1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Extend open Genarg open Gramlib (** The parser of Coq *) module G : sig include Grammar.S with type te = Tok.t and type 'c pattern = 'c Tok.p (* where Grammar.S module type S = sig type te = 'x; type parsable = 'x; value parsable : Stream.t char -> parsable; value tokens : string -> list (string * int); value glexer : Plexing.lexer te; value set_algorithm : parse_algorithm -> unit; module Entry : sig type e 'a = 'y; value create : string -> e 'a; value parse : e 'a -> parsable -> 'a; value parse_token_stream : e 'a -> Stream.t te -> 'a; value name : e 'a -> string; value of_parser : string -> (Stream.t te -> 'a) -> e 'a; value print : Format.formatter -> e 'a -> unit; external obj : e 'a -> Gramext.g_entry te = "%identity"; end ; module Unsafe : sig value gram_reinit : Plexing.lexer te -> unit; value clear_entry : Entry.e 'a -> unit; end ; value extend : Entry.e 'a -> option Gramext.position -> list (option string * option Gramext.g_assoc * list (list (Gramext.g_symbol te) * Gramext.g_action)) -> unit; value delete_rule : Entry.e 'a -> list (Gramext.g_symbol te) -> unit; end *) type coq_parsable val coq_parsable : ?loc:Loc.t -> char Stream.t -> coq_parsable val entry_create : string -> 'a entry val entry_parse : 'a entry -> coq_parsable -> 'a val comment_state : coq_parsable -> ((int * int) * string) list end with type 'a Entry.e = 'a Extend.entry = struct include Grammar.GMake(CLexer.Lexer) type coq_parsable = parsable * CLexer.lexer_state ref let coq_parsable ?loc c = let state = ref (CLexer.init_lexer_state ()) in CLexer.set_lexer_state !state; let a = parsable ?loc c in state := CLexer.get_lexer_state (); (a,state) let entry_create = Entry.create let entry_parse e (p,state) = CLexer.set_lexer_state !state; try let c = Entry.parse e p in state := CLexer.get_lexer_state (); c with Ploc.Exc (loc,e) -> CLexer.drop_lexer_state (); let loc' = Loc.get_loc (Exninfo.info e) in let loc = match loc' with None -> loc | Some loc -> loc in Loc.raise ~loc e let comment_state (p,state) = CLexer.get_comment_state !state end module Parsable = struct type t = G.coq_parsable let make = G.coq_parsable let comment_state = G.comment_state end module Entry = struct type 'a t = 'a Grammar.GMake(CLexer.Lexer).Entry.e let create = G.Entry.create let parse = G.entry_parse let print = G.Entry.print let of_parser = G.Entry.of_parser let name = G.Entry.name let parse_token_stream = G.Entry.parse_token_stream end (** Grammar extensions *) (** NB: [extend_statement = gram_position option * single_extend_statement list] and [single_extend_statement = string option * gram_assoc option * production_rule list] and [production_rule = symbol list * action] In [single_extend_statement], first two parameters are name and assoc iff a level is created *) (** Binding general entry keys to symbol *) let rec symbol_of_prod_entry_key : type s tr a. (s, tr, a) symbol -> (s, tr, a) G.ty_symbol = function | Atoken t -> G.s_token t | Alist1 s -> let s = symbol_of_prod_entry_key s in G.s_list1 s | Alist1sep (s,sep) -> let s = symbol_of_prod_entry_key s in let sep = symbol_of_prod_entry_key sep in G.s_list1sep s sep false | Alist0 s -> let s = symbol_of_prod_entry_key s in G.s_list0 s | Alist0sep (s,sep) -> let s = symbol_of_prod_entry_key s in let sep = symbol_of_prod_entry_key sep in G.s_list0sep s sep false | Aopt s -> let s = symbol_of_prod_entry_key s in G.s_opt s | Aself -> G.s_self | Anext -> G.s_next | Aentry e -> G.s_nterm e | Aentryl (e, n) -> G.s_nterml e n | Arules rs -> let warning msg = Feedback.msg_warning Pp.