 'a pure_strategy = { strategy =
      fun ({ env ; unfresh ; cstr } as input) ->
        let state, res = first.strategy input in
          match res with
          | Fail -> state, Fail
          | Identity -> snd.strategy { input with state }
          | Success res -> transitivity state env unfresh (fst cstr) res snd
                                           }
            
    let choice fst snd : 'a pure_strategy = { strategy =
      fun input ->
        let state, res = fst.strategy input in
          match res with
          | Fail -> snd.strategy { input with state }
          | Identity | Success _ -> state, res
                                            }

    let try_ str : 'a pure_strategy = choice str id

    let check_interrupt str input =
      Control.check_for_interrupt ();
      str input

    let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy =
      let rec aux input = (f { strategy = fun input -> check_interrupt aux input }).strategy input in
      { strategy = aux }
    
    let any (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun any -> try_ (seq s any))

    let repeat (s : 'a pure_strategy) : 'a pure_strategy =
      seq s (any s)

    let bu (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))

    let td (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))

    let innermost (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun ins -> choice (one_subterm ins) s)

    let outermost (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun out -> choice s (one_subterm out))

    let lemmas cs : 'a pure_strategy =
      List.fold_left (fun tac (l,l2r,by) ->
        choice tac (apply_lemma l2r rewrite_unif_flags l by AllOccurrences))
        fail cs

    let inj_open hint = (); fun sigma ->
      let ctx = UState.of_context_set hint.Autorewrite.rew_ctx in
      let sigma = Evd.merge_universe_context sigma ctx in
      (sigma, (EConstr.of_constr hint.Autorewrite.rew_lemma, NoBindings))

    let old_hints (db : string) : 'a pure_strategy =
      let rules = Autorewrite.find_rewrites db in
        lemmas
          (List.map (fun hint -> (inj_open hint, hint.Autorewrite.rew_l2r,
                                  hint.Autorewrite.rew_tac)) rules)

    let hints (db : string) : 'a pure_strategy = { strategy =
      fun ({ term1 = t } as input) ->
      let t = EConstr.Unsafe.to_constr t in
      let rules = Autorewrite.find_matches db t in
      let lemma hint = (inj_open hint, hint.Autorewrite.rew_l2r,
                        hint.Autorewrite.rew_tac) in
      let lems = List.map lemma rules in
      (lemmas lems).strategy input
                                                 }

    let reduce (r : Redexpr.red_expr) : 'a pure_strategy = { strategy =
        fun { state = state ; env = env ; term1 = t ; ty1 = ty ; cstr = cstr ; evars = evars } ->
          let rfn, ckind = Redexpr.reduction_of_red_expr env r in
          let sigma = goalevars evars in
          let (sigma, t') = rfn env sigma t in
            if Termops.eq_constr sigma t' t then
              state, Identity
            else
              state, Success { rew_car = ty; rew_from = t; rew_to = t';
                               rew_prf = RewCast ckind; 
                               rew_evars = sigma, cstrevars evars }
                                                           }
        
    let fold_glob c : 'a pure_strategy = { strategy =
      fun { state ; env ; term1 = t ; ty1 = ty ; cstr ; evars } ->
(*         let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *)
        let sigma, c = Pretyping.understand_tcc env (goalevars evars) c in
        let unfolded =
          try Tacred.try_red_product env sigma c
          with e when CErrors.noncritical e ->
            user_err Pp.(str "fold: the term is not unfoldable!")
        in
          try
            let sigma = Unification.w_unify env sigma CONV ~flags:(Unification.elim_flags ()) unfolded t in
            let c' = Reductionops.nf_evar sigma c in
              state, Success { rew_car = ty; rew_from = t; rew_to = c';
                                  rew_prf = RewCast DEFAULTcast;
                                  rew_evars = (sigma, snd evars) }
          with e when CErrors.noncritical e -> state, Fail
                                         }
  

end

(** The strategy for a single rewrite, dealing with occurrences. *)