(str msg) in G.s_rules ~warning:(Some warning) (List.map symbol_of_rules rs) and symbol_of_rule : type s tr a r. (s, tr, a, Loc.t -> r) Extend.rule -> (s, tr, a, Loc.t -> r) G.ty_rule = function | Stop -> G.r_stop | Next (r, s) -> let r = symbol_of_rule r in let s = symbol_of_prod_entry_key s in G.r_next r s | NextNoRec (r, s) -> let r = symbol_of_rule r in let s = symbol_of_prod_entry_key s in G.r_next_norec r s and symbol_of_rules : type a. a Extend.rules -> a G.ty_rules = function | Rules (r, act) -> let symb = symbol_of_rule r in G.rules (symb,act) (** FIXME: This is a hack around a deficient camlp5 API *) type 'a any_production = AnyProduction : ('a, 'tr, 'f, Loc.t -> 'a) G.ty_rule * 'f -> 'a any_production let of_coq_production_rule : type a. a Extend.production_rule -> a any_production = function | Rule (toks, act) -> AnyProduction (symbol_of_rule toks, act) let of_coq_single_extend_statement (lvl, assoc, rule) = (lvl, assoc, List.map of_coq_production_rule rule) let of_coq_extend_statement (pos, st) = (pos, List.map of_coq_single_extend_statement st) let fix_extend_statement (pos, st) = let fix_single_extend_statement (lvl, assoc, rules) = let fix_production_rule (AnyProduction (s, act)) = G.production (s, act) in (lvl, assoc, List.map fix_production_rule rules) in (pos, List.map fix_single_extend_statement st) (** Type of reinitialization data *) type gram_reinit = Gramlib.Gramext.g_assoc * Gramlib.Gramext.position type 'a single_extend_statement = string option * (* Level *) Gramlib.Gramext.g_assoc option * (* Associativity *) 'a production_rule list (* Symbol list with the interpretation function *) type 'a extend_statement = Gramlib.Gramext.position option * 'a single_extend_statement list type extend_rule = | ExtendRule : 'a G.Entry.e * gram_reinit option * 'a extend_statement -> extend_rule module EntryCommand = Dyn.Make () module EntryData = struct type _ t = Ex : 'b G.Entry.e String.Map.t -> ('a * 'b) t end module EntryDataMap = EntryCommand.Map(EntryData) type ext_kind = | ByGrammar of extend_rule | ByEXTEND of (unit -> unit) * (unit -> unit) | ByEntry : ('a * 'b) EntryCommand.tag * string * 'b G.Entry.e -> ext_kind (** The list of extensions *) let camlp5_state = ref [] let camlp5_entries = ref EntryDataMap.empty (** Deletion *) let grammar_delete e reinit (pos,rls) = List.iter (fun (n,ass,lev) -> List.iter (fun (AnyProduction (pil,_)) -> G.safe_delete_rule e pil) (List.rev lev)) (List.rev rls); match reinit with | Some (a,ext) -> let lev = match pos with | Some (Gramext.Level n) -> n | _ -> assert false in let warning msg = Feedback.msg_warning Pp.(str msg) in (G.safe_extend ~warning:(Some warning) e) (Some ext) [Some lev,Some a,[]] | None -> () (** Extension *) let grammar_extend e reinit ext = let ext = of_coq_extend_statement ext in let undo () = grammar_delete e reinit ext in let pos, ext = fix_extend_statement ext in let redo () = G.safe_extend ~warning:None e pos ext in camlp5_state := ByEXTEND (undo, redo) :: !camlp5_state; redo () let grammar_extend_sync e reinit ext = camlp5_state := ByGrammar (ExtendRule (e, reinit, ext)) :: !camlp5_state; let pos, ext = fix_extend_statement (of_coq_extend_statement ext) in G.safe_extend ~warning:None e pos ext (** The apparent parser of Coq; encapsulate G to keep track of the extensions. *) module Gram = struct include G end (** Remove extensions [n] is the number of extended entries (not the number of Grammar commands!) to remove. *) let rec remove_grammars n = if n>0 then match !camlp5_state with | [] -> anomaly ~label:"Pcoq.remove_grammars" (Pp.str "too many rules to remove.") | ByGrammar (ExtendRule (g, reinit, ext)) :: t -> grammar_delete g reinit (of_coq_extend_statement ext); camlp5_state := t; remove_grammars (n-1) | ByEXTEND (undo,redo)::t -> undo(); camlp5_state := t; remove_grammars n; redo(); camlp5_state := ByEXTEND (undo,redo) :: !camlp5_state | ByEntry (tag, name, e) :: t -> G.Unsafe.clear_entry e; camlp5_state := t; let EntryData.Ex entries = try EntryDataMap.find tag !camlp5_entries with Not_found -> EntryData.Ex String.Map.empty in let entries = String.Map.remove name entries in camlp5_entries := EntryDataMap.add tag (EntryData.Ex entries) !camlp5_entries; remove_grammars (n - 1) let make_rule r = [None, None, r] (** An entry that checks we reached the end of the input. *) let eoi_entry en = let e = Entry.create ((Gram.Entry.name en) ^ "_eoi") in let symbs = G.r_next (G.r_next G.r_stop (G.s_nterm en)) (G.s_token Tok.PEOI) in let act = fun _ x loc -> x in let warning msg = Feedback.msg_warning Pp.(str msg) in Gram.safe_extend ~warning:(Some warning) e None (make_rule [G.production (symbs, act)]); e let map_entry f en = let e = Entry.create ((Gram.Entry.name en) ^ "_map") in let symbs = G.r_next G.r_stop (G.s_nterm en) in let act = fun x loc -> f x in let warning msg = Feedback.msg_warning Pp.(str msg) in Gram.safe_extend ~warning:(Some warning) e None (make_rule [G.production (symbs, act)]); e (* Parse a string, does NOT check if the entire string was read (use eoi_entry) *) let parse_string f ?loc x = let strm = Stream.of_string x in Gram.entry_parse f (Gram.coq_parsable ?loc strm) type gram_universe = string let utables : (string, unit) Hashtbl.t = Hashtbl.create 97 let create_universe u = let () = Hashtbl.add utables u () in u let uprim = create_universe "prim" let uconstr = create_universe "constr" let utactic = create_universe "tactic" let get_univ u = if Hashtbl.mem utables u then u else raise Not_found let new_entry u s = let ename = u ^ ":" ^ s in let e = Entry.create ename in e let make_gen_entry u s = new_entry u s module GrammarObj = struct type ('r, _, _) obj = 'r Entry.t let name = "grammar" let default _ = None end module Grammar = Register(GrammarObj) let warn_deprecated_intropattern = let open CWarnings in create ~name:"deprecated-intropattern-entry" ~category:"deprecated" (fun () -> Pp.strbrk "Entry name intropattern has been renamed in order \ to be consistent with the documented grammar of tactics. Use \ \"simple_intropattern\" instead.") let check_compatibility = function | Genarg.ExtraArg s when ArgT.repr s = "intropattern" -> warn_deprecated_intropattern () | _ -> () let register_grammar = Grammar.register0 let genarg_grammar x = check_compatibility x; Grammar.obj x let create_generic_entry (type a) u s (etyp : a raw_abstract_argument_type) : a Entry.t = let e = new_entry u s in let Rawwit t = etyp in let () = Grammar.register0 t e in e (* Initial grammar entries *) module Prim = struct let gec_gen n = make_gen_entry uprim n (* Entries that can be referred via the string -> Entry.t table *) (* Typically for tactic or vernac extensions *) let preident = gec_gen "preident" let ident = gec_gen "ident" let natural = gec_gen "natural" let integer = gec_gen "integer" let bigint = Entry.create "Prim.bigint" let string = gec_gen "string" let lstring = Entry.create "Prim.lstring" let reference = make_gen_entry uprim "reference" let by_notation = Entry.create "by_notation" let smart_global = Entry.create "smart_global" (* parsed like ident but interpreted as a term *) let var = gec_gen "var" let name = Entry.create "Prim.name" let identref = Entry.create "Prim.identref" let univ_decl = Entry.create "Prim.univ_decl" let ident_decl = Entry.create "Prim.ident_decl" let pattern_ident = Entry.create "pattern_ident" let pattern_identref = Entry.create "pattern_identref" (* A synonym of ident - maybe ident will be located one day *) let base_ident = Entry.create "Prim.base_ident" let