(** A dummy initial clauseenv to avoid generating initial evars before
    even finding a first application of the rewriting lemma, in setoid_rewrite
    mode *)

let rewrite_with l2r flags c occs : strategy = { strategy =
  fun ({ state = () } as input) ->
    let unify env evars t =
      let (sigma, cstrs) = evars in
      let (sigma, rew) = refresh_hypinfo env sigma c in
      unify_eqn rew l2r flags env (sigma, cstrs) None t
    in
    let app = apply_rule unify occs in
    let strat = 
      Strategies.fix (fun aux -> 
        Strategies.choice app (subterm true default_flags aux))
    in
    let _, res = strat.strategy { input with state = 0 } in
    ((), res)
                                               }

let apply_strategy (s : strategy) env unfresh concl (prop, cstr) evars =
  let ty = Retyping.get_type_of env (goalevars evars) concl in
  let _, res = s.strategy { state = () ; env ; unfresh ;
                            term1 = concl ; ty1 = ty ;
                            cstr = (prop, Some cstr) ; evars } in
  res

let solve_constraints env (evars,cstrs) =
  let oldtcs = Evd.get_typeclass_evars evars in
  let evars' = Evd.set_typeclass_evars evars cstrs in
  let evars' = Typeclasses.resolve_typeclasses env ~filter:all_evars ~split:false ~fail:true evars' in
  Evd.set_typeclass_evars evars' oldtcs

let nf_zeta =
  Reductionops.clos_norm_flags (CClosure.RedFlags.mkflags [CClosure.RedFlags.fZETA])

exception RewriteFailure of Pp.t

type result = (evar_map * constr option * types) option option

let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
  let sigma, sort = Typing.sort_of env sigma concl in
  let evdref = ref sigma in
  let evars = (!evdref, Evar.Set.empty) in
  let evars, cstr =
    let prop, (evars, arrow) = 
      if Sorts.is_prop sort then true, app_poly_sort true env evars impl [||]
      else false, app_poly_sort false env evars TypeGlobal.arrow [||]
    in
      match is_hyp with
      | None -> 
        let evars, t = poly_inverse prop env evars (mkSort sort) arrow in 
          evars, (prop, t)
      | Some _ -> evars, (prop, arrow)
  in
  let eq = apply_strategy strat env avoid concl cstr evars in
    match eq with
    | Fail -> None
    | Identity -> Some None
    | Success res ->
      let (_, cstrs) = res.rew_evars in
      let evars' = solve_constraints env res.rew_evars in
      let newt = Reductionops.nf_evar evars' res.rew_to in
      let evars = (* Keep only original evars (potentially instantiated) and goal evars,
                     the rest has been defined and substituted already. *)
        Evar.Set.fold 
          (fun ev acc -> 
           if not (Evd.is_defined acc ev) then 
             user_err ~hdr:"rewrite"
                          (str "Unsolved constraint remaining: " ++ spc () ++
                           Termops.pr_evar_info env acc (Evd.find acc ev))
           else Evd.remove acc ev) 
          cstrs evars'
      in
      let res = match res.rew_prf with
        | RewCast c -> None
        | RewPrf (rel, p) ->
          let p = nf_zeta env evars' (Reductionops.nf_evar evars' p) in
          let term =
            match abs with
            | None -> p
            | Some (t, ty) ->
              let t = Reductionops.nf_evar evars' t in
              let ty = Reductionops.nf_evar evars' ty in
                mkApp (mkLambda (make_annot (Name (Id.of_string "lemma")) Sorts.Relevant, ty, p), [| t |])
          in
          let proof = match is_hyp with
            | None -> term
            | Some id -> mkApp (term, [| mkVar id |])
          in Some proof
      in Some (Some (evars, res, newt))

(** Insert a declaration after the last declaration it depends on *)
let rec insert_dependent env sigma decl accu hyps = match hyps with
| [] -> List.rev_append accu [decl]
| ndecl :: rem ->
  if occur_var_in_decl env sigma (NamedDecl.get_id ndecl) decl then
    List.rev_append accu (decl :: hyps)
  else
    insert_dependent env sigma decl (ndecl :: accu) rem

let assert_replacing id newt tac = 
  let prf = Proofview.Goal.enter begin fun gl ->
    let concl = Proofview.Goal.concl gl in
    let env = Proofview.Goal.env gl in
    let sigma = Tacmach.New.project gl in
    let ctx = named_context env in
    let after, before = List.split_when (NamedDecl.get_id %> Id.equal id) ctx in
    let nc = match before with
    | [] -> assert false
    | d :: rem -> insert_dependent env sigma
                    (LocalAssum (make_annot (NamedDecl.get_id d) Sorts.Relevant, newt)) [] after @ rem
    in
    let env' = Environ.reset_with_named_context (val_of_named_context nc) env in
    Refine.refine ~typecheck:true begin fun sigma ->
      let (sigma, ev) = Evarutil.new_evar env' sigma concl in
      let (sigma, ev') = Evarutil.new_evar env sigma newt in
      let map d =
        let n = NamedDecl.get_id d in
        if Id.equal n id then ev' else mkVar n
      in
      let (e, _) = destEvar sigma ev in
      (sigma, mkEvar (e, Array.map_of_list map nc))
    end
  end in
  Proofview.tclTHEN prf (Proofview.tclFOCUS 2 2 tac)