qualid = Entry.create "Prim.qualid" let fullyqualid = Entry.create "Prim.fullyqualid" let dirpath = Entry.create "Prim.dirpath" let ne_string = Entry.create "Prim.ne_string" let ne_lstring = Entry.create "Prim.ne_lstring" let bar_cbrace = Entry.create "'|}'" end module Constr = struct let gec_constr = make_gen_entry uconstr (* Entries that can be referred via the string -> Entry.t table *) let constr = gec_constr "constr" let operconstr = gec_constr "operconstr" let constr_eoi = eoi_entry constr let lconstr = gec_constr "lconstr" let binder_constr = gec_constr "binder_constr" let ident = make_gen_entry uconstr "ident" let global = make_gen_entry uconstr "global" let universe_name = make_gen_entry uconstr "universe_name" let universe_level = make_gen_entry uconstr "universe_level" let sort = make_gen_entry uconstr "sort" let sort_family = make_gen_entry uconstr "sort_family" let pattern = Entry.create "constr:pattern" let constr_pattern = gec_constr "constr_pattern" let lconstr_pattern = gec_constr "lconstr_pattern" let closed_binder = Entry.create "constr:closed_binder" let binder = Entry.create "constr:binder" let binders = Entry.create "constr:binders" let open_binders = Entry.create "constr:open_binders" let binders_fixannot = Entry.create "constr:binders_fixannot" let typeclass_constraint = Entry.create "constr:typeclass_constraint" let record_declaration = Entry.create "constr:record_declaration" let appl_arg = Entry.create "constr:appl_arg" end module Module = struct let module_expr = Entry.create "module_expr" let module_type = Entry.create "module_type" end let epsilon_value (type s tr a) f (e : (s, tr, a) symbol) = let s = symbol_of_prod_entry_key e in let r = G.production (G.r_next G.r_stop s, (fun x _ -> f x)) in let ext = [None, None, [r]] in let entry = Gram.entry_create "epsilon" in let warning msg = Feedback.msg_warning Pp.(str msg) in let () = G.safe_extend ~warning:(Some warning) entry None ext in try Some (parse_string entry "") with _ -> None (** Synchronized grammar extensions *) module GramState = Store.Make () type 'a grammar_extension = 'a -> GramState.t -> extend_rule list * GramState.t module GrammarCommand = Dyn.Make () module GrammarInterp = struct type 'a t = 'a grammar_extension end module GrammarInterpMap = GrammarCommand.Map(GrammarInterp) let grammar_interp = ref GrammarInterpMap.empty type ('a, 'b) entry_extension = 'a -> GramState.t -> string list * GramState.t module EntryInterp = struct type _ t = Ex : ('a, 'b) entry_extension -> ('a * 'b) t end module EntryInterpMap = EntryCommand.Map(EntryInterp) let entry_interp = ref EntryInterpMap.empty type grammar_entry = | GramExt of int * GrammarCommand.t | EntryExt : int * ('a * 'b) EntryCommand.tag * 'a -> grammar_entry let (grammar_stack : (grammar_entry * GramState.t) list ref) = ref [] type 'a grammar_command = 'a GrammarCommand.tag type ('a, 'b) entry_command = ('a * 'b) EntryCommand.tag let create_grammar_command name interp : _ grammar_command = let obj = GrammarCommand.create name in let () = grammar_interp := GrammarInterpMap.add obj interp !grammar_interp in obj let create_entry_command name (interp : ('a, 'b) entry_extension) : ('a, 'b) entry_command = let obj = EntryCommand.create name in let () = entry_interp := EntryInterpMap.add obj (EntryInterp.Ex interp) !entry_interp in obj let extend_grammar_command tag g = let modify = GrammarInterpMap.find tag !grammar_interp in let grammar_state = match !grammar_stack with | [] -> GramState.empty | (_, st) :: _ -> st in let (rules, st) = modify g grammar_state in let iter (ExtendRule (e, reinit, ext)) = grammar_extend_sync e reinit ext in let () = List.iter iter rules in let nb = List.length