let newfail n s = 
  Proofview.tclZERO (Refiner.FailError (n, lazy s))

let cl_rewrite_clause_newtac ?abs ?origsigma ~progress strat clause =
  let open Proofview.Notations in
  (* For compatibility *)
  let beta = Tactics.reduct_in_concl ~check:false (Reductionops.nf_betaiota, DEFAULTcast) in
  let beta_hyp id = Tactics.reduct_in_hyp ~check:false ~reorder:false Reductionops.nf_betaiota (id, InHyp) in
  let treat sigma res = 
    match res with
    | None -> newfail 0 (str "Nothing to rewrite")
    | Some None -> if progress then newfail 0 (str"Failed to progress")
                   else Proofview.tclUNIT ()
    | Some (Some res) ->
        let (undef, prf, newt) = res in
        let fold ev _ accu = if Evd.mem sigma ev then accu else ev :: accu in
        let gls = List.rev (Evd.fold_undefined fold undef []) in
        let gls = List.map Proofview.with_empty_state gls in
          match clause, prf with
        | Some id, Some p ->
            let tac = tclTHENLIST [
              Refine.refine ~typecheck:true (fun h -> (h,p));
              Proofview.Unsafe.tclNEWGOALS gls;
            ] in
            Proofview.Unsafe.tclEVARS undef <*>
            tclTHENFIRST (assert_replacing id newt tac) (beta_hyp id)
        | Some id, None ->
            Proofview.Unsafe.tclEVARS undef <*>
            convert_hyp ~check:false ~reorder:false (LocalAssum (make_annot id Sorts.Relevant, newt)) <*>
            beta_hyp id
        | None, Some p ->
            Proofview.Unsafe.tclEVARS undef <*>
            Proofview.Goal.enter begin fun gl ->
            let env = Proofview.Goal.env gl in
            let make = begin fun sigma ->
              let (sigma, ev) = Evarutil.new_evar env sigma newt in
              (sigma, mkApp (p, [| ev |]))
            end in
            Refine.refine ~typecheck:true make <*> Proofview.Unsafe.tclNEWGOALS gls
            end
        | None, None ->
            Proofview.Unsafe.tclEVARS undef <*>
            convert_concl ~check:false newt DEFAULTcast
  in
  Proofview.Goal.enter begin fun gl ->
    let concl = Proofview.Goal.concl gl in
    let env = Proofview.Goal.env gl in
    let sigma = Tacmach.New.project gl in
    let ty = match clause with
    | None -> concl
    | Some id -> EConstr.of_constr (Environ.named_type id env)
    in
    let env = match clause with
    | None -> env
    | Some id ->
      (* Only consider variables not depending on [id] *)
      let ctx = named_context env in
      let filter decl = not (occur_var_in_decl env sigma id decl) in
      let nctx = List.filter filter ctx in
      Environ.reset_with_named_context (val_of_named_context nctx) env
    in
    try
      let res =
        cl_rewrite_clause_aux ?abs strat env Id.Set.empty sigma ty clause
      in
      let sigma = match origsigma with None -> sigma | Some sigma -> sigma in
      treat sigma res <*>
      (* For compatibility *)
      beta <*> Proofview.shelve_unifiable
    with
    | PretypeError (env, evd, (UnsatisfiableConstraints _ as e)) ->
      raise (RewriteFailure (Himsg.explain_pretype_error env evd e))
  end

let tactic_init_setoid () = 
  try init_setoid (); Proofview.tclUNIT ()
  with e when CErrors.noncritical e -> Tacticals.New.tclFAIL 0 (str"Setoid library not loaded")

let cl_rewrite_clause_strat progress strat clause =
  tactic_init_setoid () <*>
  (if progress then Proofview.tclPROGRESS else fun x -> x)
   (Proofview.tclOR
      (cl_rewrite_clause_newtac ~progress strat clause)
      (fun (e, info) -> match e with
       | RewriteFailure e ->
         tclZEROMSG (str"setoid rewrite failed: " ++ e)
       | Refiner.FailError (n, pp) -> 
          tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp)
       | e -> Proofview.tclZERO ~info e))

(** Setoid rewriting when called with "setoid_rewrite" *)
let cl_rewrite_clause l left2right occs clause =
  let strat = rewrite_with left2right (general_rewrite_unif_flags ()) l occs in
    cl_rewrite_clause_strat true strat clause

(** Setoid rewriting when called with "rewrite_strat" *)
let cl_rewrite_clause_strat strat clause =
  cl_rewrite_clause_strat false strat clause
  
let apply_glob_constr c l2r occs = (); fun ({ state = () ; env = env } as input) ->
  let c sigma =
    let (sigma, c) = Pretyping.understand_tcc env sigma c in
    (sigma, (c, NoBindings))
  in
  let flags = general_rewrite_unif_flags () in
  (apply_lemma l2r flags c None occs).strategy input

let interp_glob_constr_list env =
  let make c = (); fun sigma ->
    let sigma, c = Pretyping.understand_tcc env sigma c in
    (sigma, (c, NoBindings))
  in
  List.map (fun c -> make c, true, None)

(* Syntax for rewriting with strategies *)

type unary_strategy = 
    Subterms | Subterm | Innermost | Outermost
  | Bottomup | Topdown | Progress | Try | Any | Repeat

type binary_strategy = 
  | Compose | Choice

type ('constr,'redexpr) strategy_ast = 
  | StratId | StratFail | StratRefl
  | StratUnary of unary_strategy * ('constr,'redexpr) strategy_ast
  | StratBinary of binary_strategy 
    * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast
  | StratConstr of 'constr * bool
  | StratTerms of 'constr list
  | StratHints of bool * string
  | StratEval of 'redexpr 
  | StratFold of 'constr

let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function
  | StratId | StratFail | StratRefl as s -> s
  | StratUnary (s, str) -> StratUnary (s, map_strategy f g str)
  | StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str')
  | StratConstr (c, b) -> StratConstr (f c, b)
  | StratTerms l -> StratTerms (List.map f l)
  | StratHints (b, id) -> StratHints (b, id)
  | StratEval r -> StratEval (g r)
  | StratFold c -> StratFold (f c)

let pr_ustrategy = function
| Subterms -> str "subterms"
| Subterm -> str "subterm"
| Innermost -> str "innermost"
| Outermost -> str "outermost"
| Bottomup -> str "bottomup"
| Topdown -> str "topdown"
| Progress -> str "progress"
| Try -> str "try"
| Any -> str "any"
| Repeat -> str "repeat"

let paren p = str "(" ++ p ++ str ")"

let rec pr_strategy prc prr = function
| StratId -> str "id"
| StratFail -> str "fail"
| StratRefl -> str "refl"
| StratUnary (s, str) ->
  pr_ustrategy s ++ spc () ++ paren (pr_strategy prc prr str)
| StratBinary (Choice, str1, str2) ->
  str "choice" ++ spc () ++ paren (pr_strategy prc prr str1) ++ spc () ++
    paren (pr_strategy prc prr str2)
| StratBinary (Compose, str1, str2) ->
  pr_strategy prc prr str1 ++ str ";" ++ spc () ++ pr_strategy prc prr str2
| StratConstr (c, true) -> prc c
| StratConstr (c, false) -> str "<-" ++ spc () ++ prc c
| StratTerms cl -> str "terms" ++ spc () ++ pr_sequence prc cl
| StratHints (old, id) ->
  let cmd = if old then "old_hints" else "hints" in
  str cmd ++ spc () ++ str id
| StratEval r -> str "eval" ++ spc () ++ prr r
| StratFold c -> str "fold" ++ spc () ++ prc c

let rec strategy_of_ast = function
  | StratId -> Strategies.id
  | StratFail -> Strategies.fail
  | StratRefl -> Strategies.refl
  | StratUnary (f, s) -> 
    let s' = strategy_of_ast s in
    let f' = match f with
      | Subterms -> all_subterms
      | Subterm -> one_subterm
      | Innermost -> Strategies.innermost
      | Outermost -> Strategies.outermost
      | Bottomup -> Strategies.bu
      | Topdown -> Strategies.td
      | Progress -> Strategies.progress
      | Try -> Strategies.try_
      | Any -> Strategies.any
      | Repeat -> Strategies.repeat
    in f' s'
  | StratBinary (f, s, t) ->
    let s' = strategy_of_ast s in
    let t' = strategy_of_ast t in
    let f' = match f with
      | Compose -> Strategies.seq
      | Choice -> Strategies.choice
    in f' s' t'
  | StratConstr (c, b) -> { strategy = apply_glob_constr (fst c) b AllOccurrences }
  | StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id
  | StratTerms l -> { strategy =
    (fun ({ state = () ; env } as input) ->
     let l' = interp_glob_constr_list env (List.map fst l) in
     (Strategies.lemmas l').strategy input)
                    }
  | StratEval r -> { strategy =
    (fun ({ state = () ; env ; evars } as input) ->
     let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in
     (Strategies.reduce r_interp).strategy { input with
                                             evars = (sigma,cstrevars evars) }) }
  | StratFold c -> Strategies.fold_glob (fst c)