rules in grammar_stack := (GramExt (nb, GrammarCommand.Dyn (tag, g)), st) :: !grammar_stack let extend_entry_command (type a) (type b) (tag : (a, b) entry_command) (g : a) : b Gram.Entry.e list = let EntryInterp.Ex modify = EntryInterpMap.find tag !entry_interp in let grammar_state = match !grammar_stack with | [] -> GramState.empty | (_, st) :: _ -> st in let (names, st) = modify g grammar_state in let entries = List.map (fun name -> Gram.entry_create name) names in let iter name e = camlp5_state := ByEntry (tag, name, e) :: !camlp5_state; let EntryData.Ex old = try EntryDataMap.find tag !camlp5_entries with Not_found -> EntryData.Ex String.Map.empty in let entries = String.Map.add name e old in camlp5_entries := EntryDataMap.add tag (EntryData.Ex entries) !camlp5_entries in let () = List.iter2 iter names entries in let nb = List.length entries in let () = grammar_stack := (EntryExt (nb, tag, g), st) :: !grammar_stack in entries let find_custom_entry tag name = let EntryData.Ex map = EntryDataMap.find tag !camlp5_entries in String.Map.find name map let extend_dyn_grammar (e, _) = match e with | GramExt (_, (GrammarCommand.Dyn (tag, g))) -> extend_grammar_command tag g | EntryExt (_, tag, g) -> ignore (extend_entry_command tag g) (** Registering extra grammar *) type any_entry = AnyEntry : 'a Gram.Entry.e -> any_entry let grammar_names : any_entry list String.Map.t ref = ref String.Map.empty let register_grammars_by_name name grams = grammar_names := String.Map.add name grams !grammar_names let find_grammars_by_name name = try String.Map.find name !grammar_names with Not_found -> let fold (EntryDataMap.Any (tag, EntryData.Ex map)) accu = try AnyEntry (String.Map.find name map) :: accu with Not_found -> accu in EntryDataMap.fold fold !camlp5_entries [] (** Summary functions: the state of the lexer is included in that of the parser. Because the grammar affects the set of keywords when adding or removing grammar rules. *) type frozen_t = (grammar_entry * GramState.t) list * CLexer.keyword_state let freeze ~marshallable : frozen_t = (!grammar_stack, CLexer.get_keyword_state ()) (* We compare the current state of the grammar and the state to unfreeze, by computing the longest common suffixes *) let factorize_grams l1 l2 = if l1 == l2 then ([], [], l1) else List.share_tails l1 l2 let rec number_of_entries accu = function | [] -> accu | ((GramExt (p, _) | EntryExt (p, _, _)), _) :: rem -> number_of_entries (p + accu) rem let unfreeze (grams, lex) = let (undo, redo, common) = factorize_grams !grammar_stack grams in let n = number_of_entries 0 undo in remove_grammars n; grammar_stack := common; CLexer.set_keyword_state lex; List.iter extend_dyn_grammar (List.rev redo) (** No need to provide an init function : the grammar state is statically available, and already empty initially, while the lexer state should not be reset, since it contains keywords declared in g_*.mlg *) let parser_summary_tag = Summary.declare_summary_tag "GRAMMAR_LEXER" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = Summary.nop } let with_grammar_rule_protection f x = let fs = freeze ~marshallable:false in try let a = f x in unfreeze fs; a with reraise -> let reraise = CErrors.push reraise in let () = unfreeze fs in iraise reraise (** Registering grammar of generic arguments *) let () = let open Stdarg in Grammar.register0 wit_int (Prim.integer); Grammar.register0 wit_string (Prim.string); Grammar.register0 wit_pre_ident (Prim.preident); Grammar.register0 wit_ident (Prim.ident); Grammar.register0 wit_var (Prim.var); Grammar.register0 wit_ref (Prim.reference); Grammar.register0 wit_sort_family (Constr.sort_family); Grammar.register0 wit_constr (Constr.constr); ()