(* By default the strategy for "rewrite_db" is top-down *)

let mkappc s l = CAst.make @@ CAppExpl ((None,qualid_of_ident (Id.of_string s),None),l)

let declare_an_instance n s args =
  (((CAst.make @@ Name n),None),
   CAst.make @@ CAppExpl ((None, qualid_of_string s,None), args))

let declare_instance a aeq n s = declare_an_instance n s [a;aeq]

let anew_instance atts binders (name,t) fields =
  let _id = Classes.new_instance ~poly:atts.polymorphic
      name binders t (true, CAst.make @@ CRecord (fields))
      ~global:atts.global ~generalize:false Hints.empty_hint_info
  in
  ()

let declare_instance_refl atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "reflexivity"),lemma)]

let declare_instance_sym atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "symmetry"),lemma)]

let declare_instance_trans atts binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
  in anew_instance atts binders instance
       [(qualid_of_ident (Id.of_string "transitivity"),lemma)]

let declare_relation atts ?(binders=[]) a aeq n refl symm trans =
  init_setoid ();
  let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in
  let () = anew_instance atts binders instance [] in
  match (refl,symm,trans) with
    (None, None, None) -> ()
  | (Some lemma1, None, None) ->
    declare_instance_refl atts binders a aeq n lemma1
  | (None, Some lemma2, None) ->
    declare_instance_sym atts binders a aeq n lemma2
  | (None, None, Some lemma3) ->
    declare_instance_trans atts binders a aeq n lemma3
  | (Some lemma1, Some lemma2, None) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    declare_instance_sym atts binders a aeq n lemma2
  | (Some lemma1, None, Some lemma3) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "PreOrder_Reflexive"), lemma1);
       (qualid_of_ident (Id.of_string "PreOrder_Transitive"),lemma3)]
  | (None, Some lemma2, Some lemma3) ->
    let () = declare_instance_sym atts binders a aeq n lemma2 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "PER_Symmetric"), lemma2);
       (qualid_of_ident (Id.of_string "PER_Transitive"),lemma3)]
  | (Some lemma1, Some lemma2, Some lemma3) ->
    let () = declare_instance_refl atts binders a aeq n lemma1 in
    let () = declare_instance_sym atts binders a aeq n lemma2 in
    let () = declare_instance_trans atts binders a aeq n lemma3 in
    let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in
    anew_instance atts binders instance
      [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), lemma1);
       (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), lemma2);
       (qualid_of_ident (Id.of_string "Equivalence_Transitive"), lemma3)]

let cHole = CAst.make @@ CHole (None, Namegen.IntroAnonymous, None)

let proper_projection env sigma r ty =
  let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in
  let ctx, inst = decompose_prod_assum sigma ty in
  let mor, args = destApp sigma inst in
  let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
  let app = mkApp (PropGlobal.proper_proj env sigma,
                  Array.append args [| instarg |]) in
    it_mkLambda_or_LetIn app ctx

let declare_projection n instance_id r =
  let poly = Global.is_polymorphic r in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,c = Evd.fresh_global env sigma r in
  let ty = Retyping.get_type_of env sigma c in
  let term = proper_projection env sigma c ty in
  let sigma, typ = Typing.type_of env sigma term in
  let ctx, typ = decompose_prod_assum sigma typ in
  let typ =
    let n =
      let rec aux t =
        match EConstr.kind sigma t with
        | App (f, [| a ; a' ; rel; rel' |]) 
            when Termops.is_global sigma (PropGlobal.respectful_ref ()) f ->
          succ (aux rel')
        | _ -> 0
      in
      let init =
        match EConstr.kind sigma typ with
            App (f, args) when Termops.is_global sigma (PropGlobal.respectful_ref ()) f  ->
              mkApp (f, fst (Array.chop (Array.length args - 2) args))
          | _ -> typ
      in aux init
    in
    let ctx,ccl = Reductionops.splay_prod_n env sigma (3 * n) typ
    in it_mkProd_or_LetIn ccl ctx
  in
  let typ = it_mkProd_or_LetIn typ ctx in
  let univs = Evd.univ_entry ~poly sigma in
  let typ = EConstr.to_constr sigma typ in
  let term = EConstr.to_constr sigma term in
  let cst = Declare.definition_entry ~types:typ ~univs term in
  let _ : Constant.t =
    Declare.declare_constant ~name:n ~kind:Decls.(IsDefinition Definition)
      (Declare.DefinitionEntry cst)
  in ()

let build_morphism_signature env sigma m =
  let m,ctx = Constrintern.interp_constr env sigma m in
  let sigma = Evd.from_ctx ctx in
  let t = Typing.unsafe_type_of env sigma m in
  let cstrs =
    let rec aux t =
      match EConstr.kind sigma t with
        | Prod (na, a, b) ->
            None :: aux b
        | _ -> []
    in aux t
  in
  let evars, t', sig_, cstrs = 
    PropGlobal.build_signature (sigma, Evar.Set.empty) env t cstrs None in
  let evd = ref evars in
  let _ = List.iter
    (fun (ty, rel) ->
      Option.iter (fun rel ->
        let default = e_app_poly env evd PropGlobal.default_relation [| ty; rel |] in
          ignore(e_new_cstr_evar env evd default))
        rel)
    cstrs
  in
  let morph = e_app_poly env evd (PropGlobal.proper_type env) [| t; sig_; m |] in
  let evd = solve_constraints env !evd in
  let evd = Evd.minimize_universes evd in
  let m = Evarutil.nf_evars_universes evd (EConstr.Unsafe.to_constr morph) in
  Pretyping.check_evars env (Evd.from_env env) evd (EConstr.of_constr m);
  Evd.evar_universe_context evd, m

let default_morphism sign m =
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let t = Typing.unsafe_type_of env sigma m in
  let evars, _, sign, cstrs =
    PropGlobal.build_signature (sigma, Evar.Set.empty) env t (fst sign) (snd sign)
  in
  let evars, morph = app_poly_check env evars (PropGlobal.proper_type env) [| t; sign; m |] in
  let evars, mor = resolve_one_typeclass env (goalevars evars) morph in
    mor, proper_projection env sigma mor morph

let warn_add_setoid_deprecated =
  CWarnings.create ~name:"add-setoid" ~category:"deprecated" (fun () ->
      Pp.(str "Add Setoid is deprecated, please use Add Parametric Relation."))

let add_setoid atts binders a aeq t n =
  warn_add_setoid_deprecated ?loc:a.CAst.loc ();
  init_setoid ();
  let () = declare_instance_refl atts binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
  let () = declare_instance_sym atts binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
  let () = declare_instance_trans atts binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
  let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
  in
  anew_instance atts binders instance
    [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
     (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
     (qualid_of_ident (Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])]

let make_tactic name =
  let open Tacexpr in
  let tacqid = Libnames.qualid_of_string name in
  TacArg (CAst.make @@ (TacCall (CAst.make (tacqid, []))))

let warn_add_morphism_deprecated =
  CWarnings.create ~name:"add-morphism" ~category:"deprecated" (fun () ->
      Pp.(str "Add Morphism f : id is deprecated, please use Add Morphism f with signature (...) as id"))

let add_morphism_as_parameter atts m n : unit =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let env = Global.env () in
  let evd = Evd.from_env env in
  let uctx, instance = build_morphism_signature env evd m in
  let uctx = UState.univ_entry ~poly:atts.polymorphic uctx in
  let cst = Declare.declare_constant ~name:instance_id
      ~kind:Decls.(IsAssumption Logical)
      (Declare.ParameterEntry (None,(instance,uctx),None))
  in
  Classes.add_instance (Classes.mk_instance
                  (PropGlobal.proper_class env evd) Hints.empty_hint_info atts.global (GlobRef.ConstRef cst));
  declare_projection n instance_id (GlobRef.ConstRef cst)

let add_morphism_interactive atts m n : Lemmas.t =
  warn_add_morphism_deprecated ?loc:m.CAst.loc ();
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let env = Global.env () in
  let evd = Evd.from_env env in
  let uctx, instance = build_morphism_signature env evd m in
  let poly = atts.polymorphic in
  let kind = Decls.(IsDefinition Instance) in
  let tac = make_tactic "Coq.Classes.SetoidTactics.add_morphism_tactic" in
  let hook { DeclareDef.Hook.S.dref; _ } = dref |> function
    | GlobRef.ConstRef cst ->
      Classes.add_instance (Classes.mk_instance
                      (PropGlobal.proper_class env evd) Hints.empty_hint_info
                      atts.global (GlobRef.ConstRef cst));
      declare_projection n instance_id (GlobRef.ConstRef cst)
    | _ -> assert false
  in
  let hook = DeclareDef.Hook.make hook in
  let info = Lemmas.Info.make ~hook ~kind () in
  Flags.silently
    (fun () ->
       let lemma = Lemmas.start_lemma ~name:instance_id ~poly ~info (Evd.from_ctx uctx) (EConstr.of_constr instance) in
       fst (Lemmas.by (Tacinterp.interp tac) lemma)) ()

let add_morphism atts binders m s n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance_name = (CAst.make @@ Name instance_id),None in
  let instance_t =
    CAst.make @@ CAppExpl
      ((None, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper",None),
       [cHole; s; m])
  in
  let tac = Tacinterp.interp (make_tactic "add_morphism_tactic") in
  let _id, lemma = Classes.new_instance_interactive
      ~global:atts.global ~poly:atts.polymorphic
      instance_name binders instance_t
      ~generalize:false ~tac ~hook:(declare_projection n instance_id) Hints.empty_hint_info
  in
  lemma (* no instance body -> always open proof *)

(** Bind to "rewrite" too *)

(** Taken from original setoid_replace, to emulate the old rewrite semantics where
    lemmas are first instantiated and then rewrite proceeds. *)

let check_evar_map_of_evars_defs env evd =
 let metas = Evd.meta_list evd in
 let check_freemetas_is_empty rebus =
  Evd.Metaset.iter
   (fun m ->
     if Evd.meta_defined evd m then ()
     else begin
       raise
         (Logic.RefinerError (env, evd, Logic.UnresolvedBindings [Evd.meta_name evd m]))
     end)
 in
  List.iter
   (fun (_,binding) ->
     match binding with
        Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
         check_freemetas_is_empty rebus freemetas
      | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
                 {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
         check_freemetas_is_empty rebus1 freemetas1 ;
         check_freemetas_is_empty rebus2 freemetas2
   ) metas

(* Find a subterm which matches the pattern to rewrite for "rewrite" *)
let unification_rewrite l2r c1 c2 sigma prf car rel but env =
  let (sigma,c') =
    try
      (* ~flags:(false,true) to allow to mark occurrences that must not be
         rewritten simply by replacing them with let-defined definitions
         in the context *)
      Unification.w_unify_to_subterm 
       ~flags:rewrite_unif_flags
        env sigma ((if l2r then c1 else c2),but)
    with
    | ex when Pretype_errors.precatchable_exception ex ->
        (* ~flags:(true,true) to make Ring work (since it really
           exploits conversion) *)
      Unification.w_unify_to_subterm 
        ~flags:rewrite_conv_unif_flags
        env sigma ((if l2r then c1 else c2),but)
  in
  let nf c = Reductionops.nf_evar sigma c in
  let c1 = if l2r then nf c' else nf c1
  and c2 = if l2r then nf c2 else nf c'
  and car = nf car and rel = nf rel in
  check_evar_map_of_evars_defs env sigma;
  let prf = nf prf in
  let prfty = nf (Retyping.get_type_of env sigma prf) in
  let sort = sort_of_rel env sigma but in
  let abs = prf, prfty in
  let prf = mkRel 1 in
  let res = (car, rel, prf, c1, c2) in
  abs, sigma, res, Sorts.is_prop sort

let get_hyp gl (c,l) clause l2r =
  let evars = Tacmach.New.project gl in
  let env = Tacmach.New.pf_env gl in
  let sigma, hi = decompose_applied_relation env evars (c,l) in
  let but = match clause with
    | Some id -> Tacmach.New.pf_get_hyp_typ id gl
    | None -> Reductionops.nf_evar evars (Tacmach.New.pf_concl gl)
  in
  unification_rewrite l2r hi.c1 hi.c2 sigma hi.prf hi.car hi.rel but env

let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }

(* let rewriteclaustac_key = CProfile.declare_profile "cl_rewrite_clause_tac";; *)
(* let cl_rewrite_clause_tac = CProfile.profile5 rewriteclaustac_key cl_rewrite_clause_tac *)

(** Setoid rewriting when called with "rewrite" *)
let general_s_rewrite cl l2r occs (c,l) ~new_goals =
  Proofview.Goal.enter begin fun gl ->
  let abs, evd, res, sort = get_hyp gl (c,l) cl l2r in
  let unify env evars t = unify_abs res l2r sort env evars t in
  let app = apply_rule unify occs in
  let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in
  let substrat = Strategies.fix recstrat in
  let strat = { strategy = fun ({ state = () } as input) ->
    let _, res = substrat.strategy { input with state = 0 } in
    (), res
              }
  in
  let origsigma = Tacmach.New.project gl in
  tactic_init_setoid () <*>
    Proofview.tclOR
      (tclPROGRESS
        (tclTHEN
           (Proofview.Unsafe.tclEVARS evd)
            (cl_rewrite_clause_newtac ~progress:true ~abs:(Some abs) ~origsigma strat cl)))
    (fun (e, info) -> match e with
    | RewriteFailure e ->
      tclFAIL 0 (str"setoid rewrite failed: " ++ e)
    | e -> Proofview.tclZERO ~info e)
  end

let _ = Hook.set Equality.general_setoid_rewrite_clause general_s_rewrite

(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)

let not_declared env sigma ty rel =
  tclFAIL 0
    (str" The relation " ++ Printer.pr_econstr_env env sigma rel ++ str" is not a declared " ++
     str ty ++ str" relation. Maybe you need to require the Coq.Classes.RelationClasses library")

let setoid_proof ty fn fallback =
  Proofview.Goal.enter begin fun gl ->
    let env = Proofview.Goal.env gl in
    let sigma = Tacmach.New.project gl in
    let concl = Proofview.Goal.concl gl in
    Proofview.tclORELSE
      begin
        try
          let rel, _, _ = decompose_app_rel env sigma concl in
          let (sigma, t) = Typing.type_of env sigma rel in
          let car = snd (List.hd (fst (Reductionops.splay_prod env sigma t))) in
            (try init_relation_classes () with _ -> raise Not_found);
            fn env sigma car rel
        with e -> Proofview.tclZERO e
      end
      begin function
        | e ->
            Proofview.tclORELSE
              fallback
              begin function (e', info) -> match e' with
                | Hipattern.NoEquationFound ->
                    begin match e with
                    | (Not_found, _) ->
                        let rel, _, _ = decompose_app_rel env sigma concl in
                        not_declared env sigma ty rel
                    | (e, info) -> Proofview.tclZERO ~info e
                    end
                | e' -> Proofview.tclZERO ~info e'
              end
      end
  end

let tac_open ((evm,_), c) tac = 
    (tclTHEN (Proofview.Unsafe.tclEVARS evm) (tac c))

let poly_proof getp gett env evm car rel =
  if Sorts.is_prop (sort_of_rel env evm rel) then
    getp env (evm,Evar.Set.empty) car rel
  else gett env (evm,Evar.Set.empty) car rel

let setoid_reflexivity =
  setoid_proof "reflexive"
    (fun env evm car rel -> 
     tac_open (poly_proof PropGlobal.get_reflexive_proof
                          TypeGlobal.get_reflexive_proof
                          env evm car rel)
              (fun c -> tclCOMPLETE (apply c)))
    (reflexivity_red true)

let setoid_symmetry =
  setoid_proof "symmetric"
    (fun env evm car rel -> 
      tac_open
        (poly_proof PropGlobal.get_symmetric_proof TypeGlobal.get_symmetric_proof
           env evm car rel)
        (fun c -> apply c))
    (symmetry_red true)
    
let setoid_transitivity c =
  setoid_proof "transitive"
    (fun env evm car rel ->
      tac_open (poly_proof PropGlobal.get_transitive_proof TypeGlobal.get_transitive_proof
           env evm car rel)
        (fun proof -> match c with
        | None -> eapply proof
        | Some c -> apply_with_bindings (proof,ImplicitBindings [ c ])))
    (transitivity_red true c)
    
let setoid_symmetry_in id =
  let open Tacmach.New in
  Proofview.Goal.enter begin fun gl ->
  let sigma = project gl in
  let ctype = pf_unsafe_type_of gl (mkVar id) in
  let binders,concl = decompose_prod_assum sigma ctype in
  let (equiv, args) = decompose_app sigma concl in
  let rec split_last_two = function
    | [c1;c2] -> [],(c1, c2)
    | x::y::z -> let l,res = split_last_two (y::z) in x::l, res
    | _ -> user_err Pp.(str "Cannot find an equivalence relation to rewrite.")
  in
  let others,(c1,c2) = split_last_two args in
  let he,c1,c2 =  mkApp (equiv, Array.of_list others),c1,c2 in
  let new_hyp' =  mkApp (he, [| c2 ; c1 |]) in
  let new_hyp = it_mkProd_or_LetIn new_hyp'  binders in
    (tclTHENLAST
      (Tactics.assert_after_replacing id new_hyp)
      (tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ]))
  end

let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity
let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry
let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in
let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity

let get_lemma_proof f env evm x y = 
  let (evm, _), c = f env (evm,Evar.Set.empty) x y in
    evm, c

let get_reflexive_proof =
  get_lemma_proof PropGlobal.get_reflexive_proof

let get_symmetric_proof = 
  get_lemma_proof PropGlobal.get_symmetric_proof

let get_transitive_proof = 
  get_lemma_proof PropGlobal.get_transitive_proof